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PREFACE

The history of gauge theory began with Weyl's pioneering attempt to
unify the general theory of relativity and electromagnetic theory.
After the establishment of guantum physics, however, the two theories
proceeded along quite different routes. Whereas general relativity re-
mained a classical theory and applied solely to phenomena of very large
scales, electromagnetic theory brought a great triumph in guantum
electrodynamics for microscopic phenomena.

Though guantum electrodynamics was a prototype of guantum field
theory, the gauge principle itself was regarded as a special artifice
realizing renormalizability in the 1950s. The extension of the gauge
principle to a non-Abelian symmetry was proposed by C.N. Yang and
R.L. Mills in 1954 and also by R. Utiyama in 1956, but the non-Abelian
gauge theory seemed to have no physical reality at that time. This
situation changed drastically in the 1970s, when the concept of spon-
taneous symmetry breakdown was incorporated into the theory. It is now
firmly believed that both electroweak and strong interactions are de-
scribed by non-Abelian theories.

In contrast to the rapid progress of particle physics, the develop-
ment of the theory of gravitation was rather modest, and remained iso-
lated from the rest of physics. In recent years, however, it has become
an increasingly accepted view that gravity should be included in guantum
physics, and that the theory of gravitation is indispensable in explaining
cosmic phenomena around black-hole spacetime and in the universe itself.
Thus, it is widely believed that particle physics and the theory of gravi-
tation must be unified from the standpoint of the gauge principle in a
generalized sense.

In Japan, research on theories of gravitation has long been supported

by the General Relativity and Gravitation (GRG) Research Group, together
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with a sub-group (relating relativistic astrophysics and cosmology)
in the Nuclear Astrophysical Group. Because of the interest of particle
physicists in gravity, the GRG group recently expanded to include such
scientists, and a new GRG Research Group was organized in 1981.
Professor Ryoyu Utiyama, President of Tezukayama University, is one
of the most distinguished theoretical physicists in Japan. As early as
1956, he made a pioneering contribution to gauge theory and gravitation
by showing that the general theory of relativity and the non-Abelian
gauge theory could be understood on the same footing. Since then,
Professor Utiyama has done a lot of important work on the gauge-
theoretical formulation of quantum field theory. He served as an organi-
zer of the GRG group and was professor at Osaka University until 1980.
The International Symposium on Gauge Theory and Gravitation was held
at Tezukayama University, Nara, Japan, on 20-24 August 1982 to pay
tribute to Professor Utiyama's brilliant research and to foster the
development of gauge theory and gravitation. The symposium was supported
by the Physical Society of Japan and the International Committee of the
GRG, and sponsored by Tezukayama University, the Japan Society for the
Promotion of Science, the Yamada Science Foundation, the Nishina Memorial
Foundation, the JEC Fund and the Kinki Nippon Rail Line Company. The suc-
cess of the symposium was made possible by the cordial cooperation of
all participants and organizers. Many thanks are due to Mfs. Y. Tsuji
and to the graduate students of Osaka University for their secretarial

assistance.

December 20, 1982 Editors Keiji Kikkawa
Noboru Nakanishi

Hidekazu Nariai
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A MICRO-deSITTER SPACETIME WITH CONSTANT TORSION:
A NEW VACUUM SOLUTION OF THE
POINCARE GAUGE FIELD THEORY

Peter Baekler and Friedrich W. Hehl
Institute for Theoretical Physics
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ABSTRACT

We study the Poincaré gauge field theory with Lagrangians of the type

(curvature scalar + torsion2)/12 + curvature2/s . Here 1 is the Planck
length and 2R the coupling constant of the hvpothetical Lorentz gauge
bosons. We find a new vacuum solution with a deSitter metric and with
constant microscopic torsion ~d{® /£ and curvature ~ R/ Q* . Its
curvature displays double duality properties.
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1. INTRODUCTION AND SUMMARY

Soon after Yang and Mills /1/ developed the SU(2)-gauge concept in
the context of the conserved isotopic spin current, Utiyama /2/ extended
this idea to any semi-simple Lie-symmetry group and demonstrated further
more that general relativity (GR) can be understood as a gaude theory re-
lated in some sense to local Lorentz invariance. A most lucid presenta-
tion of Utiyama's gauge theoretical ideas can be found in his more re-
cent paper /3/. This approach to GR can be traced back to an earlier at-
tempt of Weyl /4/.

Subsequently Sciama /5/ and Kibble /6/ have shown that, in a gauge
theoretical set-up, the ad-hoc assumption of a symmetric connection of
spacetime, used by Utiyama, should be dropped. Thus one arrives at a

gravitational theory formulated in the framework of a Riemann-Cartan

spacetime Uy- It is most natural to interpret the resulting theory as a
gauge theory with local Poincaré invariance, c¢f. Cartan /7/. We will call



it a Poincaré gauge field theory+ (PG) . The present article is based on
our four Erice lectures on this subject /32/.

Einstein "deduced" GR and its Riemannian spacetime V, by studying
the motion of forcefree point-particles in non-inertial frames of refer-
ence and by applying the equivalence principle. In a gauge theoretical

approach one studies the Lagrangian of a fermionic field, typically of a

Dirac field, in non-inertial frames of reference and applies again a

principle of equivalence++: A Riemann-Cartan spacetime Uy is the outcome.
It is the heuristic power of the Einsteinian type of procedure as

applied to a fermionic field which lends support to the PG. For fermions

a U, is a much more natural "habitat” than a V4. The latter is naturally

ada;ted to point-particles. -

In Sect. 2 we will formulate the two field equations of the PG. In
Sect. 3 the most generai polynomial Lagrangian in torsion and curvature
will be displayed yielding quasi-linear 2nd-order field equations. For
a detailed motivation and derivation in the context of both of these
sections see /32/.

Subsequently we are are going to look for exact vacuum solutions of

the field equations with non-vanishing torsion. Such solutions with

spherical symmetry and reflection invariance were found earlier for
specific Lagrangians of the PG by Neville /36/, Baekler /37/, Baekler,
Hehl and Mielke /38/, by Benn, Dereli and Tucker /39,40/ and by Baek-

+) Cf. also Hayashi and Shirafuji /8/ and Hayashi and Nakano /9/. There

is a vast literature on this field. References can be found by starting,
say, from the articles of Ne'eman /10/, Trautman /11/ and Hehl, Nitsch
and Von der Heyde /12/ in the GRG-Einstein Centennial Volume (Held /13/).
More recent work includes the articles of Hennig and Nitsch /14/, Mielke
/15/, Ne'eman /16/, Nieh and Yau /17/, see also /18,19/, Schweizer /20/,
Szczyrba /21,22/, Thirring /23/, Tseytlin /24/, Wallner /25,26/, Yasskin
/27/, and, on the equations of motion, Audretsch /28/ and Rumpf /29,30/;
cf. also Drechsler /31/.

++

.) Cf. Von der Heyde /34/, Mack /35/, and Utiyama /3/. In the gravita-
Flonal part of Utiyama's paper on p. 2218 T§ = 0 (locally) is postulated
in order “to derive the Riemannian {® from a gauge theoretical épproach“.
If one put Ay = 0 (locally) instead, one would arrive at a Riemann-Car-
tan spacetimé. Utiyama writes in a letter to one of the authors further-
more: "I know that the requirement Ag¢ = O, locally (D) is more general
tban the requirement ‘"s = 0, locally (E). Einstein's equivalence prin-
ciple shogld be replaced with the requirement (D) which is applicable
even to microscopic cases. The condition (D) fits the orthodox view of
thg general theory of gauge fields.... this requirement is a generalized
principle of equivalence." We completely agree.



ler /42/. J.D. McCrea /43/ found corresponding cylindrically symmetric
solutions and Adamoewicz /42/ plane wave solutions, see also Chen and Chern
/45/. Mielke /46/ developed a general method for the generation of exact
solutions.

In Sect. 4 we turn to spherical symmetry with reflection invariance.
Earlier work on this subject, besides the articles cited in the last
paragraph, has been done by Ramaswamy and Yasskin /47/, Baekler and Yass-
kin /48/, Nieh and Rauch /49,50/, Rauch, Shaw and Nieh /51/ and Rauch
/52/, see also Tsamparlis /53,54/. In the papers /49,50,51/ the assump-
tion of reflection invariance has been relaxed.

In Sect. 5 we specialize the tetrad such as to find a spatially
homogeneous time-dependent solution. First, in Sect. 6, we execute this
program for the purely quadratic model Lagrangian (6.1). For this pur-
pose we use the two LISP-based algebraic manipulation schemes REDUCE
/55/ and ORTOCARTAN /56,57/, cf. d'Inverno /58/. Our REDUCE-programs re-
ly heavily on similar programs written by J.D. McCrea, cf. /43/. We pre-
sent. the new constant curvature and constant torsion solution in egs.
(6.13) and (6.14) and show that it is weakly double self dual.

In Sect. 7 it is shown that our new micro-deSitter solution with con-
stant torsion is, by a suitable adaption of the constants, see. eq.
(6.14)', also a solution of the field equations of the general polyno-
mial Lagrangian (3.1), provided the fairly weak constraints (7.1) and

(7.2) on the corresponding coupling constants are fulfilled.

2. THE TWO FIELD EQUATIONS OF THE POINCARE GAUGE FIELD THEORY

The independent gravitational potentials of the Riemann-Cartan
spacetime of the Poincaré& gauge field theory (PG) are the tetrad coef-
ficients e;u and the connection coefficients r‘;u? = - r‘k@x .

Here i,j ... = 0 ... 3 are holonomic (world) indices and ot ,@... =0
..+ 3 anholonomic {(Lorentz) indices. The tetrads are chosen orthonormal,
i.e. the local metric “\«@ coincides with the Minkowski metric diag.
(-+++) . The tetrad coefficients ei“' can be interpreted as translational
and the connection coefficients rks? as Lorentz (or rotational) gauge

potentials. The corresponding field strength tensors are torsion

« % oA
(2.1) iy =V ey =1('3t&%1+rv~\e el )

and c¢curvature



.. - . A 2
(2.2) F\yx% = l('al‘.&vipu? + Y‘T.'\-\f-‘s “'ﬂ“ ) )
respectively. The operator D; represents the covariant exterior deriva-
tive. Let be given a matter field represented by a Poincaré spinor-ten-
sor'“f(%u) and referred to a local tetrad; its indices are suppressed.
The action function W of a matter field W that is interacting with the

Poincaré gauge fields, can be put into the form

ooy WS e Ll ¥, D VeV oo, Mg, Fug, gl

Here L is the special relativistic matter Lagrangian of, say, a Dirac
field minimally coupled to the geometry,x"= Dirac matrices, e: =

det e;x ' and,dl: = el, whereas T = eV is the gauge field Lagrangian
depending on some coupling constants R 1,312 ..., on the local metric,
and on the anholonomic components of torsion and curvature, respectively

Let be given the field momenta by

.. Ay .o ANy

MO Ly M
(2.4) ‘}(u =17y '3"*" ) chuQ =2 '3\:%“@ )
the momentum current of the gauge fields by .

. . 'y AL €$§ ar
(2.5) €. = 'y VU~ Fuy e - Fﬁ'g ‘3(‘68 /

and the spin current of the gauge fields by
(2.6) Eu{’ = Ktp«f '

then the field equations of the PG read

(2.7) b, At - B =L ,
(2.8) 'I)AF&‘*?Q - Eu; = e 't:,;“ .

The sources on the right hand sides are the canonical momentum current
and the canonical spin. current of the matter field. For simplicity we
will concentrate in this article on vacuum solutions of the field equa-
tions, i.e. we will put the material sources in (2.7,2.8) equal to zero
later on.

The field equations are supplemented by the two Bianchi identities

for torsion and curvature, respectively:

(2.9) Vs Fawd® = Fragua

(2.10) 'D[&F,:\K],(? =0

)



3. THE MOST GENERAL LAGRANGIAN YIELDING QUASI-LINEAR 2ND ORDER FIELD
EQUATIONS
The guiding principle for the construction of the gauge field La-
grangian V is that we allow at most second derivatives of the gauge po-
tentials ei“ and F;“? , and these second derivatives should appear in
the field equations only linearly (hypothesis of quasi-linearity). If
we further assume V to be polynomial in the field strengths, we find

3.9 V= ":\F* %[ —:;F *‘:'Fu * (4F *0\1‘::9**3‘3339 F““rﬂ

“ « 3§ | § t%
N S R
W\ ; s M

The U4—Ricci tensor is defined by Fyg = FK“ ¥ , its contracection, the
curvature scalar, by F:= FK‘J~& . The Planck length is denoted by 1,
1/‘~l4 represents the cosmological constant, and'*,zk, fA and dA are di
mensionless coupling constants. In (3.1) we hypothesized that, in addi-
tion to the usual gravitational potential e;‘ ("gravitons", weak Ein-
stein gravity with coupling constant 12), a propagating Lorentz gauge
potential ("tordions", strong Yang-Mills gravity with coupling constant

) does axist in nature.+
By using (2.4) we derive the corresponding gauge field momenta,

which are linear in torsion and curvature, respectively:

(3.2) H = % (-, FYO, & 4, F 0y, é‘u\:m’r\ ’

.. . :3 e o ‘L M ;'-
(3.3) X‘,‘ek\ =-;’T9:1 QT;,‘& 3 ‘\'?(F“ue‘\'{,‘F @.Q @]*"'LFue A

By substituting (3.1),(3.2) and (3.3) into (2.5)-(2.8),we find the two

field equations of the PG in their explicit form:

+
) This was proposed by Hehl, Ne'eman, Nitsch and Von der Heyde /59/.
For a corresponding ansatz in supergravity see Nishino /60/.
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\ i . A i |
(FIRST) i(F“'- AFe s Ae 04\4'%3'3(9,0\4‘:4"« +edq F T aed 0 F “é
g (AP 40, Bl 4 g SRR )
- %‘Q}d F\AV (O\AF“ IR W F)‘ ¥ s a8 )‘F“tg\
* Q'l Fu‘.\ (F“ AN F[a ﬂ s v &, FKSM + &, 6(3[% le%".\
LN Fn fFeige m)

£ Fe\tn\vs + _“Frr ,\vx x Qqus ‘\‘Tr)
Y

)

(SECOND) i ;5
ar‘}Tﬁe + - o—ma(eF e + Q‘F FG + ?—¥t F.‘Q
+efy é'i[PFﬂoq + (’-'(:.‘ Q‘f{(; F.qﬂ-b ef F e:‘t@ ed ,q)
(d F pxl ~ e[.,.Fﬂ vt QLF[.;? t L 4, F"‘Q )-_-. ‘&T-&‘ -
For brevity we putA:= - —L . With this sign convention, and for v

13
# O,we formally receive ‘:he same[\, as in GR. Observe that one of the

constants fz,f4 or f5 can be eliminated by use of the Euler-Gauss-Bonnet

theorem. For convenience we choose f5 = 0.

4. SPHERICAL SYMMETRY WITH REFLECTION INVARIANCE

For spherical syvmmetry and in spherical coordinates, the metric
turns out to be

(4.1) ’d.s" A (T,R) 1\(1"&)&&,‘

=-e dT + e A F (TR st Y dpt)



with the unknown functions r., )\ and r. Under the same conditions the
torsion tensor has eight independent components, which can be further
reduced by imposing spatial reflection invariance: then the only non-

zero components of the torsion tensor F“QK are

(4.2) Fvo ="£(T\?\) )
Foar =~ (TR) ,
Forn = Fouy = ‘K(T\?‘) ’
F’\'L'L = F«;g = %C‘\?‘) -

( ) "will denote differentiation with respect to T and ( )' with respect
to R.

In the following we will calculate the anholonomic: components of
the various geometrical objects involved. For this purpose we specify

a tetrad associated with the metric (4.1). We choose the coframe as
follows:

[ A N k3 .
(1.3 ©=eMdT Wk, F=rdd | W= rsimddy
. o ol o
The corresponding tetrad coefficients e;” can be read off from W =
ei*&x"'
The anholonomic connection is determined by
(4.4)

P“Q‘& = "_“_th + _(l QK“ -~ S\Ku?'\- %‘(F*Q‘C -F?xe& '\Ftu.\x\
with the object of anholonomity

Lo
@3 Dugy =gsewe Q%t‘»%ﬁ .

For spherical symmetry (4.4) becomes

4.6)  Tone = - (W&t )= NETR)
\-AOA = XO:t&'\"'\. :=X(T\&) J

Ve = Taoy = ._";.C“ +k o= YT R)

‘-1_41 = ‘-’M's = <\ L—)\

r'n_'s é*-_ ey

7

-4 ¢ =-w(T\9‘),

The curvature tensor
' € S
(1.7 Fuged = 2% Tad + 1M’ Rt + 2 0eg Doy

has the following non-vanishing components
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-pas NNy .

4.8)  Forax = - FNIXSY - 1 s = MO
Fovo = Fosgo =~ E-()-VW 2= CT®
FA‘L‘LO = F,\l%o =-&_'_"r__(\“.)\_xw = “D(T\?\B

Fowa = Fosan = s‘?(\"f)' ANY : == G((TR)

Fraa = Faasa = €2 (wey 4 XY = = HITR)
kS 1 ! e
Frazy = %‘1+Y - W LLT‘&)

5. A SPECIFIC TIME-DEPENDENT ANSATZ FOR METRIC AND TORSION

In order to find homogeneous time-dependent and not necessarily

isotropic solutions of the field equations, we specialize the ansatz
(4.3) to

(5.1 W= o\'\"u‘

= PERAR , S = A, F=PrgRsudyp

yielding the metric

(5.2) At =- AT 4 ER) (ART+ )
For the torsion we assume
5.4 ~WEO=-TR) = RORY,
AR = O = 0.

Then the anholonomic connection

W

reads
]

’(5.4) rl\oa = vﬁ.o"_ = VSos = % - -‘E(T\(\\)

A
Caar = Vaag = Q® Caaa = 553'5-

7

and for the anholonomic ¢omponents of the U -curvature Fygqyg We find

Fosos = Foror = Fosos = $/& - &/ -1
Forza = Fosaq =~ B8 + & &/ - ~(/ (E/3Y
(5.5) Faror = Fazes = Qﬂ/@ - Q.@‘/Qs - 1‘/§=("/§XQ./®‘
-2/% ,
Farar = Fans =L"/§t)(§‘/§)"\' §‘/§3 - Q.I/Qt 1 1@‘}@ -3 )
Fria = &Y/8 13/ R-37/8 +282/3 -

A further simplication can be achieved by the separation ansatz (cf.
Fennelly and Pavelle /61/)



(5.6) @ (T.8) = -S(T)

6. THE NEW SOLUTION FOR THE QUADRATIC MODEL LAGRANGIAN

The field equations (FIRST) and (SECOND) of the 10-parameter Lagran-
gian are much more complicated than the Einstein equations. Therefore,
for computational ease, it is advisable to pick a simple model Lagrangian
which should have all the characteristic features of the full 10-para-
meter Lagrangian (3.1). A particular plausible choice is our purely

quadratic Lagrangian /59/
(g%t R ! B
(6.1) VQ‘:TtI’LF“e (-F &‘* lgr F ‘*) -\—‘iFd-Q‘cSF )

( ﬁ&e 16‘ =-§A = 0 ) (*«: -A, dp=2 O ) Aq = a—)

On substituting the data of Sect. 5 into (FIRST) and (SECOND) and

using the parameter set of (6.1), we find for the vacuum case
PIRST (0,0) 2= ¥+ 61 §[e ~Chifp - 12 RYgr -3¢ g +er b /g 43P
~R Y AP - R g - CEEO R/ + 3 + 3P R/r =0,

FIrsT(0,1) = (- §/¢ -\-'t'g/(,)
T (-2x+2f/¢ - 228 + ¥/ ) = 0,
FIRST(2,2) = FIRST(3,3) = & - li‘ék *'-1'1'*-%‘7@ -1i%/p +.*.1/Q"-'i:-'
SRE /g0 - RYgY AW g - S N g \&(ﬂe\*/v +E R[50,
FIRST(1,1) = Fr - A2 E[§ « 122 {lg - VB e s 21" RY/ 42 +{lgr -
R U Ry Ry Ry PR U TR AR U e Tt
(SECOND(0,0,H = (U)LY = o, N )
seconp (1,0,1) = = L= 3%k[¢ -2 Rt /g + S&[5> -28lg
- 1'(3“3 *S?;.QIIQL—Q,%.HQ ALY 2R/ = O,

(6.2){ FIRST(1,0)

(6.3) .
‘SECOND(Z,O,Z) 2 SECOND(3,0,3) = - & ~314[g+ BRI g1 AT R[> 238

/5 +$510 2T )g - 18 48242 -CT g v =

KSECOND(2,2,1) = SECOND(3,3,1) = 1‘(%-1&‘) = 0.
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Inspection of the antisymmetric part of (FIRST) reveals that
6.4y Z=0 or :L(TR)=(T).
The trace of (FIRST) yields
(6.5) A 3k§/f - =0

with the solution

A
£ er- § A% )

where C1 is an integration constant:

Egs. (6.5) and (6.6) fulfill (SECOND) identically, i.e. the func-
tion f£(T) should be determined by the tracefree part of (FIRST). Substi-

6.6) () =

tution of (6.5) into (FIRST) yields an integro-differential equation for

the unknown function f(T)

6.7 2RI -t S+ e vy + /0 - Y - o

with Z(T) given by (6.6).
Eg. (6.7) admits at least one simple solution for f(T): Choose

(6.8) HECT3 = °“i/¥- )
which implies c, = 0 in (6.6), and
(6.9) £ = CefY

where C, ®, and @ are constants. Then (SECOND) is fulfilled for arbitrary
C and &K with F given by

T k-3 = .
(6.10) b= TG ANED T (%4, «*2)

(FIRST), however, restricts the value of & to
(6.11) X =3 .

Accordingly, the metric is found to be
48 'LQT 1 'Y 13
‘lsl - - d:‘L *_.E;iér__ (‘*Q\'* R»(XSL

(6.12)

By a coordinate transformation, it can be put into an explicitly con-
formally flat form. Collecting our results, we finally have the exact

vacuum solution

4 L
(6.13a) d¢ = ""‘(&1*} Aswmmsm )

(6.13b) Foar = Fou = Fosg = “Q e Lwskank y



n

5§
(6.13¢) Fde = («-A)(&L. A = wastawk

with

(6.14) X=13 ‘5=~l-ae_/19. .

The antisymmetric index pairs (01,02,03,23,31,12) of the curvature ma-
trix are numbered by (1,2...6) (cf. Misner, Thorne and Wheeler /62/ p.
361).
Consequently, for the purely quadratic Lagrangian solutions exist
with constant (anholonomic) torsion and constant (anholonomic) Uy-
¥8 L hich does not satisfy G,‘e(U4) =1\,~1.e,
The U4—curvature (6.13c) with (6.14) can be split into a Riemannian

curvature, but with an F 4

V,-piece, caused by the deSitter metric (6.13a), and a purely torsion de-

pendent piece according to

-4
~A
%S ® % =4
(6.15) = X + —
F“? Yyt Hgr A A

A .

This decomposition is irreducible under the local Lorentz group (cf.
Debever /63,64/ and Lenzen /65/), the deSitter piece corresponds to the
U4—curvature scalar and the second piece to the tracefree symmetric

1 £

U, ~Ricci tensor. The U,-Weyl curvature tensor Cgy vanishes.

As can be read off from (6.15), the U
tion is weakly double self dual

-\.
§ y *
(6.16) FuQx ¢ = %(Fuex %S) ¥ o1 &.Q" 4[_
for = 1/2, where

L . s ge \AVKS
(6.17) F"Q* t= - %K\“QSQF \o.v«l

4—curvature of our new solu-~-

is the double dual of the curvature tensor (~\ue§g' = totally anti-
symmetric unit tensor). A double duality ansatz such as (6.16) can

be used in the first place in order to find exact solutions (Baekler,
Hehl and Mielke /38/, Benn, Dereli and Tucker /39/)

+ .e . . .
) F. Mlller-Hoissen has informed us that he rederived our new solution

by solving his Friedmann type equations in /66,67/ for the vacuum case,
cf. also Minkevich /68/.
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7. THE NEW SOLUTION FOR THE GENERAL CASE

In this section we will show that the solution (6.13, 6.14) can be
generalized for the 10-parameter Lagrangian (3.1). For this purpose we
substitute. (5.1), (5.3), (5.6), and (6.8) into (SECOND) and (FIRST).
Then (SECOND)}, together with the double duality ansatz (6.16), yields

the two constraints

(7.1) PR SN
1 i
and N
A ooLye - %3 _
(7.2) x * H¥s . ° )
cf. Baekler /42/ ( g:i= A+ 3§+ 4+ £+ Sy ). (FIRST) leads to

/42/
3 D 5% -
(7.3) '3% (x“t &\1.‘).\, ( ~ 358 11\"‘“? 0

or, assuming G‘*QQ“Q ‘-3%1'"\"‘? to be fulfilled, to
K S A - e - O

The constraint (7.1) holds for the "viable set" of torsion-para-
meters, which, for F“?‘s = 0, leads to the teleparallelism theory of
gravity.+ Eg. (7.4) classifies the solutions into two different groups:
One with d3 = 0 and a second one with d3 # 0.

Let us consider at first d3 = 0. Then, as can be seen from (7.3),
non~trivial solutions are only possible if we include a nonszero cosmo-
logical constant into the Lagrangian (see Benn, Dereli and Tucker /39/).
The perhaps more interesting case is, however, that with d3 # O. Then
(7.4) yields

o e (R - )

These solutions can carry, in the case of t\ = 0, a "cosmological con-
stant" without having a cosmological constant (see Baekler /37/, Baek-
ler, Hehl and Mielke /38/).

+

For the function f we find, respectively+ '

+)Recently interest in the teleparallelism theory increased greatly.

The articles of Kopczyhski /69/ and of Miller-HoisSen and Nitsch /70/
unify the formalism and dgive a critical evaluation of the viability of
the theory. Recent work includes the articles of Cho /71/, Havashi and
Shirafuji /72/, Meyer /73/, Nitsch /74/, Nitsch and Hehl /75/, Schweizer
iz? Straumann /76/, Schweizer, Straumann and Wipf /77/ and Smalley /78/.
For vanishing torsion, the solution £ =Cexp(%‘\:) was found by



(8 1
_ (:ﬂ?[“‘gzs(3t’g%%-4%4 'F] y da® O,
C u,e((s']‘) , P:arbitrary const. )&3 = 0,

3
(o))
-
P
-
LN

)

Accordingly,

XL N
(6.14) " *=3 , pt= -5 (3ere e - F), di%0

®=3 , (' = arbitrary constant =0 |,

together with (6.13), represent solutions for the 10-paramter Lagrangian,

provided the two constraints (7.1) and (7.2) are fulfilled.
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NEW GENERAL RELATIVITY

-~ TRANSLATION GAUGE THEORY -

Takeshi SHIRAFUJI

Physics Department, Saitama University
Urawa, Saitama 338, Japan

1. Introduction

In 1956 Utiyama proposed to introduce the gravitational field as the gauge field
of the Lorentz group.l) He introduced 24 fields by generalizing 6 constant parame-

ters wij (= - wji) for homogeneous Lorentz transformations to arbitrary functions
wij(x). Later Kibble considered all the 10 parameters of the inhomogeneous Lorentz
group (Poincaré group), and laid the basis for Poincaré gauge theory with Y40 indepen-

2)

dent field variables.

Hayashi and Nakano proposed to extend translations only, leaving the six parameters

3) M
wij constant. K

duced as the gauge field, by requiring that the action integral be invariant under the

In this translation gauge theory, 16 field variables ¢ are intro-
group of extended translations and global Lorentz transformations. This invariance

group is the simplest one that includes the group of general coordinate transformations

The underlying space-time of the translation gauge theory is the Weitzenbdck space-
time with absolute parallelism. The notion of absolute parallelism was first intro-

4

duced into physics by Einstein, trying to unify gravitation and electromagnetism.
His attempt failed because there was no Schwarzschild solution in his field equation.S)
A purely gravitational theory based on the Weitzenbdck space-time was revived by

Mdller,6) and its Lagrangian formulation was given by Pellegrini and Plebanski.7)

The theory of gravitatien based on the Weitzenbdck space-time was extensively stud-
ied by Hayashi and Shirafuji,s) and it was given the name, new general relativity,
since Einstein in 1928, after inventing general relativity, considered absolute par=
altelism for the first time, and since its main consequences were analogous to those

of general relativity so far as macroscopic phenomena were concerned.

2. Fundamental particles and translation gauge group

We start from the action integral in special relativity for the fundamental parti-

cles of spin 1/2,
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Sy = Jd"x LM(q,qu) , (2.1)

which is invariant under Lorentz transformations,

k k
x5 = K a Ea (s = = 050 (2.2a)

60 = (1/2)uy 57, 8(3,0) = (1/2)uy S0(3,0) + 0 (3j0) (2.2b)

where SlJ are the Lorentz generators, and ck and wij are independent, constant 10 pa-
rameters. Here q collectively denotes quarks and leptons, and the Minkowski metric
is given by diag(-1,+1,+1,+1).

nij

We now eéxtend translatiens to extended translations (namely, to general. coordinate

transformations) for whith the parameters ck are arbitrary functions of space-time
points, and demand that the action integral should be invariant under general coordi-

nate transformations and under global Lorentz transformations,
& = M), 8q = (i/2)wijSqu , (2.3)

where Eu(x) are arbitrary four functions and wij are constant 6 parameters as before.
Since we are now treating general coordinate transformations, we use Greek letters for

coordinate indices and distinguish them from Lorentz indices denoted by Latin letters.

To meet with the invariance requirement, we must define those quantities Dkq which

change under (2.3) in the same manner as akq of (2.2b).9) We define Dkq by
_ (M U ‘
D = (Gk + 0 )‘auq , (2.4)
then we get the following transformation rule for cku;
Mo M, v J, M V. M uoJ
8o, " = 3 Ee, " + ey # AN AR Gj W - (2.5)

The field cku is the gauge field associated with the translation gauge group. It
transforms inhomogeneously under extended translations. The special relativistic limit
is obtained by putting cku = 0: When cku = 0, Greek indices are equivalent to Latin
ones, and the transformations (2.3) compatible with (2.5) are restricted by

ajgk + wjk =0, (2.6)

from which we get (2.2a).
The transformation law of the translation gauge field given by (2.5) is rather com-~
plicated. The field bku defined by

bH=gH"4+c ¥ (2.7)

obeys much simpler transformation law,



uo_ TR Jy M
8b, " = avg b "+ wy bj . (2.8)
Also, we define bku by
LAY v k. u k
b~ b = b"b.F =68, . 2.
W TS Wy <% (2.9)

The invariant action integral is now given by

Y
Sy = Jb d’x Ly(a,D q) (2.10)
with
Kk .
b = det(b u) , (2.11)
because b changes like &b = - baugu, and bdux gives invariant volume element.

3. Gravitational field equation

We shall construct a gravitational Lagrangian density in vacuum

In
Sg = Jb d'x Ly (3.1)

by the following basic postulates: (1) Invariance under the group of extended trans-
lations and global Lorentz transformations, (2) LG be quadratic in the translation

gauge field strength,

- p Hy V -

Tijk = bj b, (avbiu aubiv) ) (3.2)
and (3) LG be invariant under the parity operation. The most general gravitational
Lagrangian density LG can then be represented as

_ ijk i i

Ly = a(tijkt )+ S(Viv ) + y(aia ) (3.3)
with @, B and y three unknown parameters with dimension of (mass)z, where tijk’ vi
and a, are the three irreducible parts of T, . ;

i ijk
tijk = (1/2)(Tijk + Tjik) + (1/6)(nkivj + nkjvi) - (1/3)nijvk , (3.4a)
k .
vy o= T ki ? (3.4p)
N Jkm
a, = (l/6)eijka . (3.4¢)
Taking the variation of the total action integral,

S = SG + SM , (3.5)
with respect to bku, we get the following gravitational field equation,

2D¥F + 2V°F + M . -n.L, = T (3.6)

ijk ijk ij ijG ij ?

where
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m
F.. = a(tijk - tikj) + B(nijvk - nikvj) - (y/3)eijkma ) (3.7a)
n mn
=T .F" 5 - (1/2)ijnF‘i . (3.7b)

ij mni

Here Tij is the energy-momentum tensor defined by
i
.. = (1/b)b, b b .8
Ty5 = (1/b)by [8(bL,/8b" 1, (3.8)
which reduces to the canonical energy-momentum tensor

- J
Tij = - [BLM/B(B q)]aiq + nijLM (3.9)

in the special relativistic limit, c Wz g,

k -
As a simple example, let us consider a spherically symmetric case where the field

bku takes a diagonal form,

0 _ o _ _ 0
b(o) = A(r,t) , b(o) =0 = b(a) ,

b, % = B(r,t)8.% (a, ¢ =1, 2, 3) (3:10)
(a) ~ 3 a ! s = 1, &

with A and B two unknown functions of t and r = (xaxa)l/z, where we have enclosed Latin
indices by parentheses. In this case the gravitational field equation in vacuum
(namely, Tij = 0) can be solved exactly: The functions A and B should be time-indepen-

dent, and are given by

’

A(r) = (1 - E-p/2(y , Myas2
pr qr (3.11)

. Q_M)(p-Z)/z(1 . gg)-(q+2)/2

B(r) pr qr

(1

’

where p and q are defined by

1/2 172

+ 2e}  (3.12)

kel
[}

(04012 - 2e) g = i) (1-ke)]
with

(a+B)/(a+lB) . (2.13)

H

€

Here GM is an integration constant: G is Newton's gravitational constant and M can be
interpreted as the gravitational mass of the central gravitating body. We notice that
when the parameter ¢ is vanishing, this solution gives the Schwarzschild metric writ-
ten in the isotropic coordinates with the metric tensor guv defined from b, M according

to (4.1) below.

k

4.  Geometry of space-time structure

The set of four vectors b = {bku} given by (2.7) defines a global set of orthonormal

frame with respect to the metric g with the metric tensor guv given by
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g, = bkubk\) . (4.1)
The spinor fields q of the fundamental particles of spin 1/2 are defined by referring
to this orthonormal frame. The operator Dk = bkuau of (2.4) is the covariant deriva-
tive with respect to the absolute parallelism which takes b as the parallel vector

fields. This-absolute parallelism defines the nonsymmetric affine connection T,
™ = b bk (1.2)

The torsion tensor of this connection is given by

k

X X DY k
= b (avb " aub v) , (4.3)

T =T -l")\
1Y 1Y VH

and coincides with the translation gauge field strength of (3.2).

Accordingly, the translation gauge theory can be interpreted as a gravitational
theory based on the WeitzenbGck space-time with absolute parallelism. The translation
gauge field defines the parallel vector fields by (2.7), and the translation gauge
field strength represents the torsion tensor. In the WeitzenbSck space-time, the
curvature tensor defined by the connection (4.2) is identically vanishing, and the
torsion tensor describes the non-Minkowskian structure of space-time. This situation
can be contrasted with that in the Riemann space-time characterized by the curvature

tensor alone.

The Riemann-Cartan space-time has the curvature tensor and the torsion tensor, and
it is the underlying space-time of Poincaré gauge theory. From this space-time follow
two interesting space-time models: One is the Riemann space-time with the curvature
tensor alone and the other is the Weitzenbdck space-time with the torsion tensor alone.
General relativity is a gravitational theory based on the Riemann space-time, while
the translation gauge theory is based on the Weitzenbdck space-time. Both theories

can indeed be formulated as special limiting cases of Poincaré gauge theory.

The translation and the Lorentz gauge field strengths of Poincaré gauge theory re-
present the torsion and the curvature of the underlying Riemann-Cartan space-time,
respectively. We assume that the gravitational Lagrangian density be linear and quad-
ratic in the field strengths. The curvature tensor has one linear invariant and 6

quadratic invariants, while the torsion tensor has 3 quadratic invariants. The most

general gravitational Lagrangian. density of Poincaré gauge theory is then given bylo)
Lg = a(lenear invariant) + (a,B,Y)(3 quadratic invariants of the torsion tensor)
+ (al,...,a6)(6 quadratic invariants of the curvature tensor),

where the four parameters, a, o, B, and vy, are of dimension (mass)z, and the remaining

six parameters, a -y 3, are dimensionless. It has been shown that Poincaré gauge

1’
theory reduces to general relativity and to new general relativity (namely, to the

translation gauge theory) in the limits, (i) grw, Breo, y»o, and (ii) a;>®, respec-
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tively.ll) In the first limit (i), the torsion tensor is vanishing, and the above
Lagrangian density reduces to the following quadratic Lagrangian density in general
relativity,

Ly = AR - bR ((DRV((D) + eR({D? (4.4)

with two dimensionless constants b and ¢ related linearly to ai's. In the second

limit (ii), the curvature is vanishing, and the Lagrangian density reduces to (3.3).

5. Comparison with experiments

(&) The equivalence principle

The world line of the fundamental particles of spin 1/2 and of light rays propa-
gating in vacuum is the geodesics of the metric g of (4.1), as can be shown by taking
the short wave-length limit of the Dirac equation and the Maxwell equation. A macro-
scopic system such as a planet or a test particle can be described to a good approx-
imation by the macroscopic energy-momentum tensor, which is obtained from the micro-
scopic energy-momentum tensor by averaging in space and in time. When the spin di-
rection of constituent particles is randomly distributed, the antisymmetric part of
the microscopic energy-momentum tensor cancels out in the averaging process because

of the Tetrode formula,
137 . (1/20)3 (bs™ V) ' (5.1)

with SlJv the spin tensor. It can then be shown from the gravitational field equation
(3.6) that the macroscopic, symmetric energy-momentum tensor obeys the conservation

law,
\Y
va“ =0, (5.2)

where Vv is the covariant derivative with respect to the Christoffel symbol. The
world line of maecroscopic- bodies such as planets and test bodies is then the geodes-

ics of the metric g.

Thus,vas far as the effects due to intrinsic spin are negligibly small, the equiv-
alence principle is valid in new general relativity. Violation of the equivalence
principle occurs .only in the microscopic world: For example, the precession of spin

in the torsion field.
(B) Comparison with solar-system experiments

We demand that the gravitational field equation reproduces the correct Newtonian

limit: This gives the feollowing condition of the parameters,
an + 4(Bu) + 9(an)(Bn) = 0 , (5.3)

where % is Einstein's gravitational constant, y = 8yG. Notice that qu and Bu are
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dimensionless, and by virtue of (3.13) and (5.3) they are expressed by
an = - 1/3(1 - €) , Bn = 1/3(1 - 4g) . (5.1)

From the exact solution (3.11) we see that Eddington-Robertson's post-Newtonian pa-

rameters defined by

as® = (1 - 2(%) + 2r.~(%)2 + . 0at? - (1 + 2d(%’5) + o) dx®ax® (5.5)
are given by
c=1-¢€/2, d=1-2¢e . (5.6)

(We notice that Eddington-Robertson's parameters ¢ and d defined above are usually

denoted by B and vy, respectively.)

According to the solar-system experiments, the parameter € should be severely re-

stricted;
€ = - 0.004 + 0.004 , (5.7)

and therefore, we have for ox and Bx the following experimental values,

om = - 1/3 + (0.001 + 0.001) , Bu = 1/3 + (- 0.005 + 0.005) . (5.8)

6. Model with g+R=0

As we have seen in the previous section, the parameter € is severely restricted
by solar-system experiments. In view of this, we shall now assume that the param-

eter € is exactly vanishing. The parameters O and B are then given by
a=-1/3u, B=1/3u . (6.1)

The gravitational Lagrangian density LG 6f (3.3) becomes

ik
kg

_(1/3u)(tijkti - vivi) + y(aiai)

(6.2)

(1720)R({}) + (9/4k)(aiai) + (a total derivative) ,

where R({}) is the Riemann-Christoffel scalar curvature defined by the metric tensor
of (4.1), and A= 9u/(¥yn - 3).

The gravitational field equation of the present case is still complicated compared
with the Einstein equation of general relativity, and very little is known about its
solutions. We briefly mention the results for spherically symmetric and axially

symmetric solutions in vacuum.

(1) Spherically symmetric solution in vacuum:

Irrespectively of whether the source is time-independent or not, the axial-vector
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part of the torsion tensor ay should be vanishing, and b H obeys the Einstein equation

k
in vacuum. According to the Birkhoff theorem, the metric should then be given by the
Schwarzschild solution. Therefore, the parallel vector fields bku are obtained from
the special solution (3.10-11) with € = 0 by a local Lorentz transformation which

preserves the condition a; = 0.

(2) Stationary, axially symmetric solutions in vacuum:

Fukui and Hayashi derived a class of axially symmetric solutions in vacuum starting
from axially symmetric solutions of the Einstein equation in vacuum (such as the Kerr
solution or the Tomimatsu~Sato solutions).12 In their solutions in vacuum, the axial-

vector part of the torsion tensor, a;, is non-vanishing.

The Lagrangian density of (6.2) is invariant under a restricted class of local
Lorentz transformations, namely under those local Lorentz transformations which leave
the axial-vector part of the torsion tensor a¥ invariant. The Dirac equation is also
invariant under these local Lorentz t;éhsfgrmations. The gravitational field equation
derived from (6.2), however, is not covariant under such local Lorentz transformations.
This fact casts some doubts on the internal consistentcy of. the present model with

a+B = 0.13) At present we have not definite answer to this problem.

In the weak field situations with lek“|~« 1, we ecan expand the field equation into

n
k

Greek indices from Latin indices, and can decompose the translation gauge field into

power series of ¢ = and can keep only lowest order terms. We need not distinguish

symmetric and antisymmetric parts,

PR (1/2)hij - Aij (6.3)

with hij = h,., and Aij = ~ A_... Notice that the symmetric field hij is just the weak

i ji ) T
field correction to the metric tensor: g = + h with h =8 15 Jh, .. 1In this
UL NIRRT NV TIE VI &

approximation the gravitational field equation is decoupled into its symmetric and

antisymmetric parts,

k mn k
ljhij -9 (aihjk + ajhik) + g 58,90 = (niJ.EI - aiaj)h K=" 2Ty o (6.4a)
Kk
E]Aij -9 (aj}Ajk - aink) = - )\T[ij] (6.4b)
From (6.4a) and (6.4b) follow the conservation laws,
aJ.T(”) =0, ajT[ij] =0. (6.5)

The symmetric part (6.4a) is just the linearized Einstein equation, and describes the
massless graviton field of spin 2. The antisymmetrie part, on the other hand, repre-
sents a massless field of spin 0 interacting with the intrinsic spin of the fundamen-
tal particles. If the parameter ) is positive, the energy of this spinless field is

positive-definite. So we shall assume ) is positive.
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The symmetriec field hi' gives rise to the universal attraction (namely, gravitas

tion) between the fundamental particles. The antisymmetric field Aij induces a uni-

14)

versal spin-spin interactien whiech can be deseribed by the -interaction Hamiltonian,

1
H inospin = V/BMS, [Ux(W8p) 12

(6.6)
(vBmL(Br/3) By 882K - v, 3 - 3r2@ D@ DN,

where §A and §B are the spin vectors of spin 1/2 particles A and B, respectively.
This interaction is of the same form as that between two magnetic moments, and is ex-
pected to contribute to the hyperfine splitting of energy levéls in atoms and muon-
iums. The theoretical values for the hyperfine splitting based on Q.E.D. are in very
good agreement with the experimental values both for atoms and muoniums. So we get

the following upper bound for the parameter ),

M g 3x10™" (Gev)™2 . (6.7)

7. Conclusion

The translation gauge theory (or new general relativity) is a gravitational theory
on the Weitzenbdck space-~time with absolute parallelism. The Weitzenbdck space-time
is a special case of the Riemann-Cartan space~time with a curvature and a torsion.
Analogously to this, the translation gauge theory follows from Poincaré gauge theory
in the limit, a; + o Roughly speaking, the parameters a, measure the inverse of the
coupling strength of the Lorentz gauge field, so the limit ai+m is the "zero coupling"

limit of the Lorentz gauge field.
The translation gauge theory passes all the experimental tests so far carried out
if the parameters o and 8 are finely tuned so that

| (a+8)/(a+lB) = €] < 0.004 . (7.1)

This suggests us to assume
o+ 8 =0

The theoretical basis for this cheice has not yet been fully understood, however.
We shall compare the main consequences of the present theory with those of general

relativity in the following Table I.

Table I
General relativity New general relativity
Space-time Riemann space-time Weitzenbdck space-time
Connection Levi-Civita connection Non-symmetric affine

connection



Basic structure

Gravitation

Transformation group

The Birkhoff theorem

Isotropic,
gravitational field

Newtonian approximation

Weak field
approximation

Theory

Equivalence principle
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(Table I continued)

Metric tensor

Riemann-Christoffel
curvature tensor

General coordinate
transformation group
(Local Lorentz group)

Yes

The Schwarzschild
solution

Yes

Symmetric field;
massless and spin 2

Macroscopic

Yes

Parallel vector fields

Torsion tensor

General coordinate
transformation group
Global Lorentz group

Yes

The Schwarzschild
solution

Yes

Symmetric field;

massless and spin 2
Antisymmetric field;
massless and spin O

Microscopic

Yes, for macroscopic
phenomena

No, for microscopic
phenomena
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GENERALIZATIONS OF GRAVITATIONAL THEORY
BASED ON GROUP COVARIANCE
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.

The justification for the validity of a symmetry group should be es-
tablished as firmly as possible in the physical conditions and the mode
of its breaking in modifications of the latter.

I proceed here in the opposite direction, letting myself be guided
by the mathematical beauty of a symmetry group, I develop a formalism
to derive the physics based on it. The physical theory is thus dictated
by mathematics (not at all however by mathematicians).

One can expect from such a procedure in spite of its mathematical
rigour, a physical fairy tale of determined harmony in which things may
happen that are strange to physical reality. Fairy tales have however
often a significant content of truth and I think it worth while to under-
stand the models as well as possible before dismissing it as unrelated
to reality.

In the beginning there was the group, a semisimple Lie group G with
a semisimple Lie subgroup H, such that G/H, the factor space is home-
omorphic to the unperturbed manifold of space-time. The group manifold
G has a natural projection m: G - G/H so that P(G, G/H, 7 , H) form a

1-4 Locally G is homeomorph-

principal fibre bundle with typical fibre H.
ic to G/H x H. for most cases considered this is globally true; P is
trivial.
G has a natural metric the Cartan-Killing metric Yy given in a local
orthogonal frame in terms of the structure constants by:
U v

(1) Yos “ Crv Cs U

it's projection g = 7wy is the space-time metric of the universe.s_9 G

may for example be chosen as S0(4.1) or SO(3.2), the De Sitter groups
and H as S0(3.1), the Lorentz group which yield the De Sitter or anti

De Sitter universe as factor spaces.
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It is postulated in general that physical quantities in the space-
time manifold G/H are obtained as the projection of geometric quantities
on G.

The orbits of one dimensional subgroups. of G, which are the geodes-
ics of the space with the metric Y, have as their projection on G/H all
the geodesics of this space with metric g, but besides this other lines
that have the form of trajectories of charged particles in electromagnet-
ic fields., The projection from the higher dimensional space yields in
general more than only the corresponding geometrical quantities on the
base space - more things may occur in the fairy tale than what can be
brought into accord with our (limited) experience ~ but these features
could be the effect of inner degrees of freedom in a classical theory
which should be brought in accord with reality by imposing quantum condi-
tions. Especially the spiral motion analog to that of a charged particle
in a magnetic field for the De Sitter groups, which unify momentum and
angular momentum, may be the classical analog of spin motin.

The metric of the group manifold can only describe a space without
inhomogenous mass distribution. This metric for a r-parameter semisimple
group fulfills the relation:

r-2

(2) Ryy = 37 gy R + 552

uv uv 8 0

Yuv ©
This can be interpreted as the homogenous Einstein equations in r dimen-
sions with a cosmological member. (The radius of the De Sitter universe
is of order unity so that here the cosmological term is of conventional
magnitude)

The generalisation to the case of inhomogenous local mass distribu-
tions is made by introducing a source term to eq.(2) which generalizes
the metric Y in such a way that the global topology of the manifolds and
their character of a principal fibre bundle with group and typical fibre
H is not altered. We have arrived at peculiar versions of multidimen-
sional Kaluza-Klein theories with non-Abelian, in general non compact
gauge groups H. If one believes in the fundamental character of exact
invariance groups, one should analyze this mathematically consistent
scheme with all suitable semisimple groups for its physical content.

There is no doubt that this scheme is closer adjusted to the in-
variance group than that of any other theory, even if the latter is for-
mulated on the group manifold.

The effect of the metric in r dimensions with (r-k) Killing vectors,
which must exist to meet the requirements of a princ¢ipal fibre bundle,
is equivalent to the effect of the metric projected on the k-dimensional

base manifold together with (r-k) Yang-Mills fields. The latter are ob-
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tained from the curvature two form @ of a connection on the principal
fibre bundle P. (The generalisation) from that on the group manifold)

This connection can be given by a Lie algebra valued one form u:
(3) Q= dw + [w, wl

Horizontal vectors B are defined by ¢(B) = 0.
2 has only horizontal components; it can be expressed in a local

natural coordinate system where P = B x H by (r-k) Yang Mills fields:

(3a) F. = B, . = B, + C

M M M M
ik k,1 ik P

PO
o BiBy (M, P, Q +++ kt1 «v. 1)
. M
with (r-k) Yang-Mills potentials Bi and the structure constants of H.
The Lagrangian for eq.(2) has then the following k-dimensional form:
1_ikM

(4) L =T v =vge™ s e v

ikM
it does not depend on the coordinates of H. (y metric on P, g metric on
B) We require that the torsion two form vanishes. Horizontal and ver-
tical vector spaces are perpendicular.

The projection of geodesics on P on B fulfills in our coordinates:

M

i i jek _ _iMrk
(5) xT + {jk} X7x" = Fy

X CM
where the generalized "“charges” Cy are given by the vertical components
of an initial tangent vector of the geodesic.

The solution of the homogenous field equations (2) which constitutes
the group manifold G has a nonflat metric g as well as a nonvanishing
curvature form @ due to the cosmological member. There exist thus "cos-
mological fields" F' even in this case which can give rise to the non-
geodesic motion. The Maurer-Cartan equations on the group manifold:

R .S,.T 0

R -
(6) da- + CqgrA A~ =

(R,S,T = 1---r) for the left invariant forms AR give:

M_ ..M M PO _ _ M ,EF
(6a) F" = da" + CPQA A¥® = CEFA A
(E, F summed over l--+k, P, Q over k+l...r) for the cosmological fields.
Although these fields do not vanish, the total of their energy densities

on the De Sitter universes vanishes. The energy of any one field FM can
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thus be either positive or negative definite; this results from the non-
compactness of the gauge group H. The cosmological fields are not felt
except by a particle with suitable charge (= initial condition) CM. The
latter must be chosen so that no energy can be drawn from the fields.
This property remains true along the world line. It is a generalisation
of the restriction in relativity that a world line must be time like.

In the De Sitter case it restricts the motion in a suitable frame to

the analog of a spiral motion of a charge in a magnetic field.

The fairy tale could be well brought in accord with reality by lett-
ing the charges vanish or making them unobservably small; but this is
not in the spirit of the present considerations. We have to see whether
not some deep truth is in the fairy tale that properly applied may even
give a better insight into reality. The classical equations of motion
already in the De Sitter case are much more complicated. The Hamilton-
Jacobi eqguation in a way has an oscillatory wave like character. The
nature of the quantum of action in this context has first to be better
understood to see whether the guantized equations of motion do not des-
cribe also a spin motion in the De Sitter case.

A heuristic considerations which contributed to this development
was the following: The De Sitter groups for a large radius of the uni-
verse may be regarded as a unification of momentum and angular momentun
in a similar way as the group of rotations on a sphere unifies rotation
and translations of EZ.

A system of reference which rotates should thus be on an equal foot-
ing with a uniformly translated system. Making a passive transformation
to such a system we recognize that an observer there really sees the
spiral motion described in our fairy tale - not just for one particle,
but even for all the macroscopic bodies. From experience we know that
he must pay for this by experiencing inertial forces - a result that can
not adequately be derived from the general theory of relativity. The
present formalism provides in addition to the metric g still the fields
FM which should give a stronger account of Mach's principle if they are
interpreted as a spin-spin interaction in the De Sitter cases; it is
strongly felt that spin and orbital angular momentum cannot be fully sep-
arated. To seek to account for this in the present theory one would have
to describe the motion of orbiting bodies in detail including the gravi-
tational fields generated by the fields causing the binding forces.

The only example presented here was that of the De Sitter group.
The formalism is applicable to higher dimensional groups G. The con-
formal group SO(4.2) is 15-dimensional and has a l0-dimensional subgroup
H. The metric base space B.is thus five dimensional and can be inter-

preted to unify gravity and electromagnetism in a Kaluza-Klein theory of
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higher order by using the projective formalism of Veblen and Jordan.lo’11
The present formalism is not extended to supersymmetry but a presen-

tation by D. Ebner has shown that higher dimensional groups can take

account of the antisymmetry of Fermions. Limiting oneself here to this

case may provide a desirable criterium to restrict the growing number of

possible theories.
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Algebraic Construction of Static Axially
Symmetric Self-Dual Fields*
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In this short Note we will present a short introduction to the
recent work by usl)’z) on the problem of solving self-dual gauge
field equations for an arbitrary compact semisimple gauge group G.
The discussion is mostly focused on the simple case of the static
and axially symmetric configuration, in which the effective space-
time dimension is reduced to two and we can apply some of the
solution generation teéhniques of two dimensional soliton theories.3)
The central result is an algebraic method for the construction of
solutions starting from one particular solution and solutions of the
associated linear scattering problem. Here we see an interesting
interplay of soliton theoretic techniques and group theoretic
concepts. A main application is the construction of axially sym-
metric monopole solutions in gauge theories with an arbitrary group
G and a single Higgs field in the adjoint representation.

Ansatz The ansatz for the static axially symmetric gauge potential
is
Apf‘:)’l, At’ Aq)E? 3 (1)

Az’

in which J§ 1is some maximal subalgebra of é; and ?3 is its comple-

mentary subspace; é; X +P,
D, K] <ins [P iP, [P,PlI 1) . (2)

The coefficient functions depend only on z and p.

*¥) Report on work in collaboration with F, A. Bais,
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Generalized Self~Duality Equations with static axial symmetry

ayA§ - 3§Ay - i[Ay,A§] + i[¢y,¢§] =0 , (3.2)
. 1 -

3y¢§ - l[Ay,¢§] + E(My¢§ + M§¢y) =0, (3.0)
. 1 =

3§¢y - 1[A§,¢y] + §(My¢§ + M§¢y) =0, (3.c)

in which we. used the coordinates y £ p + 1z, ¥y = p - iz and gauge

potentials A, = %(Ap - 1a,), 6,
enlarge the symmetry of the system we have introduced the additional

_ 1 .
= _§(A¢ + 1At), ete. In order to
variables My and M§ which obey

3. M= = 9=M_ = -M M- . (4)
yy y y ¥

For the choice My = M§ = 1/2p, eq. (3) reduces to the ordinary

static, axially symmetric self-duality equation.

K-invariance The equation (3) as well as the ansatz (1) are
invariant under the following gauge transformation,

- ¢'

-1 . -1
' = -
A - Av QAvQ lanQ s 0 M

-1
v = Q¢vQ E) (5)

in whiech v = y,y and & = 2(y,y)eK. This is a subgroup K of the
original gauge group G which preserves the structure of the ansatz

().

Pure gauge and Triangularity Two of the three equations (3) imply

that the following combination of gauge potentials

a, = A, + 16, Vv =y,y, (6)
is pure gauge, i.e.,
. -1 * o .
a, = -i(3@)e™", e, g = )+ 1P (7

*
A theorem of group theory (Iwasawa decompositionu)) states that G
factorizes into two parts,

G = KT , (8)
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in which the Lie algebra of T consists of abelian and nilpotent
parts only. By an appropriate K-transformation one can always make

s
ava

a, = —i(avr)r'l , TeT . (9)

This gauge will be called "triangular”.

Y-invariance From a solution of (3) in the triangular gauge another
solution in the triangular gauge is obtained in terms of the follow-

ing discrete transformation

(10)
~ " -1
R¢=R™" + M=, M- -+ M=
v y y y y ¢y vy v’

>
1
¥
=
]
1 ¢2]
T
w
t
[
-
©-
1
¥
<
]

in which R, 8 and n are constant matrices. Their explicit forms are
found by considering the isomorphisms of the extended Dynkin
diaggrams of each algebra£? , which also characterigzes the Kac-Moody

b)

algebra ‘.,

I'-invariance The generalized self-dual equations (3) are invariant

under

- = -1/2 —. M' = YM M-t = Iy
v 9y v %5 Y ¢ Y 7 YTMS,  (11)

vy y?

in which a scalar function y should satisfy the following completely
integrable Riccati equation

dy = (Y-l)(YMydy + Myd§) . (12)

The T, X and K are three important symmetry transformations in terms

of which new solutions are generated successively.

Associated Linear Problem By combining two facts that for the

solution of (3), a, (6) 1s pure gauge and that the I'-transformation
maps a solution to another, we get the following linear problem,
0, J0 = 1(a, + iy1/2¢yX?B, 2

D _ . L —-1/2
§J%,— 1(A§ + 1Y ¢§iﬁz. (13)
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The integrability condition is (3) and (4).

Triangularity Restoration. If a I'-transformation is applied to a

triangular solution, the result is not triangular any more. But
the triangularity can be restored by a K-transformation in terms of
2, which can be obtained from a solution j? of the linear problem
(13) in terms of the Iwasawa decompositien,

Ro= 0 lt, Gec”, ek, TeT . (14)

Solution Generation By combining the L, T' and K-transformations

we can generate a host of new solutions from a given one
0
A= (ﬁv, $v’ ﬁv) of eq. (3). A simple scheme is, for example,

2 -+ =k > rsi =+ KTIR = A > ZA > osee (15)
(Tr.) (Tr.) (Non Tr.) (Tr.) (Tr.)

in which Tr. stands for triangular. This procedure can be repeated
an arbitrary number of times. New parameters are introduced through

constants of integration for y and j?,at each stage.

Algebraic Construction The main point of our work is that we can

construct a hierarchy of solutions A, ﬁ,'--, algebraically. The
only analytical work needed is to solve the associated linear
problem (12) and (13) for the initial solution A. We denote the
solutions as

s (R, %0 s o s Ry YD s oee s (16)

in which the suffix indicates a particular choice of constants of
integration. The y-functions and the triangularity restoring Q
functions at each stage can be constructed from (16) algebraically
and step by step. TFor an explicit construction, a close relationship
between the I-transformation and the associated linear problem must

be revealed. We refer to our papersl)’2) for further details.

Summary and Comments Applied to the simplest case, i.e., G = SU(2),

the above procedure reproduces all the solution generation techniques

6)

of NeugebauerS) for the Ernst equation in general relativity, which

describes the stationary axially symmetric vacuum gravitational field.
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The algebraic solution generation method makes use of some specific
combinations of elements of an infinite dimensional group of
symmetries for eq. (3). This group 1s a natural generalization of
Geroch—Kinnersley—Chitre7) group for the Ernst equation. We believe
that further investigation of the infinite dimensional group 1is very
important for deeper understanding of gauge theories.
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SPACE-TIME STRUCTURE OF GRAVITATIONAL SOLITONS
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The axially symmetric and stationary soliton solution of
Einstein's equations in a vacuum has been found by means of the
inverse scattering problem technique. This solution has metric of
the form

2

= gabdxadxb + n(dp? + dz2) s (1)

ds
where a,b = t,¢. For the N-soliton metric on a flat background for
which ggb = diag(—l,p2) and h° = 1, we obtain the following

expressions

N
= =0 - o
8ap = Iy lW /el (x(A=050,2)), &2,

N N :

_ o -1

= L lnellegy - 2 (ITh) N N b, (2)

K, 4=1
2 N N
_ N°/2-N N-1 3 _2
~ o
Npg = =3 Ng = ey e,

_ 2 2
Tp = (p%eyeg = w W)/ (P + W),

where o and ¢, are any constants. The matrix function X depends on
a complex spectral parameter A, and has N poles at the points

- < 2 211/2
A uk(p,z) W -z 4 ek{p + (wk—z) }
stants and € = *1. From the conditions of ﬁsymptotic flatness and

s Where W, are any con-

det(gab) < 0, we require that N is even and kglek = 0. Then, we
subdivide all the By into pairs with opposite signs ek’ and rewrite

the parameters w, and c¢, as follows,

k k
R 2 t 1291/2
Wy = Wy -2  {p° + (WY_Z) 1/ s Y =1,2,...,N/2,
(%)
+ - +
Wy =z, T mYcosAY s oy = cot((aYiKY)/Z)
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The N-soliton metric turns out to be a nonlinear superposition
of N/2 Kerr-NUT metrics aligned along the common rotational axis
(z-axis). Each soliton pair describes the Kerr-NUT metric with the

Kerr and NUT rotation parameters A %y and the mass my located at

L]
the point =z = Zry This stationar; configuration of several Kerr-NUT
masses will be realized as a result of the presence of any singu-
larities in the space-time or a dynamical balance between the gravi—
tational attraction and the rotational repulsion. If there exists
no singular structure, great interest from the physical point of view
attaches to the N-soliton metric, because it can represent a dynami-
cal equilibrium of many interacting black holes. In this paper we
investigate the space-time structure of the multi-soliton metric, by
taking the two Kerr-NUT case (N=4) as a typical example.

The metric components can be derived from the Ernst potential

€, which is given by2)
- + - + - + - +
S1 Sl 32 82 S1 Sl 82 82
1 1 1 1 1 1 1 1
g=1- (5)
- + - + - + - +
Wy wy w, w, Wy Wy w, W
-2 2 -2 +,2 - +.+ - +qt
(wl) (w ) (w2) (w2) WlSl wlsl w282 wsSs| s
+
o 1By o *041/2 £ .
sy = Fe (= + (wy-2)°} , By = a, * AY (y = 1,2) ,
for the 4-soliton metric. We can set
my > 0, cosiy > 0, z2y = -2, z Z, >0 .
N _ 2
If wy =W, (225 = (I 1 Ycos)\ ), this metric reduces to Ehe Kirr-NUT
metric. For a double coincidence of the poles, i.e., W, = w,

1 2
we obtain the § = 2 Tomimatsu-Sato and Kinnersley-
.

(2, = 0)2)+3),

Chitre metrics. Therefore; we consider only the case that any w; do

not coincide. Then, we can classify the lY-soliton metric into two

types; 5

T _ . . N
(I) separated type of two Kerr-NUT %etrlcs i.e., 220 YglecosAY s

(II) overlapped type, i.e., 2zo < yE lecosA

We construct diagrams (Fig. 1) that represent clearly such dlfferent
types.u) We place on the horizontal axis (z-axis) four points

z = wi. The axis is divided into five different regions (a,...,e).

The vertical bars drawn from these points are directed up at the
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_— — > > >
-_— | 3 —> > > > >
— — — = =
a b c d e a b c d e
(I) (I1)

Fig. 1

points =z = w; and down at the points 2z = w;. An arrow along the
axis means that one of the uY at this region of the axls is of the
order of O(p )R

For the static fieldu)

, 1.e., aY = AY = 0, the metric coefficient

h becomes of the order of 0(02(5_2)(5_3)) near each region of the
axis (s 1s the number of arrows). Then, for the metric of type II,
HUVAC

uvAoR
(MyV,.es = £,0,p,2) becomes infinite at the middle region (c).
For the rotational field, the invariant A does not increase

the invariant of the Riemann curvature tensor A = R

without 1imit at the z-axis. In general, such a singularity appears
at the point & = -1. 1In order to look for this point, we consider

a simple case such as m, =m, = m, A, = A, E A (cosx p), %, =@
JrTme s T 2
= 0, Then, we have ¢y = -cq = ¢y = —cj = ¢, (1+p)/(1 p) > 1.

The relation & = -1 means that Re(N+D) = Im(N+D) = 0. We see that
Im(N+D) becomes an odd function of z, so the singular point will
exist at the plane =z = 0, where the metric has the form

grp = ~BTIL(n-n )% (cfn,n_+1)? - c(1-nin?)?7
By = —pc(n+—n_)(1-nfnf)(n+n_B)'1

x [(n{+nZ-n,n_) (e®n,n_+1) - (cZ+ndnd)1, (6)
Bgp = pg(ninfB)_l[( -n_ )2 (c? +n n- )2~ 2 (1- n n< 2y2 (n3 +n2 n+n_)2],
B = (n,=n_)2(cP+n,n_)? - ¢#(1-nfn?)?

- + - - -
n, = p 1ul(p,z=0) = p 1[zo+ mp * {(zo+mp)2 + p2}1/2]

All the metric components 8.b become infinite at the point B = 0,
while the metric coefficient h vanishes at the same point (B = det
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(T )

For the metric of type II, i.e., z_ < mp, n+(p) is monotonously
increasing, and
-le]l <0 as p »+ 0,

2
(ny=n_)(ePn,n ) = lel@-n2n?) = { ')
2(e“=1) > 0 as p > =,

It can be proved that the algebraic equation B = 0 has only one
(mp—zo)|tanA|).
This means that the metric of type II includes one ring-singularity

R’

root G (For example, when z * mp, we obtain s

around the region (c). On the other hand, for the metric of type I,
n,(p) is monotonously decreasing. If the equation B = 0 holds, we

have
lel = [1-n n 2+{(1- ni 2n2y2 - un+n__(n+—n_)2}1/2]/2(n+-n_)

This relation turns out to be incompatible with the constraint
|c[ > 1, For any other choice of the parameters we expect that the
presence of this kind of singularity is a crucial difference between
the two types of the l-soliton metric.

Next, we examine some properties of the z-axis of the U4-soliton

1.5)56)

metric of type We rewrite the metric as follows,

as? = -r(at-wds)? + £ 1[p%a2 + e2M(ae? + az°)] . (7)

On the z-axis we flnd that 2dJw/9z = Jdu/3z = 0 except at the points
z = Y’ and f =« YHl(z—wY)(z—wY) We denote the constant values of
A and My (A =a,...,e). If
the z-axis has a local Euclidean property of a line, for any in-

w and M at each region of the axis by w

finitesimal spacelike circle around the z~axis the ratio of circum~

ference to radius should be 2w, i.e., g¢¢/p2gpp *1 as P * 0. This
requires that wy = uA
of the parameters. By a suitable choice of the coordinates (t,¢) and

= 0 and gives some restrictions to a choice

c, (see Eg. (3)), we can always set Wy = Uy = 0. Then, the

conditions w, = ua = 0 1lead to

2
leo(mlv1 + m2V2) + lelm2zo(q2u1 - qluz)

2.2 =
- (mlpl - m2p2)(m1 1 - m 2) =0 ] (8)
ia iA

= + 1
where e uY iv, and e

Y

[t

Py + qu.
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- At the regions (b) and (d), we cannot find any choice of the
parameters satisfying the conditions w, = My =0 (A = b,d). Using
the coordinate GY (Y = 1 at the region (d) and Y = 2 at the region

(b)) defined by =z - Zy = mYchose (0 < BY < m), we can prove that

Y

each region has the structure of a closed 2-sphere. Furthermore,
_ v

there exists a Killing vector E?A) = wAg(t) + E¥¢) which becomes

7)

i I v v
null on this closed surface Z,. Here, E(t) and E(¢) are the

Killing vectors associated with the stationarity and axial symmetry
respectively. We verify that EYA) lies in ZA)Slnce it is orthogonal

to the vector n(A) The vector

o
= i Z
v E(A)c;vE(A) which is normal to

A
nSA) becomes null when E?A) does, so the regions (b) and (d) can be
regarded as two horizons separated by the region (c).

The structure of the middle region (c) between two black holes
is important. If there is no artificial "support" between the
masses, this region should have a regular structure of a line.
Hence, the conditions w, = uc = 0 seem to assure a dynamical
balance between the gravitational attraction and the rotational

repulsion. These conditions lead to

cos(a; - @) =0, (9)

2 2 2

2.2 ) _
(leo - mipj + m2p2)vl + 4m2zo(q2ul + 81n(dl - 62)) =0 . (10)

It 1s remarkable that due to Egs. (8) ~ (10) the distance between two
masses, 2zo, 1s fixed by the masses and angular momenta., If wc # 0,
the metric has a pathological structure of causality violation (i.e.,
the existence of a closed timelike curve), since 8op = —fwi < 0 near
the region (c). We conclude that only the U-soliton metric of type I
with the parameters satisfying the conditions (8) ™~ (10) will avoid

any singular structures in the space-time.
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DYON BLACK HOLE IN THE
TOMIMATSU-SATO-YAMAZAKI SPACE-TIME
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The symmetry between electric and magnetic charge which is inherent
in Maxwell's equations does not seem to be realized in nature. Dirac
pointed out, however, that quantum mechanics does not preclude the exis-—
tence of magnetic monopoles [l1], and Schwinger proposed the dyon (a
pole possessing both electric and magnetic charges) [2]. This dyon
lies in the Abelian theory U(l).

On the other hand, in non-Abelian theory, 't Hooft and Polyakov
obtained spherically symmetric classical monopole solution of the SO(3)
Yang-~Mills theory coupled with a triplet Higgs field [3]. Shortly
afterwards, Julia and Zee showed that the same theory also admitted
dyon [4]. The magnetic monopoles and the dyons may play an important
role in grand unified theories.

A solution of the Einstein-Maxwell equation in the Kerr space-time
was obtained by Newman et al. [5]. This solution represents a rotating
mass and electric charge. Tomimatsu-Sato [6] discovered the series of
solutions for the gravitational field of a rotating mass, following
Ernst's formulation of axisymmetric stationary fields [7]. Furthermore
Yamazaki obtained the charged Kerr-Tomimatsu-Sato family of solutions
with arbitrary integer distortion parameter for gravitational fields of
rotating masses [8].

We present an exact stationary rotating dyon solution in the
Tomimatsu-Sato-Yamazaki space-time [9]. Our solution is characterized
by five parameters {(mass M, angular momentum J, electric charge Q,
magnetic charge ¢, and distortion parameter §). Let us start with the
following Lagrangian density, which describes the electromagnetic field

induced by an Abelian dyon in curved space-time (fi=c=1)

— _ 1 _ 1 up_vo
L=v-g - ygmeR -~ 79 9 F  F) (1)
_ _ * * . . .
where Fuv BUAV BvAu+ Guv and Guv is the Dirac string term. We can

express the line element of stationary and axisymmetric space-time in

the form

as? = £ e (ap2+az?) +02ag?]-£ (dt-wap) 2 (2)
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where f, w and y are functions of p and z only.
Our exact dyon solution for (1) and (2) can be expressed as follows

The metric functions are

£ "5/35 .

26Mq (1-y*)E /oky (3)

2
e?V = /10?0 P-y* %y .

%]

We shall follow the notation of Ref. [9].

It is worth while noting that y has the same form as in vacuum field.
Here the relations among the Weyl coordinates (t,p,z,¥), the Boyer-
Lindquist céordinates (t,r,9,9), and the prolate spheroidal coordinates

(t,x,y,9) are

2 1
o = k-2 aAHY? 2 = kuy
r = Kx + GM , cosb =y ,
2 2 2 2
(GMpo) 4 = (k8)% = (am *-a®-  (@%+e?) (4)
a = J/M = GMgo ,
p2+q2 =1, 02+|r]2 =1, T = (4nG)l/2T0 .
Next the electromagnetic potentials are
4TGMo%8 A = Q(on+g)+éok , A =A.=0 ,
™0 172 (5)
Ay = why + —S—qo(otev- Do - 2Ny,
87WGMa pa p
with the dyon solution & of the Ernst equation given by
=l, _n+ik _p+ v
o7 T Tu-v ! (6)

¢, n and k being real functions, u and v being complex functions of x,

y, p and g, and taking 4nGMTO = Q+i%. The presence of a Dirac string
in our solution may be seen from A3 in (5). In fact the monopole term
in A3 does not vanish on the negative semi-infinite line of the symmetry

axis. Our dyon solution reduces to the magnetic monopole solution in
the case Q = 0.

Oon the other hand, the non~Abelian dyon solution can be obtained
from the Abelian dyon solution and vice versa using the extended

Arafune-Freund-Goebel singular gauge transformation [9],[10],[11].



43

Let us discuss the space-time structure of our dyon solution. The
metric functions J#d and 3(5 in (3) are written in the form, using (6),
[12]

s&d (pv*+u*v)/2 ,
3(5

(7)

[(0+1)2uu*+(02—l) (uv*+u*v)+(o—l)2vv*]/(2c)2 .

The ergosurfaces are obtained by taking d@ = 0. On the equatorial
plane (y=0) the complex functions p and v in (6) become real M and & .

The metric functions 546 and 3(5 are then of the form

&d(y=0) =-M-(X,P)¢/Y'(X,P) ’
2 5 (y=0) = [{(o+1)M(x,p) +(o-1)W(x,p)}/(20)1% ,

W(x,p) = (-1) M(-x,p) .

The position of ergosurfaces on the equatorial plane is determined by
A%(y=0) = 0, and there exist ring singularities determined by:ﬁd(y=0)
=0, i.e., (0+1)M+(0-1)¥" = 0, on the equatorial plane. The metric 911
becomes infinity at x = *1. We find that the number of ergosurfaces
is 8§ for x>1 and also § for x<-1, and that the number of ring singula-
rities is [8/2] for x>1 and 8-[6/2] for x<-1.

We obtain the proper area A of the surface x=1 in the Tomimatsu-
Sato-Yamazaki space-time for our dyon

§~1
A= ﬂ(sl(cm)z(uzpomz) @ (-1 1. (8)

Therefore our dyon solution has an event horizon for arbitrary odd

integer §; there exists an event horizon at x=1, i.e.,

_ 1 2.2 G ,.2..2,,1/2
r—GM+d[(GM) a 7 (Q7+e7) ] .

Thus, for arbitrary odd integer &8, our dyon solution represents a black

hole with four hairs provided that

2 G 2, .2
a“ + ZF(Q +0°) .

v

(GM) 2

The special case 8=1 is the Kerr-Newman case of our dyon. Furthermore
it can be easily seen that the series of Weyl solutions (a=g=0) has no
event horizons except for the case 6=1, i.e. the Schwarzschild and
Reissner-Nordstrdm solutions.

We have presented an exact dyon solution for which the space~time
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metric takes the Tomimatsu-Sato-Yamazaki form. Our solution has five
parameters, i.e., the mass M of the dyon, the-angular momentum J, the
electric charge Q, the magnetic charge ¢, and the distortion parameter
§, and reduces to the rotating monopole solution in the case 0=0. Using
our extended Arafune-Freund-Goebel singular gauge transformation, the
non-Abelian dyon solution may be obtained from the Abelian dyon solution,
and vice versa. Therefore an observer at large distances cannot distin-
guish between the Abelian dyon and the non-~Abelian dyon. In the Abelian
dyon we can treat Q and ® as independent. However, this is not the

case for the non~Abelian dyon, and the finite energy Prasad-Sommerfield
solution [13] in flat space-time is known. Finally there is the problem
of naked ring singularities of the fields with 6§ = 3,5,7,++-. This
remains an open problem since Einstein's general relativity is not app-

licable to the ring singularities.
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MASSIVE GAUGE THEORIES IN

THREE DIMENSIONS (= AT HIGH TEMPERATURE)
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I. INTRODUCTION

Gauge theories in three dimensions provide iInteresting case
studies of gauge invariant quantum field theoretic phenomena. Also
they are physically relevant: a field theory on a 3-dimensional
[Euclidean] space summarizes the high-temperature behavior of a theory
in four-dimensional space-time.

Recently it has been established that the special topological pro-
perties of odd-dimensional space allow the construction of a gauge
invariant mass term in three dimensions.l Moreover, for non-Abelian
gauge groups, the configuration space of the quantum theory is not
simply connected, and as a consequence the mass must be quantized,
somewhat analogously to Dirac's monopole guantization condition. While
all this appears to be a pecullar feature of 3-dimensional theories, it
is an interesting phenomenon, whose certain aspects have 4-dimensional
analogs. Also there may be a direct physical [high temperature]
significance to the mass. For these reasons 1t is profitable to study

the subject, and I shall report here on this research.

IT. ABELIAN THEORY

Consider the following Lagrange density in 3-dimensional space-

time.

1 UV v uvo
i = . = F"'F + & A
4 Hv 7€ Fu\) o

F = 9 A - 93 A (2.1)
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Dimensional arguments show P has dimension of mass., Although the
Lagrange density is not gauge invariant, the equation of motion which

follows from (2.1) is

auFuv « uxFY = 0 (2.2)

Here we have defined the dual field, which in three dimensions is a

vector.

v 1 _uoaB
* = —
F 5 € FGB

pof o coBu *F (2.3)

Note that the dual field is identically conserved.

3. xF" = 0 (2.4)
u
This Bianchi identity is a consequence of the definitions of F*Y and
*Fu; alternatively, it follows from the equation of motion (2.2),
owing to the antisymmetry of FUV_ Under a gauge transformation the
Lagrange density changes by a total derivative.
A > A + 30 (2.5a)
U 1) H
L~ L+ 4o v (2.50)

This is why the equation of motion is gauge invariant.

While it is clear that p has dimension of mass, it still remains to
be established that it is indeed a mass term for the field. This is
most easily done by writing the field equation (2.2) in terms of the
dual tensor (2.3). Eq. (2.2) is equivalent to

YXF = 0 (2.6a)
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Multiplying this with the differential operator (ug\)u - evUYay) yields

(o + u?) *F¥ =0 (2.6b)

which demonstrates clearly that the gauge field excitations are massive.

An analysis of the kinematics shows that the massive vector meson

carries non-vanishing spin u/]u] = £1. The existence of a single exci-
tation with only one value of the spin -- as opposed to two, each
differing in sign from the other -- signals reflection non-invariance.

0f course, the lack of this symmetry is already evident from the
Lagrangian, which contains the reflection non-invariant structure eaBY.
One may regain a P and T conserving system by working with a doublet of
models, one with mass yu, the other with -y, and defining parity and time
inversion to include a field interchange.

It is gratifying that u2 oceurs in (2.6b) with the correct sign for
a propagating particle. Although we have no a priori control over this
sign ht is linear in ul], we may understand that it must emerge the way
oHY.,

it does by considering the energy-momentum tensor When coupling

our theory to an external metric, (u/4)fd3x ghVe

FuvAa is already a
coordinate invariant world scalar, without additional metric factors.
Hence the variation of action I = fd3x with respect to the metric
[this variation defines the energy-momentum tensor] does not see the

mass term. Consequently 8"Y has its conventional Maxwell form.

AU s MRV 1 _uvgaB 2.7
) e A At Y (2.7)

In particular the energy Ei is a positive definite quantity,

£ - %jdzi (32 + B°) (2.8a)
- 9a%-1% B o= -iHr o2 9 (2.8b)
2 ij
and the system's excitations cannot be tachyonic. Of course e““ remains

conserved in our theory, as a consequence of the field equation (2.2).
The fact that the action associated with our mass term is a world
scalar is evidence for its topological nature. This will have profound

implication for the quantum theory of the non-Abelian generaligzation,
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which we shall discuss later. Here I want to record another curious
topological property. Consider the time component of the field equation
(2.2), in the presence of an external charge density p. This is the

analog of Gauss' law; in our theory it reads

V:.E-uB = o (2.9a)

Upon integrating (2.9a) over all space, the first term vanishes, since
the fields, being massive, decrease exponentially at large distances.
One is left with

~u fa%%B = [a%%p = Q (2.9p)

The magnetic flux passing out of our 2-dimensional gspace is proportional
to the external charge Q. Correspondingly, the magnetic potential is

long range, even though the magnetic field is short range.

-1

P — ¥ E%E tan y/x (2.10)

r>o

This is similar to the electromagnetic configuration supported by
vortices in the Higgs model.
Let us note that apart from a total derivative,iﬁ may be written

in a gauge invariant form, which, however, is spatially non-local, and

Lorentz non-invariant. This follows from the identity
B Hva s oup¥ o3 up Y pouva V.3
el VR Ay = 2Bv2 E- L v2B Fe Ba(FquZ L)

Such an explicitly gauge invariant formulation is not available for the
non-Abelian generalization.
An interesting interacting generalization involves coupling fermion:

to (2.1). Their gauge invariant Lagrange density is

L = 1 Wh(s, - 1en)v - iy (2.11)

In three space-time dimensions, the Dirac algebra may be realized by

2x2 [Pauli] matrices, and the fermion field is a 2~component spinor,

o . . . . .. 1l m 1
- —_ = =
describing a particle [and an anti-particle] with spin 2r—7 t5
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Correspondingly, the mass term violates P and T symmetries and belongs
in a Lagrange density which contains the reflection non-invariant vector
meson mass term. Indeed in a theory with only one mass term, the other
will be induced by radiative corrections. [Reflection invariance is
regained by supplementing (2.11) with a Lagrange density for another
fermion field, with a mass term of opposite sign to (2.11). Reflection
transformations are again defined to include field exchange, and the
model becomes équivalent to a 4-component Dirac theory.]

Feynman-Dyson perturbation theory i1s straight-forwardly carried
out. It is both infrared and ultraviolet finite in the Landau gauge,

where the free boson and fermion propagators read, respectively

D y(») = —— [P (p)-ine  PO/P] (2.12a)

(2.12b)

Consequently, this 1s the only non-trivial field theory which is known
to possess a perturbation expansion entirely free of divergences -- not
even normal ordering need be performed, provided Lorentz and gauge

invariance are maintained.

III. NON-ABELIAN THEORY

The 3-dimensional mass term can be generalized to a non-Abelian

gauge theory. The gauge field Lagrange density 1s

1 HV M [TRVIY 2
= = F - A - —A A A .1
iL 2g2 tr Fuv 2g € tr(Fuv a 3TuTv a) (3 )

™)

We use a matrix notation

_ a_a _ _
Flop = 800F, = 3 A, ~ 3 A + [A,A] (3.2)

which employs the representation matrices of the group.
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[r,1°] = g@PoqC (3.3)
The coupling constant is g, while u/g2 is dimensionless. The field
equations which follow from (3.1) are gauge covariant,
MY B pY L .
L+ 8 ur 0 (3.4a)
= 3 + [A 4D
I, T (3.4p)

and from our previous consideration of the non-interacting 1limit (g=0),

we know that u indeed provides a mass for the field. The dual field

u 1 _uaB
* = =
F 5 € FaB

OB 0B *Fu (3.5)
satisfied the Bianchi identity

i
g, = - 6
M 0 (3.6)

as a consequence of the definitions (3.2) and (3.5), or alternatively as
a consequence of the field equation (3.4a). The dual of (3.4a) is

Da *Fo ‘ﬁs oy - WP = 0

(3.7a)

and another covariant divergence converts this, with the help of (3.14)

and the Ricei identity[Jja,Ije] = [FaB’ ] into

(JZJF + u2) xF* = €uaB[*Fa’*FB] (3.7p)

which is the non-Abelian analogue of (2.6b).

;tis not invariant against gauge transformations; rather it changes
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by a total derivative. Consider a finite transformation

-1 -1
A+ Utau +ute i
u u uY (3.82)

The response of the action to the gauge transformation (3.8a) is

Jardl » faddr & fadx B 5 or o uuta)
g
(3.8b)

+ St fa%x e*BY gr (3 vumt B uuTt ayuu'l)

3g°

The second term on the right-hand side, which is manifestly a total
divergence, is the analogue of the Abelian term (2.5b). We shall only
congider gauge transformations which tend to the identity at temporal

and spatial infinity.

U(x) —> zI (3.9)
X+
This restriction is made to avoid convergence problems in (3.8). Also,

it reflects our assumption of asymptotic space-time uniformity. With

Eq. (3.9), we may conclude that the A-dependent surface integral in
(3.8b) vanishes. The last term in (3.8b), which has no Abelian analog,
can also be converted to a surface integral once the integrand is re-
written as a total derivative. This can be made manifest by introducing
an explicit parametrization for U. We choose the gauge group to be SU(2)
[more generally, we consider a SU(2) subgroup of the gauge groupl] and

make use of the exponential parametrization.

U(x) = exp 7% 8%(x)
T = o¢%/24
8% = 8% ¢ (3.10)

It follows that

2
fdszL + fa3xd+ u82 w(U) (3.11)
g

where we have introduced the "winding number" of the gauge transformation

u.
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w(v) = 2 [aPx P trid, vt o

24 (3.12)

- I-;—Lg Ja3x £0BY cabe 2, 18 38§b 2,8 x(|8]-sin]e| )]
i

This quantity, though given by a surface integral, is not in general zero.

It vanishes only for homotopically triviael U's -- those continuously de-~
formable to I. However, as a consequence of the fact that

HB(SU(2) = H3(53) = group of all integers (3.13)
there are U's which are not continuously deformable to the identity. In-

deed, the gauge functions U can be arranged into homotopically inequival-
ent classes, labelled by the integers, and w(U) eguals precisely that
3

These considerations are, of course, familiar from the analysis
3 That they

integer.
of topological structure in 4-dimensional Yang-Mills theory.
should reappear in the 3-dimensional theory is not surprising, in view

of the further mathematical/topological connections which we shall draw
later.

We conclude that the action is not gauge invariant, but changes by
U(8ﬂ2/g2) wW(Uu) = u(8ﬂ2/g2) x integer. While the actionis of no particular con-
sequence in classical mechanics, in quantum mechanics the exponential of the ac-
tion, exp ijd3xI” determines probability amplitudes and must be gauge invariant
(see also below). Hence a change in the action, can be toleratéd only if
it is an integral multiple of 2wm. Consequently the requirement of gauge
invariance gives a quantization condition on the dimensionless ratio
4mu/e” .

4 J% = n n=0, 1, ... (3.14)
g

A Euclidean formulation leads to the same coneclusion. The functional
integral requires exp - f dBXIJ to be gauge invariant, but the mass term's
contribution to the action is purely imaginary; a factor of i appears when
the continuation to imaginary time [Euclidean space] is performed. The
winding number is a world scalar; hence it takes the same integer value
regardless of the space's signature. The quantization condition (3.14)
follows as before; it is entirely due to the internal group.

The way that gauge transformations act on the mass term may also be
appreciated once it is recognized that its action is a well-known mathe-

matical entity -~ the "Chern-~Simons secondary class characteristic."4
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This is defined in the following way. In even number of dimensions one
can construct a gauge invariant quantity -- the "Pontryagin density" P2n
-- whose integral over the even-dimensional space is an invariant that
characterizes the topological class to which the gauge field belongs.

Examples in two and four dimensions are

- 1 I N 'Y
Py = 5= *F = e Fu\) (3.15a)
P, = - ——51 tr *xFHVF (3.15D)
4 16w [ '

[The 2-dimensional Pontryagin density arises in 2-dimensional massless
QED as the anomalous divergence of the axial vector current, and is
responsible for mass generation in that model. The 4-dimensional Pon-
tryagin density is associated with 0-vacua in 4-dimensional Yang-Mills
theories.] Since the integral is a topological invariant, this gauge
invariant Pontryagin density can also be written as a total derivative

of a gauge variant quantity.

- u
Poy = au Xy (3.16)

The formulas corresponding to (3.15) are

WL 1w
X o7 € Ay (3.17a)
o= oA eMOBY wn(r A - ZA aLal) (3.17)
4 ) By 3 Fatpty
167
On odd-dimensional spaces Pontryagin classes do not exist. But one

may construct another topological quantity, the Chern-Simons secondary
characteristic class. This is gotten by integrating one component of

X;n over the 2n - 1 dimensional space which does not include that com-
ponent. The integral is gauge invariant against homotopically trivial
gauge transformations; otherwise, it changes by the winding number of the
transformation.

We recognize that our mass term action is proportional to the 3-dim-
ensional Chern-Simons structure.

This observation about the mass term in Yang-Mills theory has an
immediate parallel in the construction of a topological mass for 3-dimen-
sional gravity from the 4-dimensional ¥RR Hirzebruch-Pontryagin density.
But this subject is outside the scope of my lectures, hence those interest-

ed are referred to the 1iterature.5
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Let us explore further the need for the mass quantization condition,
and show that the theory is inconsistent without it. The functional
integral for a 3-dimensional, massive gauge theory [in Euclidean spacel]

is given by

2
Z = ﬁDAuexp -{ fdjx (- % tr FMVF )-iu§ﬁ— w(a)l}
uv g2
(3.18)
.1 3 Hva _2
w(A) — [d’x ¢ tr (F A BAUA\)AOL,)

As the functional integration ranges over all gauge potentials, for any
given AY it also encounters its gauge copies A

-1 -1
A = U AU+ U "3 .1
u u " (3.19)

where the gauge functions U fall into homotopically distinct classes
labelled by the integers n. Now the usual gauge fixing prescriptions,
which are [implicitly] contained ingﬁAu, remove gauge copies arising

from the homotopically trivial gauge transformations. [Recall that
Faddee¥-Popov procedires are formulated in infinitesimal terms.] How-
éver, there seems to be no way of removing gauge copies in (3.18) arising

from non-trivial, large gauge transformations. Thus we may write Z as

z = of z (3.20)

Here ZO results by performing an integration over vector potentials,

with no gauge copies; Z1 results from integrating over vector potentials
related by a gauge transformation in the first homotopy class to those

occurring in the integral for 2 ete. But it is clear that once we have

o’

determined Z Zn for n # O may be evaluated by changing variables in

s
the functiongl integral from AY to A’u, which is defined to be the gauge
transform of AM with a large gauge function of the nth homotopy class.
Such a change of variables does not affect the measure nor the usual
action, since both are gauge invariant. In the mass term, W(A) changes

by an integer, so we get

o . . 2
P S (3.21)

Now we see that if the mass term is not quantized, the infinite sum

vanishes, by destructive interference. On the other hand, when the
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o
quantization condition holds, the sum becomes Z 1, which, though
infinite, may be harmlessly cancelled by a norﬁaITzing denominator in
the definition of Z.

Thus the result: the massive gauge theory vanishes in the absence
of mass quantization. The same conclusion may be established by canon-
ical reasoning.6 Lack of time and space prevent giving details, but the
essential steps are two in number, First, one realizes that the homotopy
formula (3.13) implies that at fixed time the canonical configuration
space consisting of spatial components of the vector potentials, is not
simply connected. Second,bone finds that Gauss' law, which in the canon-
ical formalism is a constraint on physical states, i.e. a [functional]
differential equation that physical wave functionals satisfy, cannot be
globally integrated unless the mass term is quantized.7

In conclusion, let me speculate concerning the physical significance
of the mass term. As I have already remarked, finite temperature perturb-
ation theory for simple models suggests that in the high temperature
limit a 3-dimensional version of that same model comes into play. Of
course such a dimensional reduction makes no reference to non-perturbative
phenomena. Moreover, for a non-Abelian gauge theory, which we know to
be rich in non-perturbative effects, neither the 4-dimensional finite
temperature perturbation theory, nor zero temperature perturbation theory
in three dimensions makes sense owing to infrared divergences. The
discovery of the 3-dimensional mass term allows the conjecture that the
high temperature limit of a non-Abelian, 4-dimensional gauge theory is
governed by a 3-dimensional, massive yet gauge invariant Yang-Mills
theory, of the type here described.

There is no derivation of this fact; but neither can it be falsified,
since naive perturbation theory does not exist and we do not have suf-
ficient control over the formalism to extract non-perturbative behavior.
Confronting such a hiatus, we invoke the principle of "naturalness" to
aid in constructing the effective Lagrangian. The 3-dimensional effective
Lagrangian should possess all terms with quantum numbers of the 4-dimen-
sional theory, whose high temperature asymptote is under discussion.
According to this criterion, the gauge invariant mass should be present,
since its reflection non-invariance mirrors the reflection non-invariance
of the 4A-dimensional 6-vacua. Indeed, the topological setting of our
mass term puts into evidence an intimate mathematical connection between
it and the quantity responsible for the 8 vacua. However, it is not known
at present whether this mathematical relationship can be the basis for
a physical derivation.

If we accept the gauge invariant mass as a proper term in the ef-

fective Lagrangian which summarizes high temperature behavior of physical
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non-Abelian gauge theories, we get another bonus, beyond infrared re-
gularity. Owing to the quantization condition (3.14), the mass becomes
evaluated in terms of the coupling constant. Recalling that in a high-
temperature effective Lagrangian, the dimensionful 3-dimensional coupling
constant g is related by a power of the temperature T to the dimension-

less 4-dimensional coupling e, we find

g2 e2T
H = Hn = —4—“-11 = aTn (3.22)
The integer structure to Y is most fascinating. A non-vanishing mass

presumably arises from a non-vanishing 6, and discontinuities

in the former for the 3~dimensional model are suggestive of different
phases in the latter for the 4-dimensional theory. That different values
of 6 correspond to different phases has been occasionally suggested.
Clearly it would be most satisfying if more understanding of these

speculative ideas could be obtained.
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Weyl fermions in the fundamental {doublet] representation are coup-
led to the SU(2) gauge field, their functional [fermionic] deter-
minant is not invariant against homotopically non-trivial gauge

transformations. Rather it changes by the factor (-1)N; hence N
must be even.



GLUON CONDENSATION AND CONFINEMENT OF QUARKS

R. Fukuda
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The purpose of my talk is to argue that if gluon condenses in the
form of color singlet, then the dual variable becomes a good coordinate
in the low energy region and acquires a mass gap.

The vacuum of Quantum Chromodynamics (QCD, quarks are neglected
for the moment) will be filled with nontrivial configuration of gluonic
fields Ai(x): they condense in the vacuum in the form of color singlet
and of Lorentz scalar. We have to take into account the effect of the
gluon condensation when we study the vacuum state and the excitation
spectra.

Any gluonic operator can be used for the discussion of the gluon
condensation as long as it Has correct quantum numbers: color singlet
and JPC=O++
variant field strength. The gauge has to be fixed of course in the

2 a a .
. We can use Guv(x), Au(x)A Y(x) etc. Here GSv is the co-

case Ai(x)Aau(x). The most convenient operator should be picked up ac-
cording to the following criteria, 1) The condensation of the selected
operator is easy to discuss. 2) In case it condenses the effect on the

excitation spectra is clearly seen. The operator Gﬁ has been studied

v
but it lacks the second property. The operator chosen here is the zero
momentum mode Ai(o) of Ai(x) in the axial gauge Ag(x)=0,
a a(0) a' J a' 4
A = A + A A d =0 . 1
u(X) " " (x) " (x)d x (1)

Although <A3(O)

symmetry in Ag(x)=0 gauge is fixed by specifying the prescription to

3(O)Aa(o)u>#0. The residual gauge

>=0 we can assume <A

avoid the singularity of the gluon propagator <A3A€>p at p3=0 in momen-
tum space. The conventional one is the principal part prescription.

We assume for the moment the condensation of Ai(o)

in the above sense.
At the end of the talk the condensation is discussed. ,

condenses, the excitation spectra are determined by
substituting (1) in the Lagrangian,

a, 14, _ 1 .(0)2
fot(Au)d x=-16., ‘0
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vb' 4 .4

- % JJA“a (x)Mie(x—y)A (y)da®xaty

+ (a3 term + (a1 ? term , (2)
where Q=Jd4x. The matrix Mﬁg(p) is not a positive definite matrix so
that the squared mass matrix Mig(p=0) may have negative (i.e. tachyonic)
eigenvalues. We have seen that this is indeed the case for SU(2) color
group. For SU(3) the same phenomenon occurs since SU(2) is a subgroup
of SU(3). Therefore Ai' is not a stable coordinate: we have to con-
dense above tachyonic unstable modes to reach the really stable vacuumn.
The situation is similar to that discovered by Nielsen and Olesonl. In-
stead of condensing unstable modes we make a dual transformation and
find that the unstable modes are absent if the theory is written in

terms of the dual potential. Moreover the condensation of Aa(O)

vields
a positive definite squared mass matrix to the dual potentlal
The dual formalism in the axial gauge has been given by Halpern2

with the result

i a a abc,b,c,2.4
J[dAu]exp{— vy J(SuAv-SVAu+gf A aj)“d x} (3)
2 .4

= J[dG ]G(D )exp{- F JGuvd x} (4)
_ v U . ay ~xpv_ 1 .2 4
= J[deuv][ds ]d(nuB ) exp 1J(BvDuG i Guv)d x (5)
= J[dBa]exp iJ,,C(B)d‘lx . (6)

ab_ . ab acb,c _

In (4) Du =4 au+gf A with A (x)= 3U and nu—(0,0,0,l). In the fol-

lowing indices a,B,y*** take 0, l 2, whlle YW,v,p0,0+ take 0,1,2,3. The

Lagrangian for the dual potential B” is written symbolically a52

/\/ /-\_/
__ 1 a_ a,.—1 ab b_ b
L) = - 38355 BN Y 283 8P-5 BP) (7)
where the tilde indicates the dual tensor as F Ele Fp°,~Ba=0 and
x UV 2 uvpo 3
3
N2b =[l+gJ dxyB]2
uv,po UV po’
In the representatlon (5) we see that the theory is invariant under
a a
G  +G and
UV ouv
*3
B2 5 B2 4 p2Ppb 4 4£3PC J G2 A% ax!
U U U 3u 3

with A%(x) arbitrary function. This is due to the following identity
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a _ a_ a abc,b,c ay
Guv = auAv avAu + gf AuAv + 53Yqu

’

X

3
where A —l—G and JaY: DSbEbUdeé. The Ward identities are derived

9, 3u
from the a%ove transformation and we see, by the similar procedure as

in the conventional case, that the dual potential is massless to any
finite order of perturbation: writing the propagator as

dab
b guv
i<B = + gauge term ,
v P 2 2 u, 2
pu+H(pu,(nup }7)

a
u
we can show that I behaves near p§=0 as Api with some constant A. We

have also checked explicitly in the form of (6) that the one loop cor-

rection produces the correct amount of logarithmic divergence:

Anvl%g2C2(G)lnA which corresponds to the B-function behaving as

B (g) ~ --1—33‘ g7C, (C) where gabcgdbe_ a C2(G).

g~0
Now in the presense of the condensation AS(O), we separate it as

1]
in (1) and from the variable Aﬁ we switch to the dual variable. Since
a _ a'
G3U 33AU_B3AU y AU

(p)=ipP %—G u(p) where P denotes the principal part.
Writing [dAu]—[dA )][dA '] gnd following the same procedure as above we

arrive at

(3) = J[dA(O)] [dB%] exp iJi(Aéo),Bd)

where
(0) __1,..00), _(0) a -1 ab (0)p _n(0) b
I/(Au /B,) = - (0 "B =D 7B )% w80 (0B ~D "B )
(8)
(0)ab _ .ab acb,c(0)
DU =48 au + gf Au .
Expanding JE{?ASO),Bd)d4x in the form
4
%JBa“(p)mab(A(O),p)BbB(-p)—————d P+ B3 term + +-- , (9)
o B 4
(2m)
we define the mass of B by the term
3 B omial®, 08 (0) = 3*Fge2Pg (M52 (0)) 2

Since it is written as a square, we have a positive semi-definite

squared mass matrix. The dual potential is a stable coordinate: un~-
1

stable modes which are present in the spectrum of Ai field are elimi-

nated by the dual transformation.
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Once the dual potential aquires mass gap, the system is in the mag-
netic Higgs phase — dual to the usual Higgs phase. The dual loop in-
troduced by 't Hooft3 shows the perimeter law and we expect the area
law for the Wilson loop and the color electric flux tube will be formed
as a dual Meissner effect. We do not discuss this scenario here.

The solution to the U(l) problem is also provided by the above
mechanism. From (5) we see that Bai and Eii'G§i' are canonically con-

€127~y
agators take the form in the low energy region

jugate pairs (Here i,i'=l or 2, all=522=0) and by (9), prop-

. ~a b _
1<BaBB> = 1(l/m )<G

P 3a 36 P =98

b 2 2
gaB(l/pu m°) . (10)

Consider K'Y= (g /16n )s“VpoAa(a A +% fabcAﬁAg) We have to explain
why BuKu does not vanish at zero momentum If we substitute (1) in
K3(x) there appears a term proportional to A ( )Ab(O)Ai(o) which gives

a non-zero contribution to

Jd4x<8uKu(x)8va(0)> = Jd4x<8 (x),33K5 (0) >
)
because of (10). Recall here 83A2 =G§u. The above qguantity gives
a non-zero mass to n' meson as is well known.
Finally we discuss the condensation of Aa(O).

tential V(Aa(o)) of Aa(o)

The effective po-
can be calculated in loop expansion. We know
that V has a non- tr1v1al minimum at one loop level. Our conclusion is
that we can develop the series expansion of V in such a way that the
position of the minimum found at one loop level is shifted slightly for
small coupling if the effect of the higher order terms of the series are
taken into account. These shifts are in accordance with the renormali-
zation group equations. .

Details are found in Ref.4 where we also discuss the whole subjects
in this talk.
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GENERALIZED STRING AMPLITUDE AND WAVE EQUATION FOR HADRONS

H. Suura
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A gauge invariant hamiltonian formulation of hadron dynamics involving a
generalized string amplitude is proposed. Resulting partial integro-differential
wave equations reflect the shielding of the long range potential and determine a
universal logarithmic derivative of the hadronic wave functions. Because of this
boundary condition, the new wave equation allows confined solutions without an

explicit confinements potential in it.

>
Instead of the conventional string amplitude exp { ig f X « dx} used in gauge
invariant formulations of hadronic systems, I propose to study a modified string

operator on a t plane

U(2,1) = exp { g f: [1 £ + AE@]- dx }, ¢H

(A =A%%/2). In spite of its explicitly non-covariant definition, the operator is
useful in taking into account an infinite number of soft gluons created on the
string as well as the shielding of the long range force due to splittings of the

string. Using (1), I construct a gauge invariant quark operator
T +
14g(1,2) = Tr® [, (1) U°(2,1) ¥z (1, ()

where o and B are Dirac indices, and flavor indices have been suppressed. Tr® is the
trace over color spin. Time development of the operator (2) can be derived in the
same way as in my previous paper,1 which was for the case A = 0. Two new features
arise because of the E term inserted in (1). Time derivative of A(x) is equivalent
to a c-number operator %-jgr-, since A = — E, Time derivative of E is equal to
insertion of the quark current -j, which, after use of a Fiertz identity, gives a
product of two-string operators. In the following I consider q(1,2) at a large
distance and neglect all the derivatives of the field operators (B, V x E and

V x B). Strictly speaking, transverse (to the string) momentum of gluons should be
kept under the large distance approximation. However, it would give rise to the

transverse oscillation of the string, which will be studied elsewhere. Thus

*
Supported in part by the U. S. Department of Energy Contract No. DE-AC02-82ER-40051.
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14 (1,2 = B q@1,2) +—25q 1,2
2
- % g2 I, & 1 a®a0d (Do
2
rgen [ &I a2 e (3
where
By a(1,2) = [-ia+ ¥V, + Bn] q-q [ia° ¥, + m] . (%)

z in the third term means a summation over all possible flavors. 3; is the color-
and flavor-singlet quark current, and represents an emission of a singlet vector meson
from the string. For vacuum-vacuum matrix element of (3), I may neglect this term,
and also keep only the vacuum intermediate state neglecting all the hadronic ones,
since the latter tend to give short range forces. Defining

5(1,2) = <0 | q(1,2)|0>, (5)

I obtain an equation

? i 2, (2~ ->
Hy S(1,2) + 37 5(1,2) - 582 [ dx - 50 as(x,2) =0 (6)
S(1,2) can be expanded in Dirac matrices like
$(1,2) = -1 of Sl(r) +B - Sz(r) + iB of S3(r) . 7

If S(1,2) were the equal-time limit of a quark propagator for which a spectral
representation holds, then we would have S3=0. Since no spectral representation
holds for S(1,2) which has no color-singlet hadronic intermediate states we may
include S3 term. In fact as shown below S3 term is necessary in order to obtain the

spontaneous breaking of the chiral symmetry which says

< (o) ¥ (0) >0 = ~5,(0) # 0. (8)
Introducting (7) into (6) I obtain
310 1 2 x
-5 8 fo dz [S)(r-2)8) (2)+ S,(r-2)5,(2) + S,(r-2)5,(2)1=0,
as., (r) as,.(r)
3 2 2 2 r _
=2 (—— T 5(0) 55— - 82 fodz 5, (r-2) 5,(2)=0,
38, (r) 954 2 i
2 ——ar— +T -8 A J;) dz Sl(I—z) 53(2) =0 . 9)
If S3 = 0, then the third equation tells that S2 = const. and hence must vanish. The
solution 52=S3=0 represents a chirally symmetric solution. The time reversal requires
that the amplitudes Sl, 52 and S3 in (7) are all real, if the parameter A is taken
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to be real. The solution of eq. (9) 1is not well defined without a precise
knowledge of the boundary conditions in variable A . Nevertheless we may obtain a
physically reasonable solution in the following way. WNeglecting quark kinetic
energy terms in (9) I obtain an asymptotic solution for large r,

5,0 = a0 W 4= D%

Sz(r) =hb,S, , S3(r) =b

251 (10)

351 >

where b2 and b3 are constants independent of satisfying b§ + b§ =1, Thus,
I have

3 = ¥ = M = -

sl/s1 sZ/s2 s3/s3 D ‘ (11)

To obtain a picture of the overall solution, I consider three regions in r. In the
inner region I, the system is free (short range forces are being neglected), so

that S, = 1 and S, = 0. In the outer region III, (10) gives the leading asymptotic

2 3
terms. In the intermediate region II, I may extrapolate from outside and set
as
2,3
- 52 - (W=
X (W-Kr) 52’3 (12)
where
oy la __d
W=-A"3x > k-3

The Kr term should cancel the integral terms in (9) in region IIT. However, in

region II, the integral involves S in region I, so that cancellation will not be

complete. Thus, in region II, negiézting the integral terms, the second and third
equations give the Breit-type equation with an effective eigenvalue W and a linear
potential Kr. The equation must be solved with a boundary condition (11) imposed
at a certain radius r = R inside region II. In this way the Klein paradox associ-

(2)

ated with a linear potential is completely avoided. Details of the solution,
as well as its relation to the pion wave function will be discussed elsewhere.
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STOCHASTIC QUANTIZATION AND LARGE N REDUCTION

J. Alfaro and B. Sakita
Department of Physics, City College
of City University of New York, N.Y. 10031

The stochastic quantization method of Parisi and Wu is used in
order to understand the quenched momentum prescription for large N the-
ories. The Hermitian matrix field theory model is studied first and

then the same method is applied to SU(N) gauge theory.

I. Introduction

After a work of Eguchi and Kawail, some very intensive and active
studies on the reduction of degrees of freedom at large N were done re-
cently by various group§’3to reach the guenched momentum prescription3
for large N theories. These authors3have based their discussion on a
detailed analysis of planar Feynman graphs for all order of perturba-
tion theory. We believe that the large N reduction phenomenon is so
general that it is likely to have more transparent explanations.

In this report we present our study on this problem using the
stochastic quantization method of Parisi and Wu4. Since in this method
the average over the random variables is taken at the end of calcula-
tion of correlation functions (Green's functions), it is possible to
derive the quenched models by viewing a part of the random average as
a quenched average.

Since the stochastic guantization method is relatively new and
since in this method we believe there are subjects that require further
studies especially for gauge theories, we first review the method in
the next section. In section III we discuss the reduction of degrees
of freedom for large N by taking the Hermitian matrix field model as an
examples. In IV, we discuss the same problem for SU(N) gauge theory.
In this case there exists some confusions whether we really obtained
the quenched Eguchi-Kawai model or not. This confusion is mainly due
to our lack of knowledge on the stochastic quantization. We suggest

our resolution.
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IT. Stochastic Quantization

In this section, we review the stochastic quantization method of
. 3
Parisi and Wu
Let us consider an Euclidean field theory of a system of Bose
field ¢2(x). x denotes a d-dimensional space time point while % repre-
sents a set of internal indices. The correlation functions (Green's

functions) of the theory are given by a functional average defined by
<9y (x)o, (xy)eeedy (x)>
1 2 n

JJ)MQ (x)0, (x,) -0, (x)e 510
= L 2 n (2.1)
JM’ o~S[¢]

where S[¢] is the action of the system.

One interprets (2.1) as a statistical average of dynamical vari~
ables ¢2(x) with Boltzman statistical weight. The basic idea of sto-~
chastic quantization of Parisi and Wu is that one regards the average
(2.1) as the large (fictitious) time equilibrium limit of a statistical
average in an inequilibrium system. The time evolution of this statis-

tical system can be described by Fokker-Planck equation:

_L1l9v _ g
2 3t - Hyp? (2.2)
2 2 2
- 1 8 1,1 §S s%s
g = Jax(- 3] —5— + 2k I« N B
HP 7% 6¢i(x) 172 780, ) 3 6¢i(x)

(2.3)
The probability distribution function at time t, P{¢,t], is related to
v by

351061
e

vlig,t] = Plo,t] . (2.4)

It is easy to see that ﬁHF¢=0 when P=e_s[¢],

so that ¢ is station-
ary. One assumes that at large t the system reaches to this stationary
state. If this is the case, the average can also be calculated by us-
ing Langevin eguation

3, (x,t) s

Bt = = (5¢2,(X,t) + HQ(X,t) (2-5)

where t is a fictitious time. nQ(x,t) is a random source function with
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Gaussian distribution, namely it possesses the following property of

averages:

<n21(x1,tl)n22(x2,t2)'--nzn(xn,tn)>

= ) n <n, (x,,t.)n, (x.,t.)> (2.6)
possible pairs zi ot zj 33
combination
] ] = — ! -t
<n2(x,t)n2.(x ,t )>n = 2622.6(x x')§(t-t') . (2.7)

In (2.6), when n is odd the average is zero. The connection between

Langevin and Fokker-Planck is given by
<F1 01> =LD¢F[¢(')]P[¢,t] (2.8)

where ¢n(x,t) is a solution of Langevin equation with initial condition
¢n(x,0)=¢o(x) while P[¢,t] is a solution of Fokker-Planck equation with
initial condition P[¢,O]=6(¢—¢o). Accordingly, the stochastic quanti-

zation prescription of Parisi and Wu is simply expressed by
<hp (XD (xy) by (x)>
1 2 n

= lim <¢21(x1,t>¢22(x2,t>---¢2n(xn,t>>n : (2.9)
Since ¢2(x,t) is a solution of Langevin equation (2.5) with a cer-
tain initial condition, in general the expression (2.9) depends on the
initial field configuration ¢o. An implicit assumption made in the sto-
chastic quantization is that the final result is independent of the ini-
tial condition. But it seems to us this is a point requires further in-
vestigations and a source of confusions. We shall come back to this

point in Section IV.

III. Reduction of Degrees of Freedom for Large N

In this section we apply the stochastic quantization method of
Parisi and Wu to derive the quenched momentum prescription for large
N theories. We illustrate it for the Hermitian matrix model defined
by the action

2
S(e] = [dx (3,07 + 502 + 5 eh)
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where ¢ (x) is an NXN Hermitian matrix field (¢(x)=¢+(x)).

We note the action has an SU(N) symmetry and a reflection symmetry

o (x) ~— up (x)ut u € SU(N)
(3.2)

¢ (x) —> -9 (x)

Therefore, assuming SU(N) symmetry is unbroken we consider only the

following Green's functions

<t (6 (x) 0 () + -0 (x,) > (3.3)

which is invariant by the transformations.

The corresponding Langevin equation to (3.1) is given by

3¢i.(x,t) 2 3
— e = (@0 600 - gl 0766 4+ N (e, E)

(3.4)
where the random source matrix function n(x,t) is assumed to have the

Gaussian distribution:

<Ny 00N L g (' e = 265 0,645,6 (xmx ") S (E-t") (3.5)

One may formally solve Langevin equation (3.4) by iteration, and since
each term of the solution is classified by a tree diagram the solution

can be expressed as
n = Teoo v
oi5xst) = Leve(nn Ny - (3.6)

Inserting (3.6) into (3.3) we can express Green's function (3.3) in

terms of the n averages as following:

<Er(p(xg) e (x ))>

o m

= 11 g v e
lim [ (g J deldtldyzdtz Y 2men9tomen
t>eo m=0

Km(xlu'xn’t i yltl'y2t2"'"y2m+nt2m+n)

<tr(n(Y1.t1)n(y2,t2) "'N(Y2m+n,t2m+n))>n . (3.7)

If we insert the Gaussian distribution property of n given by (2.6) and
(3.5) into (3.7), we should be able to obtain the standard perturbation
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expansion as shown by Parisi and Wu. A nice point of (3.7) is that in
(3.7) the SU(N) indices appear only through n so that we can discuss
the large N limit by examining only the n averages.

Next we show that the reduced form of n defined by

_ A a/2 i(pi—pj)x

nij(x,t) = (37 e nij(t) (3.8)
has in a sense the same Gaussian distribution property in the large N
limit. 1In this expression A is a momentum cutoff. In a discrete lat-
tice version of the theory, A is related to the inverse of lattice dis-
tance a; A~%.

In this report we describe the proof only for

<tr(n(x,t)n(x',t'))>n , which should have the property
<tr(n(x,£)n(x',£'))> = 2876 (x-x") 8 (k-t") . (3.9)

In the reduced case, using (3.8) we obtain

2@ i(pi—pj)(x—x') a _ .

) . (2—,”—) <e ”ij (t)nji(t )> _ . (3.10)

lJ pln
As a reduced average over p; agd n we choose the integration over P; in

dp’; _
a hypercube [%,—%]d (I I (—Ki)) and the Gaussian distribution for n:
o,i=1
<nij(t)ni,j.(t')> = 26ij.6i.j6(t—t') . (3.11)

Then, i#j contribution of (3.10) is given by

dpY  i(p;-p;) (x-x")
()4 2(N2—N)6(t—t')J 1 K i3
m k,a A

~ 2N%8 (t-t') 8 (x-x') ~ O(N?)

while i=j contribution is given by

a
dp
X -

A 2T

A d

d
7

2N6(t—t')J 2NS (t-t') ~ O(N)

k,a
In the large N limit we neglect i=j contribution against i#j. Then we
obtain the same expression as (3.9).

In order to see the degree of largeness of N we have used we com-
pare these two contributions by integrating over x. We obtain the fol-

lowing criterion:
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N >> (j-ﬁ-)d 4. (3.12)

Since A is the cutoff momentum and it is ~1/a, the criterion (3.12) is

equivalent to
N >> number of space-time points

For a large N which satisfies the condition (3.12) it is possible
to prove that the reduced n (3.8) has Wick decomposition property (2.6),
provided N>>n.

Next we look for a solution of Langevin equation when n is given
by the reduced form (3.8). We first make an ansatz for ¢,

1(pi—pj)x

¢2j(x,t) =e $2j(t) (3.13)

and insert it into (3.4). Then, we obtain

2935 (t) 22 —n3 . A4
5t =~y T IF] (1) - 5Ty @7 )5+ N0 S
(3.14)

which can be considered as a reduced Langevin equation for §.

Combining these equations together we obtain finally

<tr(¢(xl)¢(x2)-"¢(xn))>

= lim <tr(¢n(xl,t)---¢n(xn,t))>n (stochastic guantization)
troo
. d ilpj-py)xye-e -1 -7
= lim In LT e J <GL L (E)FL (£)) cer >
£oroo A i3t 9k 2 7
(Reduction of n and ¢)
dp i(pi—pj)xl--- _
= {H X z e <¢ij 3k 5
(stochastic quantization)
(3.15)
where
de("°)e_S[¢]
<eee> = — (3.16)
S {dEe—S[¢]

and
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5681 = FP FUeimp) Bnd)T 8 + Iy @1 L G
ij

The expression (3.15) is nothing but the quenched momentum prescription

proposed by the authors of reference 2.

IV. SU(N) Gauge Theory

The action of SU(N) gauge theory is given by

_ 1
S = Idx P tr FUVFU\) (4.1)
where e is a coupling constant. The field strength Fuv is expressed in
terms of NxN Hermitian matrix vector potential AU as

Fuv = BuAv - BvAu - l[Au'Av] . (4.2)

The Langevin equation of this theory is given by

FU\)(X't)_i[A\)'FVU]} + T]u (Xrt) 4 (4.3)

AY

A (x,t) = % {5
H e

where nu(x,t) is a random source function with the same Gaussian distri-
bution property as n in III. According to Parisi and Wu, if one solves
this Langevin equation by perturbation with the initial condition
Au(x,O) =0 (4.4)
and calculate the gauge invariant correlation functions by the stochas-
tic method one obtains the ordinary perturbation results in Landau
gauge. We note that Langevin eq.(4.3) and the n-average property given
by (2.6) and (3.5) are invariant by the following (fictitious) time in-
dependent gauge transformations: ,
+ . +
Au(x,t) — u(x)Au(x,t)u (x) + 1u(x)3uu (x)
+
np(x,t) — u(X)nu (x,t)u (x) (4.5)

u(x) € su(N) .

Since the SU(N) gauge theory described by the stochastic quantiza-
tion in this way is a slight generalization of the Hermitian model of
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the previous section, it is not difficult to see that we arrive at the
following large N reduced model:

_ A d/2 iPex - ~iPex

nu(X,t) = (5?) e nu(t) e

(4.6)
iP*x —-iPex

AU(X't) Au(t)

- _1 s = = Ad/2 -

A (t) = ;5 [Pv Av(t)’[Pv Av(t)’Pu Au(t)]] + (7;) nu(t)
(4.7)

AU(O) =0, (4.8)

where P is a diagonal matrix with momenta pi's in its diagonal elements.
Now it is straightforward to calculate the gauge invariant correla-
tion functions in the large N limit by using the perturbative stochastic
method to obtain the results of the gquenched momentum prescription.
However, there is an unexpected complication in the formal level., 1If

we change reduced variables from RU to Ap by
A =i -P , (4.8)

the Langevin equation in terms of new variables becomes

A = - L A mB A o YR w49
e

which is independent of Pu. On the other hand the initial condition
becomes

AU(O) = ~P (4.10)

which depends on Pu. Therefore, if the results of the stochastic quan-
tization are independent of the initial condition the momenta are triv-
ially integrated out and we obtain a matrix model (Eguchi-Kawai model)
as a large N reduced model rather than the quenched momentum form.

We believe that this is due to the assumption that the stochastic
quantization does not depend on the initial condition chosen to solve
the Langevin equation. In gauge theories, due to the gauge symmetry
there are no drift forces along the direction of gauge orbit. Thus,
the system does not reach to the equilibrium distribution along the
gauge orbit and the final distribution depends on the initial configu-

ration. This is in a sense a gauge fixing (weighted average). The
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criterion that ‘this phenomenon occurs is the existence of a continuous
energy spectrum above the ground state of Fokker-Planck Hamiltonian be-
cause of the flatness of the potential in a certain direction in confi-
guration space. In the reduced Langevin equation (4.9), the situation
is more complicated. We note first that the Langevin equation (4.9) is

invarinat by the following time independent reduced gauge transformation

A (t) -~ ulA (t)u+
U U
u € SU(N) . (4.11)
+
ﬂu(t) unu(t)u

We also nofe that Au(0)=-Pu cannot be obtained by the gauge transforma-
tion from AU(O)=0' Thus, if there remains the PU dependence it must be
due to the continuous spectrum which does not related to the known sym-
metry. We found an indication that this is the case. We like to devote
the rest of this section for our preliminary studys.
The action and the Fokker-Planck equation corresponding to reduced

Langevin equation (4.9) are given by

-1
S o ~ o> 2
s[al = - T tr[Au,A\)] (4.12)
-~ 1 52 1~
Hp=-3 L+ 7 VIA] (4.13)
H,1] 5}11]5}131
TR
ool -2 e 02 =] = 1, % 2
VIAl = 3 o7% trlA , [A,,A 11207 (d&-1)N tr (A - § trd )" (4.14)
2, A4
a4 = e (EF) . (4.15)

We notice that when the configuration of KU is diagonal the first term
in Fokker-Planck potential V is zero while the second term negative and
bottomless. Thus, at least for the weak coupling (small a) the diagonal
components of K should be treated non-perturbatively. We therefore
separate KU into the diagonal component bu and the off diagonal compo-
nent BU:

i

§

xij _ ij -
atd = (b +B = bls. .
(b, +B,) poij

+ BYI
u u

We insert it into V and then expand V in the powers of BU' To leading

order in o we obtain
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ipdy i, L
(b*-p7) by, Lispi
b ooV

1 -2 i,3,2
V=3a 1 (b -b)“{s - e
2 i#g © 9 W (bE-53)?

- 2a7h@-nn Jt- 22 \ (4.16)
¥ H
i k
We then calculate the zero point energy due to Bu fluctuation keeping
bu fixed (Born-Oppenheimer). We obtain

Fana™ty ptp))?
ij
which is precisely cancelled by the second term in V. Therefore at
least in the lowest order in o bu becomes effectively a cyclic variable

near the ground state due to the off diagonal fluctuations, and there

is no effective drift force along the direction of diagonal A .
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VARIATIONAL METHODS IN THE MASTER FIELD. FORMULATION FOR QCD3+l

Masa~aki Sato
Department of Physics, New York University
4 Washington Place, New York, NY 10003, U. S. A.

ABSTRACT

Master fields are formulated for finite N-QCD They satisfy

classical Yang-Mills equations with an infinite nu;;ir of internal
indices and an infinite number of constraints. Master fields and
constraints on them in the large N limit are derived from the finite
N master fields and constraints using vacuum dominance among color
singlet states. The large N constraints can be explicitly solved and
the solutions involve arbitrary functions which are used as trial

functions in variational calculations.

I. FINITE N MASTER FIELDS

In this letter we will report the outline of our previous
1.2 on master field methods for QCD in 4~-dimensional Minkowski
3+l)'

We choose the axial gauge (A3==0) and SU(N) for the color group.

works
space (QCD

Then the dynamical variables are the 1 and 2 components of matrix
operator gluon fieldf, (ﬁu)ab(x) (o=1, 2; a, b=1,+++, N), and the
conjugate momenta, (Ha)ab(x)’ which satisfyAusual canonical commuta-
tion relations. The operator Hamiltonian, H, is given by



76

H = J a’x 1/2 Tr[ﬁi(x) + (a3£a(x))2 + ﬁiz(x)]
(1)

Pk @lylxg - vyl6%(x, - vy) TrL@ T @ @ w1,

+ 1/4 Jd

where Tr represents a trace over color indices and all operator pro-
ducts are color ordered products (COP): adjoint operator products
which are made from ﬁa and ﬁa such that the order of the operators
and the order of the matrix products in the color space coincides.

An example of COP is given by

~ ~

Ay 8 0 = B, xp @)

(x,)
ab oy ac1 5

c,cC 2

172

X (Ha3)c2c3(x3)(Aa4)c3b(x4)' (2)
Since the Hamiltonian (1) and the total momentum operator are invar-
iant under global color SU(N) transformations, the energy-momentum
eigenstates can be classified by the irreducible representations of
the color SU(N) group.

Finite N mastef fields, Aa(x) and Ha(x), are defined as reduced
matrix elements of Aa(x) and Ha(x) between all singlet and adjoint

energy-momentum eigenstates such as 1,2,3

<s| B g, ca> = A/ - 1)
X (8,90 ~ L/NS 8 q) (B (x))(s59), (3)

where s(g) represents the quantum number of a singlet (adjoint)
energy-momentum eigenstates, |s> (|g, ab>). The master fields,
(Aa(x))(n;n') and (Ha(x))(n;n'), can be treated as C-number matrix
fields with matrix indices n (=s or g). Since COP creates only
singlet or adjoint states from singlet and adjoint states (when COP
is applied to an adjoint state one of the indices of the adjoint
state and the neighboring index of COP should be contracted), any
matrix element of COP between singlet and adjoint states can be ex-

pressed as a matrix product of the master fields such as
2
plgr cd> = A/(N - 1)

X (8q0pc ~ /NS, 8.q) By I3 R, ) (55 9), (4)

<s|(a; T, M A,)
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where a matrix notation is used for products of the master fields;

@ T)(s59) = ¥ o () (sin) () ;g (5)
Taking matrix elements of the operator equations of motion between
the singlet and adjoint states, it can be shown that the finite N
master fields satisfy the classical Yang-Mills equations with an
infinite number of internal indices, n (=s or g). The canonical
commutation relations can be inverted into an infinite number of con-
straints. They are derived by considering the difference between two
traces of any COP and the induced COP by the cyclic permutation. An

‘example of the constraints is given by

(A R I3 A A A ) (s) 5 s)) = (AgA B T3 A Ay ) (s) i s))

= =iNG6 (3, 6){SZ3 (A Ay ) (sq s3) (AyBg) (55 s,)

2
- 1/N% (A A, Ayhg) (s 52)}' (6)
There is another set of constraints which fix an integer value of N

and correspond to the Mandelstam constraints4 for the Wilson loops.

II. THE LARGE N LIMIT

In the large N limit contributions from the vacuum dominate over
those from other excited singlet states4’5. Then the large N master
fields can be obtained from the finite N master fields by reducing an
infinite number of the singlet indices to a single index which corre-
sponds to the vacuum. They also satisfy the classical Yang-Mills
equations. Large N constraints are obtained from the constraints
corresponding to the commutation relations by replacing the sum over
intermidiate singlet states with the vacuum index. In the large N
limit Mandelstam-like constraints can be neglected.

The large N constraints can be explicitly solved and the solu-
tions involve arbitrary functions which should be determined by using

dynamical equations. To solve the large N-QCD exactly, the solu-

3+1
tions should involve an infinite number of arbitrary functions, which

gives us great difficulty. Therefore we will use solutions with a
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finite number of arbitrary functions and determine them by minimizing
the vacuum energy. The simplest solution involves a l-particle wave
function as arbitrary functions. The variational calculation, in
which the simplest solution is used as a trial function,1 gives a
logalismic potential between quarks and anti-quarks along the Z-axis
under straightforward cut off. More realistic trial functions were
given in Ref. 2. The Lorentz invariance and the gauge invariance of
our method will be discussed within the master field formulation in

covariant gauges in a forthcoming paper.
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CONFINEMENT BY THICK MAGNETIC VORTICES

Tamiakil Yoneya
Institute of Physics, University of Tokyo
Komaba, Tokyo 153, Japan

Abstract: An argument is presented showing that the pure lattice gauge theories which
are infrared unstable at the origin of the coupling constant are always in confining
phase, provided that (i) the gauge group is compact and contains nontrivial

center; (ii) Lagrangian does not contain long range interaction. The steps for an

attempt at a proof of confinement are suggested.

1. Introduction

Although Monte Calro simulations on the lattice have provided several convincing
evidences for believing in confinement in QCD, we are yet far from microscopic
understanding of the mechanism of confinement in the continuum limit. In the
lattice-regularized theory, the continuum theory corresponds to the critical region
where the physical correlation length is much larger than the lattice spacing a.

In this talk, I wish to report some simple observations on the general structure
of the large distance behavior of lattice gauge theories. I will first present a
rigorous inequality [1] for magnetic flux free energies which holds in any lattice
gauge models with local action and with compact gauge group containing nontrivial
center. Then, I will show that if this inequality is supplemented by a simple
assumption, which is apparently of kinetical nature, it leads to an interesting

consequence for confinement in the large distance critical region.

2. Center transformation and magnetic vortices
The inequality is based on the center invariance of the gauge field Lagrangian.

For definiteness, we take the standard Wilson action of pure gauge theory.

S - f?ZTm(upwh , Up = Uglhaps Urity Ut (1)
4

where U*Fis the parallel transporter from the point x to a nearest neighbough point
x+?a. . The center transformation is defined by U,q,.'6 "y- U*y- ’ h‘p»

being an arbitrary element of the gauge group center C(G), under which the action is
invariant. The center invariance is preserved even if the transformation is
restricted to an infinitely extended d-1 dimensional plane-layer of parallel links.
Furthermore, if a center transformation is pérformed in a finitely extended layer of
parallel links, the action density changes its value only at the (d-2 dimensional)
boundary of the layer, as in Fig. 1. The Wilson loop which winds around the boundary
changes by the group center. It is appropriate to call the energetic object, which

is produced at the boundary of the layer, the magnetic vortex (or simply vortex).
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Fig. 1. The layer of parallel links Fig. 2. The 3 dimensional rectan-
and the vortex at its boundary. C gular box with periodic boundary
is the Wilson loop winding around condition in the 3rd direction.
the vortex. The strip of parallel links on

the surface is the intersection
with the layer of the center trans-
formation.

To discuss the possible role of the vortices in the large distance behaviour, we
have to consider the vortices with larger and larger thickness. For this purpose,
we extract a finite hypertube which completely encloses the boundary of the layer of
the center transformation. The center transformation then induces the change of the
boundary condition on the surface of the hypertube. Instead of a hypertube, for
simplicity, let us consider d-dimensional rectangular box in which the periodic
boundary condition is imposed in its last d-2 directions. (See Fig. 2.) Let the
sides of the box, which is denoted by {\(f‘f) ,be (v,5, P,-",e). The center
transformation for the box is equivalent to a change of the boundary condition on the
strip which is the intersection of the surface and the layer of the center

transformation. The partition function for I\(Q,V) is defined

| +
- +
zMe-ﬂ{“k:g T dtg 2vp 3> >, Ta (U, +U}) (2)
uyrc ’\(?‘r) PCc I\(?.c)
where {u.k represents the boundary value of the parallel transporter matrices on the
surface N (Q.o’) . In (2), the summation and the product are extended only over
plaquettes and links which are completely contained inside I\(P,G') .  Then, the

vortex free energy corresponding to a center element ¥ is given by

F(ﬂ il = ~ T_'ZNP.G.)U(A / me.a-)‘“} ] <)

Mg.u‘)

where \u*\ denotes the center-transformed boundary value. We now define _[2]

(& 9] ()
A Mo [T, T arp-Fo fut /3 awp - R0 4ut
<¥>= u Lyecw Ne L) e 1 (4)
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If the gauge group is compact and the Lagrangian does not contain long r‘ange

interaction, the following inequality [1] can be proven

nl

A & (5)
< [ <> 1
N
<X >A(f."\°’) Alg.=? .
This interrelates the vortices with different thickness. Let us next discuss the
possible implications of this simple inequality to confinement problem. For this

N
purpose, the properties of <’>A(pa') in the large scale limit is crucial.

3. Large scale behaviour of vortex free energy and confinement
If the length of the vortex is much larger than its thickness, we expect the

following behaviour for the free energy

em = Max F“‘? Wy ~ qd"‘f-(cr) , F (E"'/a <l )

The expected behaviour of the free energy density 'S(c) for large O is the following
(31, [4]:

(i) confinement phase ' -S»(c») ~ const. éxp — <* (7a)
7

(ii) Higgs phase -S-(r) ~  const. (7b)
/

(iii) massless phase (d=4) -5-(,-) ~ const./a"2 (7¢c)

There is no rigorous justification for these properties (d® 3). But any reasonable
approximation schemes appropriate to each phase predict such behaviours. For
instance, the strong coupling expansion predicts (7a) with o being the string
tension. Among these properbties, that the maximum vortex free energy is proportional
to Qd-z for large ¢ seems generally valid independently of different phases.
Unfortunately, however, we have no rigorous control over how large P must be for the
uniform validity of (7). To take into this plausible property account, we adopt the

following working hypothesis (or conjecture ):In compact pure lattice gauge theories,

there exists a constant W=W% ({.5.T) for any f,> and ¥ satisfying

?»?o, G- > 5, . Y‘:G’/e <<l
such that . A
< k <% >
K >/\(=-e-°') Ng.sd | (8)
W Al-—\)
a 3 3 = .
When C(G) = Z(2), ¥ =% and < >M?m -‘-MkFN%ﬂ
Hence, if (6) is valid, we have (8) with & ~ '16-1 . Compactness of gauge group is

. . ~(d-2D N
required because only for compact gauge group one can prove that 9.)/\“. R Fale. &)
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have finite limit. Under this hypothesis, we prove

Lemma : Under the hypothesis (8), if there exists an allowed set ofg,r such that

A -\
3 (9)
<3 >N(.5‘) <
then,
N ; ( 2
< . -
< ¥ >"("Q'>"’3 consk. exp - ot [2e)

for sufficiently large o , with

-2 n
a € - ,Q.“k<*s>M

f.f) . (10)

Proof : Combining the inequality (7) and our hypothesis (8) we have

A A > _SQ
< <¥
<7 ?\(zq.u‘) ( ACp.c) R
Repeating this inequality n times (see Fig. 3), we have for large n,
. s e ks, 1"
€ h 1
< 7/\(1"‘(. 2%) K Ate.=)
By setting »=2" , one arrives at our claim.
@Sy -
(o
R (ao, ap)

Fig. 3. Uniform dilatation of the vortex and the Wilson loop.

This lemma means that under the assumption (6), the vortex free energy vanishes
exponentially with A provided that the vortex free energy is sufficiently small so
that (9) is satisfied for some ¢ and . Hence, (9) is sufficient for confinement.
Clearly, this condition is always satisfied when the bare coupling constant is
sufficiently large. Furthermore, even if the bare coupling constant is arbitrarily
small, it is possible that (9) is satisfied at sufficiently large scale because of the
renormalization effect. We also note that the area-law decay is a rather universal
property of gauge systems in the sense that if fuﬁis known to decay faster than o:m—zz
it automatically decays exponentially with the cross section. The Mack-Petkova

inequality [2] then implies that the tension given by (10) is a lower bound for the

exact string tension.
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In theories which are not scale invariant, ahb@»V) would either vanishes or
diverges in the limit A=» ©@ ., (We can show L17 that ‘}(a’) , if it exists, is
monotonically decreasing function of & .) On the other hand, at the scale of cutoff,
the inverse free energy (which is dimensionless ) is proportional to the bare
coupling constant. Hence, at general scale A , the inverse vortex free energy can
serve as an effective coupling constant. For the effective coupling constant in the
U(N) model, we can indeed prove the following inequality [ 1] as suggested from the

perturbation theory,

- 11
(IO TEE T S o

In asymptotically free theories, or more generally, in theories which are
infrared unstable at the origin of the coupling constant, the effective coupling
constant should increase at large distances. ((11) shows that this happens at least
if d< 4 in the U(N) model.) Thus the only possibility seems to be that the maximum
vortex free energy vanishes as A - & . In summary, our conclusion is that the
pure lattice gauge theories which are infrared unstable at the origin of the coupling
constant are always in confinig phase with linear confinig potential, provided that
(i) Lagrangian is local; (ii)the center of gauge group is nontrivial. The crucial
assumption in our argument was that the proportionality of the vortex free energy to
its length is valid uniformly for any ¢,0 if is sufficiently small.

Clearly, this conclusion is almost equivalent to the old infrared slavery
conjecture. An exact proof, if any, of confinement is now reduced to establish this
fundamental assumption and the infrared instablity in nonperturbative fashion.
Finally, it should be remarked that our discussion is not affected by the presence of
matter fields if the matter fields are in the adjoint representation of the gauge

group.
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RENORMALIZABILITY OF MASSIVE YANG-MILLS THEORY

Takashi Fukuda, Hiroaki Matsuda, Yoshinori Seki
and Kan-ichi Yokoyama

Reseafch Institute for Theoretical Physics
Hiroshima University, Takehara, Hiroshima 725, Japan

In this note, we aim at revealing the renormalizable structure
of massive Yang-Mills (YM) theories on the basis of the formalism in
our previous work,l) quoted as [I], though there had so far been
found several counter—observations.2 Our formalism consists of
four kinds of auxiliary scalar fields other than a massive gauge
field Aﬁ; a massless scalar fields Ea, in addition to the usual
Lagrange multiplier field na and a pair of Paddeev-Popov ghost fields
¢® ang T®
takes the form in the Landau gauge

In terms of these fields, the Lagrangian density in [I],

; 1,8 .2
L = _E(Guv) - A

a a . mAnab.b 12,2 a2
uaun + 18uC Du c” - Sm (Ku - Au) s

(L)
Kab

%
L 1 n
’ =gttt nzl o) T8 gy

a _ ab b
Ku = K aui

where G%v = auA% - avAﬁ + gfabCAﬁAﬁ, Dib - dabau + gfaCbAﬁ, % = g/m
and £ = T?€2., As has been shown in [T], (1) is invariant under a
Becchi-Rouet~Stora (BRS) transformation3) with a nilpotent character.
As is elucidated by Kugo and Ojima (KO),M) such an exact BRS symmetry
enables us to impose a KO~type of supplementary conditions on physical
states, which guarantees our physical subspace to be of positive semi-
definite due to the quartet mechanism confining the members of the
quartet (Ea, na, Ca, Ea) into zero-norm subspace. Therefore our
physical S-matrix elements, which are taken between any states con-
taining spin-triplet physical gauge-bosons (the Proca particles)
alone, is manifestly unitary.

In the perturbation approach, the interaction Lagrangian is
obtained by subtracting the free part from (1). Here we should note:
1) The Feynman propagator of gauge bosons.takes the form

D) v [8,, - kD) 1A(k;m?) (2)

instead of the usual Proca type, and has the same asymptotic behavior
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(k > ») as that in massless YM theories; namely, (2) takes a renorma-
lizable form., 2) A nonpolynomial character of inferactions emerges
with respect to the field Ea. Therefore, at the first sight, one may
guess the theory 1is unrenormalizable when the ordinary perturbation
expansion in the coupling constant or loop expansion is carried out.g)
It is, however, not the case, bacause the exponential-type interaction
provides a promissing way of constructing renormalizable massive YM
theories, as pointed out by several authors.S)’
We attack the renormalizability problem on the basis of non-
polynomial Lagrangian theories. Hereafter, we consider the case of
SU(2), for simplicity. In this case, nonpolynomial parts of the

interaction Lagranglan can be expressed as follows:

& . pab a b :
Lint = Pa SUE SUE exp[1te(A&)] , (3)
A _ ab,a b .
Ling = mQy AUBUE exp[it2(AE)] . D)
Here, (X&) = 22£2 and the operator Pab and Qab are defined by
A
1 2 2 2
pab - IdttAIdQ Cl) (-, (5)
o axFan a3
a 1 A (t-1) 52 ab 92 abc 0
Q= | att |l g - T ;) - ie —1 (6)
) axFan axtan 3’

where d@ = sin6déd¢/Um, A% = (sinBcos¢, sinbsin¢, cos) and A is a
positive number, which is introduced in order to guarantee commuta-
tivity of the t- and the other integrations in the S-matrix calcu-
lation and is taken to be zero finally.

We shall deal with the S-matrix elements by introducing so called
superpropagators. Now, we consider only the case of Ligt alone, for
simplicity. The S-matrix is given by

N N
S =1+ N,Idx S(x ), x =

L (Xpseesxy) S (7)

where S(xN) 1s expressed by using the Hori's formu1a7) as follows:

N N ay b 32
s(x") = [ I P, 1] % expl-3 | 83D, 1
i=1 8 21,5 " V(s W61 3(3,ED)
s et (18 iy 5 °1
y .
et e T Do araet - e,

J

X

exp[-— ) {9'2‘0 165 (242500531 x

by
i
N Y

i’J liI explit,(A;8,)1:, (8)

1
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a ab

where E5 = Ea(xi) and GabDij = 2% < o|TE? (x4 )E (X )|0>. This is

the sum of various kinds of N-th order (with respect to int)
diagrams which are specified by the way how to contract 3u€a with the
other fields. Each N-th order diagram has the following structure:
Every two vertex-points are connected with a propagator of the forms
eKD, auDeKD, etc. called superpropagator (SP), in contrast with the
usual Feynman propagator D. Thus anN-th order diagram is a super-
graph expressed as the N(N-1)/2 products of SPs.

We are now in a position to construct -all SPs appearing in
general supergraphs. As is well known, eKD is the typical SP in the
case for an exponential interaction of scalar fields, and the exponen-

tial is expressed by the Sommerfeld-Watson transform:

kD

i «?D?
¢ = §erz tanmar(z#1) T 1 » 9)

where the contour T encloses the positive real axis in the z plane.
The contour is then opened out to lie parallel to the imaginary axis
in 0 < Rez < 1; namely, ' ~ C (0 < Rez < 1; z¢C). The Fourier
transform (FT) of D? is defined for 0 < Rez < 2 by8)

_ (44 ik 1 _ im(am®T2(kPlie)?72
F2LD"] = Id *e x[un2(x2+ie)]z T -1 (10)

Substituting (10) into (9) with T » C, we obtain the FT of eKD.

Due to the fact that (3) contains the derivatives auga, we need
some more SPs. We express them symbolically as
z z

K f(SuD,SuavD)D
tanmzT(z+1) ?

kD _ 1
f(SuD,SUSvD)e JC dz

5 (11
where f(a D, 3 P D) stands for all poss1b1e factors, 3 D, 9 avD,
(auD)(a D), (a a W) (3,D), (3 D) (5 D) (3, D)2 (3,5,0)(3,D)(3 D) and
(9 D) (9 D) and the contour o (Rez < 0) 1s taken in a range where
the FT of f(a D, 3 ) D)D can be well defined.

The generallzed function f(a D, 3 ) D)D is dealt with as follows:
Consider (3 o D)e , for example. Supp081ng D is an ordinary
classical functlon, = (x2)_1, we obtain the identity

8
= v +1 =
(3u3vD)D T‘“’)TE¢§7{3 3, ~ 40 Ip*, (O=3,3) (12)

which holds also for the generalized function D except in the neigh-
borhood of xu = 0. Evidently, (12) fails at z = 0, since the left
hand side then becomes SUSvD while the right hand side is not so
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because of the fact [3D=i54(x) [# 0] for the generalized function D.
Information in the neighborhood of Xy = 0 lacks this point. Hence,
(12) is to be elaborated so that the second term of the right hand
side should vanish at 2z = 0, and then we are to have a valid formula
for all X, in place of (12). Noting that (3u3vD)Dz always appears as
the integrand like (11), we adopt

$
z _ 2 Wz \N z+1
(8,3,D)D% = %32 AT ey 2uly - T (gs) B
6)

positive number that the singularity at z = -8 lies to the left of

(13)

as the valid formula, where N is an integer (> 1) and 6 is such a
the z-contour, and the 1limit § + 0 is taken after the z-integration.
Similar arguments lead to formulae for the other remaining f(3uD,
BuavD)Dz, from which their FT together with the position of Cf are

obtained by use of (10). Next, we note that the operator Piibi

defined by (5) may yield extra singularities in (8) in the complex

ajbj

zij plane of several variables; in fact, the t;-integration of P,l
i

produces factors like (Zzij + n + Ai)_l with niany positive integer.
Such a singularity, however, can be avoided: Take the positive number
Ai to be so large that the contours Cij guarantee (ZRezi. + n + Ai)
> 0, then we can safely bend the contour Cij back to Fij in (8),
since we can assure that the inequality (ReziJ + n) > 1 always holds
at any pole-point with respect to zij when we count the residues of

the z .—integralé. Hence, the limit Ai+0 brings no singular result.

%% this stage, we can grasp a power-counting scheme for super-
graphs, which estimates the degree of ultraviolet divergences in
their momentum integrations. In (11), we transform z, the real part
of which is already in a certain range, into z' such that z * z'
(0 < Rez' < 1). We then find that the FT of f(BuD,auavD)eKD becomes

proportional to (kz)a(n)

with a(n) = z'-2+(n/2) according to n

(= 0,1,2,3,4) being the number of derivatives in f. Hence, with
respect to asymptotic behaviors as k » ®, the FTs of feKD can be
classified into five types by nj; denote each of them by S(k;n). Our
power-counting scheme is as follows: Consider an N-th order super-
graph, in which the numbers of S(k;n) are In' Then, it holds

4
I= )} I = N(N-1)/2 , I, + 2I, + 3I
n=0

1 5 4T, = 2N - Egp , (14)

3

where EBE is the number of external 3uEa—lines. The degree of diver-
gence d 1s given in this case by
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[eh
1

4(I-N+1) - (lII +31,+2T,+1 ) + 22 Rez'j
iJ

b - 2N - Egp 4 22 Rez} (15)
ij

from (14). Since Rezij can be taken to be as close to zero as pos-~
sible, the condition for convergence of the supergraph (d < 0),
4 - 2N - Egg< 0, 1is surely satisfied for N > 3. For N = 2, we have
a single SP which is of course well defined. Therefore, we can
conclude that all S-matrix elements are finite for Ligt'

Finally we discuss the case of the total interaction Lagrangian.
The presence of LiA calls for four more kinds of SPs other than those

£ : KD (s KD (a0 KD 5 3 x
fgg L, alone: Duve s ( UD)DuVe , ( " vD)Duve and ( UD)( vD)Duv
e =, Here, we are interested in their asymptotic behaviors. Noting

the asymptotic form of D being as N(kz)'l, we can approximate Duv in

Y
them by D and obtain their asymptotic forms. Therefore, our power-

counting scheme tells us that the degree of divergence of an N-th

order supergraph with respect to the total Lint is given by

A

_ A
d=»4_-_E, - Eag - 2N - 2(Io + Il

N + 1 ) + 22Rez'j . (16)

1J

Here, E, denotes the number of external Ai—lines and Iﬁ are those of

A
SPs containing D and n derivatives of &, Recognizing that the term

(4-E ) comes from the renormalizable interactions among A 6a and

Ca, we find that the divergence of any total supergraph becomes
the less, as the more super~vertices are inserted.
Thus, we conclude that the massive YM theory can be dealt with as

being renormalizable in view of nonpolynomial Lagrangian theories.
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ABSENCE OF PARTICLE CREATION AS AN EQUILIBRIUM CONDITION®

Leonard Parker
Department of Physics, University of Wisconsin-Milwaukee
Milwaukee, Wisconsin 53201

1. INTRODUCTION

From the observed range of validity of the Newtonian approximation, the cos-
mological constant A is known to be very small. In units with% =c¢ =1, one has
A <1076 cm'z.

of A,1 especially in conjunction with symmetry breaking,2 it is puzzling that the
3-5

In view of the fact that vacuum energy can contribute to the value
value of A is so small. Here I wish to recall and extend an old argument which
implies that the cosmological constant is zero or very small. The same hypothesis
evidently implies also that the expansion of the universe is isotropic and that the
early universe is dominated by relativistic particles and radiation.

The basic hypothesis is that the absence of particle creation, in particular,
gravitons and minimally coupled massless scalar particles, is a kind of equilibrium
condition toward which the evolution of the universe tends, and that the classical
Einstein equations must be consistent with that condition. Here we are referring to
particle creation as detected by a measuring instrument on one of the preferred
geodesics of the expanding universe. In Ref. 5 (Section F), we argued that there
must be a deep connection between the Einstein equations and the conditions for zero
particle creation. We viewed the Einstein equations as macroscopic equations govern
ing the large scale evolution of the universe. We asserted that the underlying
(unknown) microscopic theory, from which the Einstein equations follow, must be such
that "in an expansion of the universe in which a particular type of particle (i.e.,
relativistic or non-relativistic) is predominant, the expansion achieved after a
long time will be such as to minimize the average creation rate of that particle"
and "the reaction of the particle creation back on the gravitational field will
modify the expansion in such a way as to reduce the creation rate." Investigations
of particle creation in anisotropic6'8 as well as isotropic9 expansions support that
hypothesis, but do not address the question of deriving the Einstein equations from
an underlying microscopic theory. Candidates for such an underlying unified theory
include induced gravity. Ad]er10 has noted that the above hypothesis can serve
within the context of that theory as a reason for the observed smallness of the
cosmological constant.

Our hypothesis may well be a dynamical or statistical consequence of an under-
lying unified theory, perhaps resulting from a feedback mechanism involving particle
creation, or reflecting an underlying equilibrium or consistency condition. Perhaps
it is a stability condition on the true vacuum. In any event, we refer to the
hypothesis, loosely speaking, as an equilibrium condition. Without being specific
about an underlying theory, one can not address the question of the time in the
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early universe at which the suppression of particle creation is imposed., Possibili=
ties are the Planck time or the times at which the grand unified theory phase
transitions occur. It is not even necessary that the usual concepts of space-time
or metric should be meaningful "before" the above equilibrium sets in. The under-
lying microscopic theory is assumed to be such that, at the time and scale when the
classical Einstein equations are reasonably well defined, they are consistent with
an expansion law in which the creation rate of gravitons and minimally coupled scalar
particles is suppressed. In order to find the consequences of that hypothesis, we
can regard the background metric and background matter as governed by the classical
Einstein equations. Gravitons are taken to be the quantized gravitational wave
perturbations of the background metric.

2. GRAVITATIONAL WAVE PERTURBATIONS

It is well known that in an anisotropically expanding universe, particle
creation is in general more intense than in an isotropically expanding universe,
and that the reaction back of the created particles is such as to bring about iso-

6~ . . . . : . .
8 There is no known case in which particle creation vanishes in

tropic expansion.
an anisotropically expanding universe with nonvanishing Riemann tensor, The exist-
ence of such a case is all the less 1ikely because we are demanding that the expan-
sion be such that the graviton creation rate is zero at all times. (That excludes
global interference effects resulting in no net graviton creation.) Therefore, we
turn our attention to isotropic expansions,

The Robertson-Walker universes have line elements

ds? = -dt? + a’(t)do?, M
where do2 = §ijdx1dxJ is the 1ine element for a space of constant curvature. Define
a quantity ¢ such that € = 1, -1, or 0 if the spatial curvature is positive, nega-
tive, or zero, respectively.

The Einstein equations with cosmological constant A are

79,0 (2)

-Ag = 8nG( v

R T . -
uv u Y

where T = TAA. The above equation refers to the background metric and background
matter, both regarded as classical. The background energy-momentum tensor is that

of a perfect fluid

s (3)

T = (e+pluju, +pg

v
with four velocity ut. The equations governing gravitational wave perturbations on
et 6p = op =
suM = 0 and let the symmetric metric perturbation Gguv = huv satisfy the conditions

a Robertson-Walker background have been worked out by Lifshitz.

Wth =0, M =0, (4)

Hv Y
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which are consistent in a Robertson-Walker space-time and also imply that
h"=0. (5)

(Indices are raised and lowered with the unperturbed metric and covariant differen-
tiation is with respect to that metric.) Two components of huv remain independent
and correspond to the two polarizations of a gravitational wave.

In the co-moving coordinate system of Eq. (1), only the spatial components hij
do not vanish. Perturbation of the above Einstein equations yields

-3 2

3
a Bt(a

3y | a2atms o 23
3.h; ) -a g Vzvmhi +2a "ht =0, (6)
where Bt denotes 3/3t, §2 denotes covariant differentiation with respect to the
spatial metric aij’ and € takes values 1, -1, or 0 corresponding to the sign of the
spatial curvature. The perturbation equation is independent of the cosmological
constant. Let h1.J = GiJ(;)w(t) where the G;J are tensor spherical harmonics (see

i
Ref. 11) for € = #1 or plane waves for € = 0. They satisfy

i

§"5,7.6.9 = %0, Ted -0, and 6l -0, (7)
with eigenvalues k™ given by
K12, =0, 0<k <=
K=in3, =1, n=3,4, .. (8)
q2+3, e=-1, 0<qg<owo,
The function ¢(t) satisfies the equation
a Vd(a3dp/dt)/dt + (K2+2e)p = 0 . (9)

This is essentially the same equation as is obeyed by the time-dependent part of a
minimally coupled scalar field, so that the methods developed in Refs. 3-5 to study
the production of scalar particles are applicable to graviton production. The equa-
tion is not conformally invariant. The production of gravitons in Robertson-Walker
universes was studied for the case € = 0 by Grishchuk12 and for all three cases by

Ford and Par‘ker'.13

3. CONDITIONS FOR ZERO PARTICLE PRODUCTION

In this section, we search for criteria that can be used to infer that the
creation rate is zero for gravitons and minimally coupled massless scalar particles.
As noted earlier, there evidently are no anisotropically expanding universes in
which the particle creation rate vanishes. Even conformally invariant wave equations
give rise to particle creation when the expansion is anisotropic. Therefore, the
first condition that must hold is that the expansion be isotropic. In seeking
other criteria, we can 1imit our considerations to isotropic expansions.
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As a preliminary step, it is helpful to recall the conformally coupled scalar
field. It is well known that in a Robertson-Walker universe an unaccelerated
observer having no event horizon will find that such particles are not created.3'5’14
That permits one to unambiguously identify positive frequency solutions of the wave

equation. For the conformal scalar field one has
-7M7 6 + (R/6)0 = 0, (10).

where R is the scalar curvature. In the Robertson-Walker metric of Eq. (1), one
can write ¢ = G(X)p(t), where

" 5 6 = -k% (1)
and
(%12, c=0, 0<[ <=
K =4n"1, =1, n=1,2, ... (12)

@+, e=-1, D<q<w.

There the time-dependent part of the field satisfies

a~3d(addp/dt)/zdt + [a"2k% + (R/6)Iw = 0 . (13)

Using the expression for the scalar curvature,

R = 6(a'zé2 +a 'y 4 sa_z) (14)

one finds that a solution of Eq. (13) is

t
pe(t) = a'1(t)exp[-1J dtra~ (e (k)27 | (15)

As no particle creation is occurring and this solution is clearly positive frequency
for sufficiently large K, wewill identify it as a purely positive frequency solution,
An instrument measuring the particle creation rate couples to the field ¢ and is not
directly influenced by the coefficient of R appearing in the wave equation (10).
Therefore, for a massless scalar field with a different coupling to the scalar
curvature, such as the minimally coupled field, we assume that the creation rate is
zero for particles of that field if and only if a purely positive frequency solution
of the form of Eq. (15) exists. The same condition was used by us (for e = 0) in
Ref. 3-5,

We proceed in the same way for gravitons. If one adds a term (R/6)hij to Eq.
(6), the equation satisfied by the time-dependent part of hiJ is

3 2

a~3d(aSdysdt)/dt + [a"%k2 + 2a7% + (R/6)IW = O . (16)

This has the purely positive frequency solution
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1

t
bile) = a7 (Rexpl-i] gt (e (Pwe) /) (17)

An instrument measuring the graviton creation rate will not be directly sensitive
to the coefficient of R in Eq. (16). Therefore, for the actual graviton equation,
(9), we assume that the creation rate is zero if and only if a purely positive fre-
quency solution of the form of Eq. (17) exists.

The special cases in which the metric of Eq, (1) describes a flat space-time
are given by e = 0, a(t) = constant and € = -1, a(t) = t. In those cases, the above
criteria give zero particle creation. Another much studied example is the linearly

]5,]6,]7 The above criteria

expanding spatially flat universe (e = 0, a(t) = t)
imply that there is particle creation in that case, in agreement with the other
methods. Finally, in the spatially curved static universes (e = #1, a(t) = constant),
our criteria yield different results depending on the coupling to the curvature.

There would be no creation of conformally coupled massless scalar particles, but

there would be creation of minimai]y coupled scalar particles and gravitons. It is
certainly conceivable that spatial curvature can create particles in a globally static
space-time. On the other hand, it is possible that the above criteria for zero
particle creation rate may have to be generalized to include those static universes.
However, until it becomes clear that such a generalization is needed and exactly how
it should be done, we will assume that Eqs. (15) and (17) are the necessary and
sufficient criteria for zero particle creation rate of massless scalar particles and

gravitons in Robertson-Walker universes.

4. IMPLICATIONS OF ZERO PARTICLE CREATION

Suppose now that the classical background metric and background matter obey the
Einstein equations given in Eq. (2). The requirement that gravitons are not created
places constraints on the form of the Einstein equations and on the equation of
state of the matter. (We will deal with gravitons, but it should be understood that
minimally coupled massless scalar particles would give the same results.)

The absence of graviton production requires that Eq., (9) for ¥(t) has a solution
of the form in Eq. (17). Substitution of (17) into (9) yields the condition that

a 22 4 a5 . a2 = 0 , (18)

or
R=0. (19)

With the background energy-momentum tensor given by Eq. (3), contraction of the
Einstein equations yields

R - 44 + 871G(3p-p) = 0 , (20)

or with Eq. (19),
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the behavior of a(t) is essentially arbitrary.
The energy-momentum tensor
YR 21 o
LA TR )
2 2 2
+ £[g, 7,7 (67) - V. 7,(67) + 6 0% (28)

$uv _

satisfies the local conservation law VUT( Furthermore, in the "in" and

"out" regions, the factor multiplying £ is a four-divergence. For £ = 1/6, T(¢)

uv
is the “improved" energy-momentum tensor of Callan, Coleman, and Jackiw.18 Let us
take £ = 1/6.
In a Robertson-Walker metric of Eq, (1), it can be shown that]4
4 4
o(e,0a%t,) - ol (e0at(t)) = alty) - alty) (29)
where
g(t) = 6(4n?)"2[p(a" + 263?)
+C(-a% 0 - a af + 5 a%l + 3a% 4 ea?)] (30)

and p(¢) = <T(¢)00>, the expectation value being taken in a state having the symme-
tries of the space-time. In Eq. (30), B = -1/360 and C = 1/180. Let t] be in the
“in" region and t, be in the "out" region. Then clearly g(t]) = g(tz), and

ty) . (31)

The energy density of the particles present initially is merely red-shifted, with no
real particles being created by the expansion. As the behavior of a(t) in the inter-
polating regions is arbitrary, one concludes that the creation rate of minimally
coupled massless particles must be zero during the radiation dominated stage of the
expansion. Although interpolating regions and "in" and "out" regions were used to
derive that result, it must be valid when there are no such regions, in agreement
with our earlier method.

6. CONCLUSIONS

We have shown that if one requires as an equilibrium condition that the creation
rate for gravitons or minimally coupled massless scalar particles vanishes in the
early universe, then the expansion of the universe must be isotropic, the cosmologi-
cal constant must be zero, and the early universe must be dominated by relativistic
particles and radiation. Such an equilibrium does not necessarily imply that gravitons
will be absent, since they may have been created prior to equilibrium.

The linearized equation for gravitational wave perturbations was used. 1In
higher order, the presence of self interactions among gravitons may give a small
graviton creation rate when R = 0, but one would nevertheless expect the graviton
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creation rate to be near its minimum in the radiation dominated universe. In the

19,20

case of a self interacting scalar field which has been studied, it is interest-

ing that the explicit term shown in Ref. 19 to cause particle creation vanishes when

R

0.
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RENORMALIZATION AND SCALING OF NON-ABELIAN
GAUGE FIELDS IN CURVED SPACE-TIME

Leonard Parker
Department of Physics, University of Wisconsin-Milwaukee
Milwaukee, Wisconsin 53201

It is well known that in flat space-time non-abelian gauge field theories are
renormalizable and asymptotically free. In view of the absence of a theorem stating
that flat-space renormalizability implies renormalizability in more general space-
times, one must examine each theory individually. This is a brief summary of work
by my student Todd K. Leen showing that non-abelian gauge fields in curved Space-
time are renormalizable at the one-loop level; and that the property of asymptotic
freedom is preserved.1 Renormalizability of these theories has been proved indepen-
dently by David J. Toms.2

In the present work, it is shown that gauge invariance, as expressed through
the Taylor-Slavnov identities, insures that no curvature-dependent divergences occur
in the vector two-point function. The divergences in the ghost two-point function
and the ghost-vector-ghost vertex are extracted using local momentum space expansions
for the propagators. As with the vector two-point function, no curvature-dependent
divergences are found. Thus, these three Green functions are rendered finite by the
usual Minkowski space counterterms. It then follows from gauge invariance, that the
three- and four-vector vertex functions are finite. Finally, renormalization group
arguments are used to show that the theory remains asymptotically free in curved
space-time.

We first establish notation. The gauge group is denoted @ and its associated
Lie algebra TQ. The gauge covariant derivative is written

D =V - gA Mm

where vu is the covariant derivative on the space-time and g the coupling constant
of the theory. The field strength {or curvature) tensor is given by

Flo ZTA, - VA + g[Au,Av] . (2)

The potentials are decomposed along a basis {T%} on T, as

A = AT . 3
w - AT (3)
The gauge invariant classical action is then written as

S = far(0) (- g BV (4)

where dt(x) is the covariant volume element on the space-time. The theory is quan-
tized via the path integral formalism. The procedure of Faddeev and Popov3 allows
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the elimination of the redundancy due to integration over gauge related field con-
figurations. The resulting generating functional with ghost fields C and C is
written

—_ f — [
WL3ELE] = [DIATOIEIOLC] exp ifarf- 3 VR - L (5 )2
- (\7116"")(0“(:)a + j‘;AS + ‘g‘aca + Eaga ) (5)

The perturbative expansion of this generating functional and the extraction of Green
functions leads to a diagrammatic expansion as in flat space-time, The bare propa-
gators for the ghost and vector fields satisfy, respectively

E]Dab(x,x') = 'Gab §{x,x") (6)
and
DDf)g(x,x') - (- };)vvv“03§<x,x-) - P\)ung(x,x‘) = -gugéabﬁ(x,x') (7)

where 8(x,x') is the covariant delta function and the derivatives and Ricci tensor
are at the point x.

The gauge invariance of the classical action Eq, (4) is reflected in relations
between the Green functions of the theory revealed in the Taylor-Slavnov identities.
For the corrected vector propagator one recovers the relation (o = 1 hereafter)

v'v 5uv(x,x') =6

A B(xx') (8)

ab

In Towest order we write the corrected vector propagator as
D*V(x,x") = D*V(x,x") + JdT(y)dT(y')Duc(x,y)ﬂcp(y,y')Dpv(y',X’) (9)

where the vacuum polarization tensor ﬂcp(y,y') contains one-Toop contributions only,
Making use of Egs. (8) and (7) we recover

1 HY 'y =
Vuvvﬂ (x,x') =0 . (10)

Thus the vacuum polarization (to lowest order) remains transverse as in Minkowski

space. The pole part of 7™V may be written as

uv ' PRIV ' Ugv' ' uv )
™Y {x,x )ldivergent Agrus(x,x*) + BV'V’ 8(x,x') + EQg " 8(x,x")

+ (aR*V+bg"VR) S (x,x") (1)

where A represents the quadratic divergence while B, E, a and b carry logarithmic
divergences. This may be understood as follows. The divergences in ﬂuv(x,x') arise
in the coincidence 1imit of the arguments, hence the delta functions. The gV,
0O, R and g"R factors carry dimension (1ength)'2 so that their corresponding

coefficients must carry two additional powers of momentum in the denominator of
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Feynman integrals, Since A carries the leading quadratic divergence, the remaining
terms are, at most, logarithmically divergent. The transversality of the polariza~
tion Eq. (10) determines relations between the coefficients in Eq. (11), One finds

n““(x,x')ldiv' = B(g"VDIs(x,x') + WMV 8(x,x") - RWVs(x,x")) . (12)

Substituting this form for the polarization tensor into Eq, (9) for the corrected
vector propagator leaves

BV0,x') = (1-B)0M (x,x') - Bjdr(y)(vé v, M%) 00 (") (13)
y vy
Since B is a curvature-independent space-time constant, we see that curvature-
dependent divergences in the vector propagator are absent, The divergence in the
first term of Eq. (13) is removed by wavefunction renormalization while that in the
second term is removed by renormalizing the gauge fixing parameter. We define

renormalized quantities via

wo. S1/2 4
A 3 Aq (14)
a =1Zy ap . (15)
The renormalization constant is identical to that in Minkowski space
2
9°C 5. 2
7, =1+ 3 = (16)
3 161T2 3 e

where ¢ = :% + 2 is the dimensional parameter appearing in the regularization and C2
is the value of the quadratic Casimir operator for Q,

We have seen that the gauge invariance is sufficient to insure that no diverg-
ences not present in Minkowski space arise in a general curved space-time. The
appearance of explicitly curvature-dependent divergent corrections to the vector
two-point function would have necessitated the introduction of renormalized coup-
lings between the gauge field and the background. Such couplings would spoil the
gauge properties of the theory.

The divergences in the ghost propagator are handled using the local momentum
space expressions of Refs, (4,5,6) for the bare propagators. Here again we find no
divergences not present in Minkowski space, The latter are removed by defining
renormalized ghost fields

_ 3172
C = Z3 CR (17)
with the usual renormalization constant
N 9202 1
Z3 = (1 + > E) . (18)



99

Finally, the vector-ghost-ghost vertex is computed using the momentum space
expansions. Again we find no curvature-dependent divergences. This vertex is thus
renormalized as in flat space-time leading to the definition of the renormalized
coupling constant

g =z
Z3Z

172 9p H (19)
3
where p is the mass parameter required to maintain proper dimensions during the

regularization. The constant 21 is as in Minkowski space

2

(Y=}
N

7.=1 -

1
1 T (20)

16ﬂ2

Gauge invariance insures that the above renormalizations are sufficient to
render finite the three- and four-vector vertices.

We have seen that the divergences in the theory are removed by the same counter
terms that render the flat space theory finite. This suggests that the remarkable
feature of asymptotic freedom remains in the presence of space-time curvature. To
verify this we derive a renormalization group equation and exhibit the behavior of
the effective coupling constant. The renormalized one particle irreducible Green
functions are given by

(n/Z)FUN

(n) ; =
T (X],...X 3 gR,aRaUagus) Z3 Hyoos

Hyoso (X]""Xn; gao"agus) (21)

n

UN

where I'" " are the unrenormalized n-point functions. Differentiating the above with

respect to u and multiplying by u leaves

nyyn(n) . -
(n 3/5, + B 3/3gp - y(ap 8/30p + g))l"u’___(x1...xn, gR,aR,u,gaB) 0 (22)
where
_ %R
B=u W (23)
) 3 1In Z3
YE N

The usual procedure is to eliminate pu 3/3u by scaling the coordinates x; or the
momenta P; of the external legs. In curved space-times the natural approach is to
scale the metric tensor.7 We consider a one-parameter family of metrics guB/KZ and
scale the parameter K, The resulting renormalization group equation reads.

n (n) . 2 =
[(D -5 v) - K3/3K + B 3/3gy - Yop B/SaR]R%‘__(xl..., 9psOpaksg,a/K ) = 0. (24)

where D is the mass dimension of T.

Since, in Towest order, the B function is independent of a,8’9

we are free to
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discuss the solution to this equation for o = 0; and calculate the B function using
our previous results (calculated using o = 1) for the renormalization constants.
The solution to Eq. (24) is

F&T?..(Xl""Xn;QR’“R=°’”’9uB/K2)
= KbréT) xq s g(K),u,guB)exp - g—f: 9%; y(g(k')) (25)
with k2 - g(g(K)) g(k=1) = g (26)
Using Egs. (16), (18), (19) and (20) we find
=_%£§2_g3(|<) (27)

Because B is negative this indicates that the theory remains asymptotically free in
curved space-times.
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TWO-POINT FUNCTIONS AND RENORMALIZED OBSERVABLES

S. A. Fulling
Mathematics Department
Texas A&M University
College Station, Texas 77843 USA

This is a victory declaration in the theory of a gquantized field
propagating in a given curved background space-time. We now have an
unambiguous, internally consistent guantum theory of such a system, in
which any physical quantity can in principle be calculated. Whether
this kind of model is relevant to the real world is a separate ques-
tion. I shall present the theory rather dogmatically.

Doctrine 1: The physical interpretation of a guantum field theory
in curved space must be sought in the stress-energy-momentum tensor and
other local field observables. (Particle observables are not meaning-
ful, in general.)

As a concrete example, let's keep in mind the minimally coupled
neutral scalar field, whose stress tensor is

1 1 2 2
TW(X) =, (X)V o(x) - 5 ngaw% +5m gw(xw(X) . (1)

For a field satisfying a linear wave equation, there is little
difficulty in defining Heisenberg-picture fileld operators rigorously.
Making sense of the stress tensor, as a quantum operator, is much more
of a problem. In my opinion, the most profound clarification of this
.problem came in a series of papers by Wald (1977, 1978a,b). The in-
gredients of the solution go back to the work of Utiyama and DeWitt
(1962). The bibliography lists many (but not all) other papers which
have contributed to our present understanding.

Doctrine 2: The stress tensor is conserved [V“Tuv = 0], it
depends causally on the metric, and the difference of its expectation
values with respect to any two quantum states can be correctly calcu-
lated from the classical formula (1). ("The divergent part of Tuv
is a c-number.")

(These are three of Wald's five axioms. The other two have been
supplanted by an improved understanding of the renormalization problem.
See Wald's papers for a definition of "causally." I leave as an exer-
cise the equivalence of Wald's axiom about orthogonal matrix elements to
mine about differences of expectation values.)

Theorem 1 (Wald): The stress tensor operator of a given field

theory is uniquely determined by these requirements, up to c-~number
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terms proportional to conserved, covariant, local, polynomial function-
als of the metric and curvature tensors, such as

-1/2 & 2. 1/2
+ 02(Ru J

1 -
- §Rguv) + c3g ——|R"g ax + Cy8

. 1/2 & chgl/zdx_
Ggu

clguv Gguv

v
(2)
(C2 is the square of the Weyl tensor).
Wald observed that the procedure of "point-splitting" seemed to
provide a Tuv satisfying his axioms. The evidence (e.g., from calcu-

lations in simple models) suggested: (1) The two-point function

G(x,¥y) = <p|olx)oly) |v>

is well-defined as a distribution for a large class of states .

(2) As y -+ x, G has an asymptotic expansion consisting of terms
which are singular where the geodesic separation between x and y 1is
null (lightlike). These singular terms are (a) ¢-numbers (have the
same value in all quantum states) and (b) purely local and polynomial
in their dependence on the geometry. For example, a typical singular
term in G(x,y) is

R v(X)o”ov
a_B

gaB(X)o o

where - ou(X,Y) is the vector at x tangent to the geodesic from x

to y, with length equal to the geodesic separation (in other words,

the Riemann normal coordinates of y relative to x). [A similar

description applies to an expectation value of the point-split stress

tensor, Tuv(x,y), obtained by applying a suitable differential opera-

tor to G(x,y), so that Tuv(X) [Eq. (1)] 4is formally recovered

when y = x:

Tuv(x,y) = evv'(x,y)vu¢(x)vv,¢(y) o,

\Y

1
<¢|Tuv(x,y)|¢> = e vuvv'G(X’Y) N

where evv‘ is a parallel-transport matrix. See Christensen (1976)
for details.] (3) The symmetric part (under the interchange x+ y)
of this singular series coincides with what 1s called the Hadamard
solution of the hyperbolic field equation (Vuvu + m2¢ = 0 in our
example). For the definition of this object, see DeWitt and Brehme
(1960), Hadamard (1952), Garabedian (1964), Friedlander (1975),
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Adler et al. (1977). (The antisymmetric part of G 1is the familiar
commutator distribution, which is entirely c-number and local and

hence can be disregarded in the rest of our discussion.

I emphasize that the remainder in the symmetrized G (which can
be made arbitrarily smooth by subtracting off enough terms of the ser-
ies) is not a local functional of the metric and is not a c-number --
it depends on the quantum state . Precisely for this reason it
contains the most interesting physics in any concrete problem.

For consistency of the theory it was necessary to prove that the
picture I've just described holds in general. In 1978, Sweeny, Wald,
and I proved:

Theorem 2: If a two-point function, <y|¢(x)¢(y)|y>, 1is a dis-
tribution of Hadamard form at one instant of time, then it remains so
for all time.

In 1981, Narcowich, Wald, and I closed the remaining hole by
proving:

Theorem 3: In a static background geometry, if ¢ 1s the "natu-
ral" vacuum state and the mass is positive, then G(x,y) 1is a distri-
bution of the Hadamard form.

Thus i1t now makes sense to state:

Doctrine 3: A "physically reasonable™ state ¢ of a quantum
field system in curved space is one for which the two-point function
G 1is a distribution with singularity of the Hadamard form.

For, as a corollary of Theorems 2 and 3, we have:

Theorem 4: In an arbitrary globally hyperbolic space-time (i.e.,
one where the Cauchy problem is well-posed) there exist many "physical-
1y reasonable" states. (They form a dense subspace of a Hilbert space.)

If m > 0, the vacuum in a static background guv is in this
class of states. If m = 0, strangely enough, the traditional vacuum
sometimes does not qualify as physically reasonable because its two-
point function does not exist, as a distribution. In that case the
"good" states contain, in some sense, lots of particles in the infrared
modes.

The reason why the Hadamard states are regarded as '"physically
reasonable” is that they yield finite expectation values for physical
observables after renormalization:

Doctrine 4: The renormalized stress tensor, T;fn(x), is obtained
by subtracting from Tuv(x,y) a c--number equal to sufficiently many
terms of its Hadamard series, and taking the 1limit y -+ x. The ambi-
guity in this prescription must be reduced by requiring that (1) Tisn
is conserved, and (2) terms involving derivatives of guv of degree

higher than fourth are not to be subtracted.
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This procedure is manifestly covariant, since the Hadamard ex-
pansion 1s. The result is ambiguous since the terms to be subtracted
could be changed by any covariant, local, polynomial functional of
the curvature tensor at =x. Even after requirements (1) and (2) are

imposed, some ambiguity remains (cf. Theorem 1).
ren
uv
the coupling constants in the gravitational field's equation of motion.

Doctrine 5: The ambiguous terms in T can be absorbed into
In other words, they represent the nonexistence of any clear division
of the physical energy density into matter energy and gravitational
energy.

Indeed, the ambiguous terms are precisely those listed in Eg. (2);

c renormalizes the cosmological constant, s renormalizes the

1
gravitational constant, and 3 and Cy renormalize the coefficients
of terms involving fourth derivatives of the metric tensor. These
coupling constants must be determined by experiment. The appearance
of fourth-order terms is one aspect of the nonrenormalizability of the

gravitational interaction.

Theorem 5 (Wald): 1In a scale-invariant theory, it is meaningless
to require a priori that 03 and Cy be 0.
The point 1s that 03 and ¢y appear in contexts of the general

nature of

c., + Qn(LER).

3
The value of 03 depends on the arbitrary length L. We could define
L so that ¢y = 0, Dbut then L would be a new fundamental constant
with units of length. It could be determined (in principle) by experi-
ment, but it cannot be predicted by a scale-invariant theory. Similar
phenomena are known to particle physicists under the headings of "re-
normalization group" and "dimensional transmutation."

The point I have tried to make by this show of orthodoxy is this:
Within its own terms, the theory is completely well defined, and 1t is
uniquely determined, I think, by accepted physical principles (except
for the numerical values of coupling constants). The calculation of
the stress tensor, or some other observable, in any given quantum
state is today a problem of ordinary applied mathematics, not a matter
of the individual investigator's choice of ad hoc mumbo-jumbo as was
the case seven years ago. ‘

However, I do not regard it as a substitute for a full quantum

theory of gravity. The physical circumstances under which such an
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external-field model is a valid approximation to reality have not yet
been established; they are the subject of active investigation and
debate [Horowitz (1981), Duff (1981), Kay (1981), Ford (1982),
Fulling (1983)].
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VACUUM ENERGY IN THE BAG MODEL
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Abstract

The vacuum energy of the Yang-Mills field is examined for the con-
ditions of the bag model. The dominance of high frequency effects re-
sults in a vacuum energy that decomposes naturally into a volume energy,
a surface energy and higher shape energies. These quantities are iden-
tified with the parameters of the bag model. The imposition of con-
fining boundary conditions for all frequencies is shown to be inconsis-
tent since this would result in the bag constant and certain of the
shape tensions being infinite. The manner in which the boundary condi-
tions should be relaxed at high frequency is discussed. The most naive
procedure for relaxing the boundary conditions, which is to apply con-
fining conditions only on modes of frequency less than some cutoff fre-
quency, results in a negative bag constant and surface tension and would
render the vacuum unstable against the spontaneous breaking of Poincaré
invariance. Consideration of the manner by which the interacting elec-
tromagnetic field avoids a similar instability suggests that a more
realistic way to relax the boundary conditions on the bag surface is
to endow the vacuum exterior to the bag with a frequency dependent

dielectric constant and magnetic permeability.

Introduction

The aim of this report is to examine the energy of the Yang-Mills
vacuum under the conditions of the bag model and to show that a consid-
eration of the shift in the vacuum energy of the field due to its con-
finement may yield important insight into the nature of the vacuum
state for non-Abelian gauge theories.

The bag model [1] has achieved reasonable phenomenological success
in the explanation of hadron spectroscopy. This model pictures the
quéntum chromedynamic vacuum as coexisting in two phases. One of these,
the 'ordinary' vacuum, is impenetrable to colour while the other, cor-
responding to the interior of the hadron, is such that the gluon fields
that are the carriers of colour are able to propagate freely. These
two phases are taken to be separated by a sharp boundary on the interior
of which the gluon fields satisfy confining boundary conditions

n-+E*=0, nxB®=0 . (1)
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The model was first formulated by the MIT school who proposed that
the two phases of the vacuum be taken to differ by an amount of energy
B per unit voiume. Good phenomenology results if the energy of the bag

is taken to be given by

(2)

EEIIS

with V the volume of the bag and R its radius. A variant of the model,
due to the Budapest school, adds teo the right hand side of (2) the

effect of surface tension so that

& = By + 855 - % (3)
R
with S the surface area of the bag and &5 a surface tension. Fitting
the data with the MIT expression (2) yields the values Z = 1.8 and
B% = 0.145 GeV. The Budapest energy (3) achieves a similarly good fit
with the same value of Z and a variety of pairs of values for B and &5,
The origin of the Z/R term is not well understood though a contri-
bution to Z of approximately 0.75 is explained as a center of mass
effect [2]. It has been suggested [3] that the remainder of this term
represents the change in the vacuum energy due to the confinement of
the field. The inspiration for this suggestion would seem to be the
result obtained first by Boyer [4] and subsequently by several authors
for the change in the energy of the electromagnetic vacuum due to the
introduction of a perfectly conducting spherical shell. A recent cal-
culation by Milton, deRaad and Schwinger [5] yields the value

Eyps = %% (0.09235) . 4)
The primary aim of this report is to assert that:

(i) The change in the vacuum energy occasioned by the confining surface

is radically different in its effect from the simple 1/R dependence

that has been suggested on the basis of (4) and

(ii) that the vacuum energy resides near the boundary. This has the

effect that, for a sharp boundary, the vacuum energy possesses a geo-

metrical expansion and may be expressed in the form

7 c c 2
&, - e'v + &5 + & J dS(k +K,) + &7 J s (k) k)"
+ 88 J dSk iy + oo (5)

where Ky and «, denote the principal curvatures of the surface and the
coefficients 85,8C,--- are shape tensions (the first of these is the
surface tension) which are independent of the geometrical configuration

of the surface. The fact that the vacuum energy decomposes naturally
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in this way suggests strongly that the coefficients in the geometrical
expansion should be identified with the parameters of the bag model.
On the basis of this identification we find

(iii) that it is inconsistent to apply confining boundary conditions
for all frequencies since, as a result of high frequency effects, the
bag constant and the surface tension turn out to be not only infinite
but of the wrong sign and hence would be such as to render the vacuum
unstable against the spontaneous breaking of Poincaré invariance.

Some comments are perhaps in order regarding the totally different
appearances of expressions (4) and (5). In order to relate them we re-
mark that for the case of pure electromagnetism, Z.e. in the absence of
interaction with say the Dirac field, the surface tension &5 vanishes
while, for the case of thin shells, the first integral on the right hand
side of (5) whose coefficient is the curvature tension &C vanishes owing
to a cancellation between the two sides of the shell. Furthermore the
first of the integrals quadratic in the curvatures vanishes since for
a sphere Ky = K. This leaves us with the term whose coefficient 1is

&SI' For a sphere this term takes the value
C _ C
&1 f dSkk, = 8m & (6)

independent of the radius of the sphere (this integral is in fact a
topological invariant and takes the same value for any surface topo-
logically equivalent to a sphere). The remaining terms in (5) are the
terms cubic in the curvatures which, again for the case of thin shells,
cancel between the inside and the outside and a term which is cutoff
independent, in the limit of large cutoff, and which corresponds to the
energy (4) computed by M.D.S. The energy (6) however, although inde-
pendent of the radius of the sphere, is not zero and in fact depends
linearly on a cutoff. Thus the vacuum energy of a perfectly conducting
spherical shell differs from the value (4), which seems to have been
generally accepted, by a term which is independent of the radius of

the shell. This possibility was known to Boyer who was scrupulous to
point out that his calculation determines the derivative of the vacuum
‘energy only up to an additive constant. Subsequent calculations have
overlooked this term for a variety of technical reasons [6].

For the conditions appropriate to the bag model, however, it tran-
spires that all the coefficients &S, &C, &g and &gl are present. The
coefficients 8% and &EI are present just as they are in the electromag-
netic case and to lowest order in the Yang-Mills coupling g their values
can be inferred by multiplying the corresponding electromagnetic quan-
tities by eight. The curvature tension is present since the situation
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envisioned in the bag model is that of a cavity in an infinite medium
rather than the vacuum in the presence of a thin shell hence there is
no cancellation between the inside and outside. Perhaps the most
striking difference between the Yang-Mills field and the electromag-
netic field is the presence of a non-zero surface tension 88. The sur-
face tension is brought about by the self interaction of the Yang-Mills
field and since it depends cubically on a cutoff it has important
effects. As for the volume energy, we expect on dimensional grounds
that it should vary quartically with a cutoff. It is these last two
terms those associated with &S and g’ that we shall principally be con-
cerned with here.

The following estimate [7] may be obtained for the surface tension
of the Yang-Mills field due to its self interaction

S 1 2 2 .. -
aYM = -«EE;I [11 -3 NF] g A3 (confining boundary conditions) (7)

where Np denotes the number of fermion species and A a high frequency
cutoff and in deriving this estimate we have worked to leading order in
the coupling g and we have assumed that the fermion masses may be ne-
glected in comparison with A.

A similar estimate, which proves useful for the purpose of com-
parison, may be derived for the electromagnetic field for the case of
perfect conductor boundary conditions we have

2,3
&SM . - 24 (perfect conductor boundary conditions) (8)

21674

The negative surface tension (7) would seem to indicate an insta-
bility that would lead to bag fragmentation. Equally serious is the
result of computing the bag constant B (if the confining conditions
(1) are taken literally then this is just the volume energy &V) from
the non-linear boundary condition

. _ 1 aruva .8
B = T Fuv F 1oz VY (9)

which dictates the response of the bag wall to the gluon pressure. We
may estimate B by taking a vacuum expectation value of this equation
for the case of a plane boundary. The contribution of the second term
on the right hand side of this equation is small in comparison with
that of the first term if the fermion masses are small compared with
the cutoff, neglecting this term we find

24

BYM = - —-2‘ . (10)
kil
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The fact that B and &S turn out to be negative indicates that the
vacuum is unstable against dissolving into foam. Clearly something is
seriously amiss.

Let us pursue our reductic ad absurdum a little further since the
manner in which the interacting electromagnetic field avoids a similar
instability indicates, I believe, the resolution to the difficulty.
Consider for definiteness the result of taking a large box on the sur-
face of which we impose the confining conditions (1) and subdividing
the box into smaller ones by creating new surfaces on which the field
is also subject to the same boundary conditions. Since the surface
tension (7) is negative this process is energetically favourable. Along
with the new surfaces we will create edges and corners where these sur-
faces intersect. This turns out to be energetically favourable also.

It is significant that the interacting electromagnetic field sub-
ject to perfect conductor boundary conditions would be subject to a
similar instability. Of course charges and currents are required to
enforce perfect conductor boundary conditions but these are available
to the interacting field which will create electron-positron pairs from
the vacuum if it is energetically favourable to do so. The point is
that if the field were to create particle-antiparticle pairs in an
attempt to create a perfectly conducting surface which, if possible,
would be energetically advantageous then the created particles would
form not a perfect conductor but rather a medium akin to an electron
gas the electromagnetic properties of which is described by a dielectric
constant. This is an important point since, as a consequence of the
analyticity properties enjoyed by the dielectric constant, the surface
tension due to a dielectric boundary is always positive thereby restor-
ing the stability of the vacuum against partitioning. The positivity
of the surface tension for a dielectric boundary derives ultimately from
the fact that when account is taken of the energy of the sources required
to enforce the boundary conditions the sum of the field energy proper
and the energy of the sources is always positive.

Dielectric boundary conditions also resolve the difficulty associ-
ated with the sign of the bag constant at least to zeroth order in the
coupling. This can be seen either by appealing to the appropriate gen-
eralization of (9) w<z

[(E+D - B «H) +i a—i“”” =8 - &5k, *k,) + oo, (1)

N

where the square bracket denotes the discontinuity of the enclosed

quantity across the interface, or by the following elementary argument.
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The dispersion relation for modes outside the bag is k2 = uswz, but
since we require pe = 1 to preserve Lorentz invariance this relation is
just k2 = wz which is the same as the dispersion relation inside. It
follows that the volume energies inside and outside are equal and hence
that )

s=¢8" -& -9

at least to zeroth order in the coupling. Clearly the calculation of

B should be pursued to higher order. It is an important point, however,
that the coefficients B and &S can be calculated either from the bound-
ary condition (10) or directly from the energy density and that the re-
sults agree. This is not the case if confining boundary conditions are
employed.

In conclusion: we have shown that confining boundary conditions
cannot be applied for all frequencies since otherwise the bag constant
and the surface tension would be infinite and we have suggested a way
in which these boundary conditions might be relaxed at high frequencies
by supposing that the external vacuum can be viewed as a dielectric
medium. These boundary conditions suffer from the serious deficiency
that in all probability they fail to confine. It is an interesting
question whether it is possible to find boundary conditions that both
confine and yield physically acceptable values for the bag constant
and the surface tension.
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§1. Introduction

In my talk I would like to report a modest progress in the Gribov

problem(l) in the framework of stochastic quantization method.

According to Paris: and Wu(z), the Langevin equation for a gauge

field A has a form:

?A, 8Sa
—_— i ——— » >
3t 8§ Au
i Q. 2
Sel = /4- J de tr (Fu) ) (1)

where N, 1is the white noise. The advantage of the stochastic
quantization will be the unnecessity of the gauge fixing. So our
natural question will be: Is the stochastic quantization method with
no gauge fixing equivalent to the well-established quantized gauge
theory with gauge fixing ? In order to answer such a problem it is
natural to consider an intermediate step: stochastic quantization
with gauge fixing. The Langevin equation (1) can be deformed by

T -dependent gauge transformation U(t) as

a—A—ﬂ +§§c_| - Duv = UQ,U-I,

ot §Au
V= -3Uu/et- U - (2)
As far as gauge invariant quantities are concerned, Eq. (2) gives the

same results as Eq. (2) does.
Baulieu and Zwanziger(3) claimed to find V such that the
probability density P (t) approaches the Faddeev-Popov measure:

— Stot
p=[dcaae o

where St = Sa + gauge fixing and Faddeev-Popov ghost terms and
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¢ and € are the ghost fields. That is, the Faddeev-Popov measure

P is a static solution of the Fokker-Planck equation associated

with the Langevin equation (2), if we choose the functional V as
a =1 - 0 8 Sk -gm]
Voj=s =~ p jd\/jdg aCdC C () SAEMV)[ 5Abv(y, e » (3)
where K is such that
BRS transform of K = gauge fixing and Faddeev-Popov terms,
A popular choice of W will be
K = 4r gu {-28T . Fea? )
2 (4)

with F being a gauge fixing function (e.g. F= 3*Ax )(4) .

§2, Singular Langevin Equation and Gribov Problem

The attention should be paid to the factor P71 in front of
the expression (3). As Gribov pointed out Faddeev-Popov measure
has zeros. Therefore the Langevin equation has singularities in the
drift force. The Brownian motion of gauge field { Alt) } may or
may not cross the Gribov boundary 8£)2 where P = 0, depending
on the sign and strength of the drift force. Let us consider the
time development B [A ] itself regarding it as a functional of the
stochastic variable A (1),

Namely,
A1 - § Pra1 ae

dﬁ 1 = Ydl‘ AN Al

) s PlAY .o sPray a

?pjdx sAaulZl 9‘.(!1-1-541 m'\,(n near er
where 9, is a regular functiocnal: P D,v . Defining

BP= P/ J[”(SP/SA)? and 'rT= Q/J[ou (SP/SA)’ ,
we obtain

B <, tm

€ = 5 + q ’ (5)
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where

P N / 5P
C = gd'x -SEA—"; P DM ydr (ZTQ-“,.‘) . (6)

Equation (5) actually gives a projection of the Brownian motion to
the normal direction to the Gribov boundary. According to the
theorem by Feller(S), the Brownian motion will never reach the
boundary 32 if the repulsive drift force is strong enough: C >1 .
Otherwise it will go through.

In the case of "entrance” C= 1 , the Langevin equation by
Baulieu and Zwanziger gives the equilibrium distribution Gribov

suggested; the path-integral should be limitted within the Gribov

region,
S (aal) Pral . (7)
0
In the other cases ( \Cl<! , C<~t ), we must impose the boundary

condition at ?dQ to solve the Fokker-Planck equation, which implies
the non-equivalence of (1) and (2). Unfortunately we have not yet
succeeded in the evaluation of C for the covariant gauge. (We

obtained a trivial result C=0 for the axial gauge.)
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We present here some results on the geometry of the configuration space of
non abelian gauge theories [1, 2, 31 . It is on this space that a Schridinger
equation (or equivalently a path integral) is to be defined. The study of the
geometry of the configuration space is a necessary step for aproper non perturbative
quantization of the theory. Two basic ingredients enter our study : (1) a volume
cut-off (space is compact without boundary e.g. a sphere or a torus) and (2) the
theory is non abelian.

I. SOME NOTATIONS (4, 5I.

The basic objects of the theory are gauge potentials (connections) on which
acts a group of gauge transformations. Let & be the space of connections on a
principal fibre bundle P(M,&) where M = compact metric space without boundary
and G = compact semisimple group.

On & acts the group of gauge transformations g . Locally

A — "An - g'%g + g Aug
To any @ in @ is associated a covariant derivative Vw acting on
covariant objects. In a small gauge transformation g =exp§ w 4 +% .
we have Sw:‘LE .
& is an affine space.
& s equipped with a gauge invariant scalar product (

(T )= fnd«r Er(y’) .

I1. LOCAL STRUCTURE OF & -

Through a point 6> we may draw the orbit formed with all gauge related
points in 8 . Tangent vectors to this orbit at <« will be called vertical at w
(all vertical vectors are of the form V¥ ). By definition, a vector at w is
said to be horizontal if it is perpendicular to all vertical vectors at cw . If
\Z: is the adjoint of ¥, with respect to ( . ), horizontal vectors verify:

V:’\T = 0.

Generically the covariant laplacian [Q,,= V:, Vo has trivial kernel. We
denote by (&, its inverse.

The local structure of é around a generic point may then be described
by the splitting of the tangent space at into vertical and horizontal space.
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,7 Tw(@): HwOVw.

Vw = space of vertical vectors at w = tangent through the
orbit through co

Hw = space of horizontal vectors.

For generic points, there is a projection operator Tg,= Al -V, GwV::
(orthogonal projection on H,, along Vca ).

ITI. GAUGE CONDITION

To fix the gauge is to cut all orbits once. Around a point G, define the
set /do = [w e8| T=w-w, is horizontal at ca.,} . For generic connections
this is locally a good gauge condition [6] . We then have a local coordinate system
around GJ for the quotient space ?/g » given by the covariant background
gauge condition at &%

IV. ORBIT SPACE. METRIC ON THE ORBIT SPACE

Modulo certain restrictions on the connections and the gauge transformations
(taking some away and imposing some regularity conditions) the quotient space @/
is a C%® manifold of infinite dimension and the projection P:g’—aﬂy:_?/g
is a principal fibration [1, 2, 7] .

Notice that the horizontality condition introduced above in é yields
a connection in & with connection form X, < Gw U¥ |, which is not flat : we
cannot construct a horizontal section of &

Since & is equipped with a gauge invariant scalar product, there is an
induced scalar product 8 on % computed as follows :
P i) pa)

Suppose A and B are vectors tangent to "L at a . Let @ be a point of
P-'(o.) . The vectors A and B have horizontal 1ifts T, and Ty at w . By
definition g (A,8)= (Ta, Te) . In the coordinate system defined by
@, € p'(0,), (supposing @ is not too far from a, ) the metric is given by g:]CT[,Tl;

V. NON SINGULAR LAGRANGIAN OF GAUGE THEORIES T[8, 9] -
M = 3-dimensional space, e.g. 53, T ...o0n E(M, 6 ) are defined time
dependant potentials ALE) . The Lagrangian of the theory is | =i (A-VA, A-VA,)
. 3
~V(A) , where A._gft\_i dxi and V;%jdv trfy  (=n23), R0 A3 DA AT
n

This lagrangian is singular. The use of Dirac's analysis for singular lagrangians
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yields the definition of the proper configuration space, which is nothing but the
orbit-space ég: fpz . The non singular lagrangian we get is justzsz'(‘lgi,'rr;i)—V.
7 In other words if @ s a point on % and d—=3%: , we have
o - 1’3@7 a) —V{o,) » where ¢ vis just the natural metric introduced
earlier [10 7.
VI. METRIC AND FADDEEV-POPOV DETERMINANT
In a given system of coordinates (say the covariant background gauge
condition at @, ) we may compare det g and dety where ¥ = Faddeev Popov
operator = V,*Vw ) and 3 =TT, 1T, . Formally we have {103].

V—d;t—g’ . det ¥

V det 0, Vdet D

VII. RIEMANNIAN CALCULUS ON % .
We may write down covariant derivative, curvature, equation for geodesics.

If we use the background gauge condition, everything can be expressed in terms of
simple operators.

Set P= A-%Y'W ( resp. P-A-Vy )
Ke: ¥ 5 Ke(3)=CT, %3 , and K¥its adjoint
Kw=GwVed and X% its adjoint.

Suppose X , Y, Z denote vector fields.

The covariant derivative is

Dz L1 (-)gpg(*wrwi KX, B = XS - T e XX + DX, Te2 T+ En,i,mx:l).
The Riemannian curvature tensor RX,Y)= [])x,])y]- :D,:x,y: is
RVIZ =T, (- 2 Kz Guw KXY) — Ky Gw Ki(2) + Ke Guw Ky'(2) )
The sectional curvature in the 2-plane generated by two orthogonal vectors

XY s EY)= gRxIYX)= 3 ( KX, Guw KF(Y) ).

The sectional curvature is everywhere non negative

Notice that any straight line in é which cuts one orbit perpendicularly
cut all orbits it meets perpendicularly. In other words there are horizontal straight
lines. They project on geodesics i.e. the background gauge condition at (e gives
normal coordinates at Qe

VIII. CONJUGATE POINTS
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Starting from @, along the horizontal line cve+ AT , We reach a
conjugate point @ of co, when some vector which is vertical at &> , verifies
the gauge condition. This is equivalent to saying that there exists % such that
ViVl = X% = o i.e. the Faddeev-Popov operator has non trivial
kernel. For any ®, and ‘T , there is a finite X for which this happens [11 .
There are conjugate points at finite distance in all directions. Moreover if we
consider the region (L around &, where ¥ 1is a positive operator, this region
is convex and has the "Gribov horizon" as a boundary (111 .

KWe thus get to the following conclusion : the configuration space of gauge
theories is an infinite dimensional space, but the volume cut-off and the non
abelian character of the theory makes it look like a "sphere" (positive curvature,
possibly finite diameter). On that space is defined the potential term coming from
the magnetic part of the Lagrangian. The next step toward quantization will be to
write down a Schrodinger equation, which includes both, and control the removing of
necessary cut-offs. Some hope is reasonable for 2 + 1 dimensions especially about
about the existence of a mass gap. The 3 + 1 dimensional case is still out of reach,
but in any case, the non trivial geometry of the configuration space is a saliant

feature of non abelian pure gauge theory, and it will matter for any non perturbati-
ve result.
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Abstract

Some recent calculations in lattice gauge theory are reviewed. These include
estimates of the heavy quark potential, the hadron spectrum, and scales of chiral

symmetry breaking.

1. Introduction

Lattice gauge theoryl provides an important nonperturbative approach to quantum
gauge field theories and it promises to continue serving this purpose very productive-
ly in the years to come. In particular with the advent of Monte Carlo calculations
with fermions, a much wider range of problems can now be investigated.z-9 The next
couple of years should witness a wealth of new quantitative and qualitative results

which will hopefully help unravel the intricate dynamics of non-abelian gauge theories.

In today's talk I would like to give a progress report on some of the calculations
that are currently being carried out on the lattice. Since time is limited, I will
unfortunately not be able to touch upon a large part of the research in pure gauge
theories. I apologize to the many physicists who have made important contributions
to the field for not mentioning their work. To list just some of the topics that T
will have to omit, they include:

Estimates of glueball masses
Studies of the restoration of rotational invariance
Experiments with different lattice actions
Investigations of the role of monopoles, vortices, etc.
The above work has contributed to our understanding of lattice gauge theory and its

continuum limit and the topics that I will be discussing are built on the knowledge

*
Talk presented at the International Symposium on Gauge Theory and Gravitation
"¢ and G", Nara, Japan, August 20-24, 1982,

TPermanent address after September 1, 1982,
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accumulated through such efforts.

First, I would like to describe a recent calculation of the heavy quark potential
in Ref. 10 by John Stack. This will give an example of how continuum physics is ex-
tracted from the lattice theory by working in the scaling region. I will then go on
to discuss Monte Carlo calculations with fermions. A major objective there is to ob-
tain a QCD prediction for the hadron spectrum. Many groups have embarked on this
ambitious program and initial results are encouraging.z'8 However, these calculations
should still be regarded as being at a preliminary stage. I do not believe that there
is sufficient understanding of the approximations involved in order to be able to es-
timate errors reliably. Undoubtedly, future work will be devoted to gaining control

over and improving on the approximations.

Fermion Monte Carlo techniques are also being used to investigate more general
properties of gauge fields coupled to fermions. The spectrum calculations mentioned
above indicate that chiral symmetry is broken spontaneously in non-abelian gauge the-
ories with fermions in the fundamental representation. If one wants to go beyond the
strong interactions to gauge theories of the electro-weak plus strong interactions,
one must understand chiral symmetry breaking (or the lack thereof) in a more general
setting. What is the scale of chiral symmetry breaking relative to the confinement
scale? 1Is chiral symmetry breaking sensitive to the center of the gauge group? Does
one see evidence for "tumbling' ideas? At the end of this talk I would like to de-

scribe some attempts to answer these questions using lattice techniques.

Before turning to the specific topics, let me remind you of the basic features
of lattice gauge theory. 1In the lattice approach one replaces continuum space-time
by a hypercubic discrete lattice. The gauge degrees of freedom are unitary matrices
U(x,x +M) that reside on the links between neighboring sites x and x + . The U-

matrices can be viewed as the lattice analogues of the path ordered non-abelian phase.

xt iagAu
Peexp|ig J AudZ - e ~ U(x,x+k) . (1.1)
X

The matter degrees of freedom live on lattice sites. One defines, for instance, four
component spinors ¥(x) and E(x) at each site x. The lattice action splits up

into two parts

S = SG + SF . (1.2)
The pure gauge part SG is the Wilson action
=L t }
8¢ = > ? tr{Z - [Up +Up] 1.3)

where 2 is the sum over unoriented plaquettes and UD is the product of four U's
p
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on links bordering the plaquette. For the fermionic part SF’ one takes

sp=m Z V6wt +3 DT, [ueex vt
X X
+ r -
-U (x-u-,x)\lf(x-u-)] +3 P Z\y(x)[Z\lf(x) - U(x,x+u)¥(x +u) (1.4)
x b

- U*(x -M,x)Y(x - H-)] .
Eq.(1.4) is often rewritten as:

sp= D ¥ V@ + K DI V60 {0y, - UG uyy et
X

X B
(1.5)
- (vu+r)U*(x-u,x)\lf'(x-u)}
In going from (1.4) to (1.5) we have introduced rescaled spinors,
YOI S Te (1.6)
2K .
and a new parameter,
=1
K=o - (1.7)

The connection with continuum physics is established by going to the scaling re-
gion, i.e., towards a continuous phase transition point of the lattice theory. In
order to make contact with an asymptotically free continuum field theory, one is in-

terested in the critical point at g 0. As one approaches g — 0 the renorma-

crit =

lization group tells us that physical dimensional quantities such as masses Mi obey

the following relationship:

ci 2 -1 ’
el N exp 5| = ciAL . (1.8)
2bog

In Eq.(1.8), bo’bl are the coefficients of the two loop perturbative B-function
and Ci is a pure number. The identity symbol defines the quantity AL‘ Ratios be-
tween Ci's for different masses are calculable predictions of the theory. Physical

distance-dependent quantities such as the interquark potential V(R) obey

E*V(R) = £(R/E) = function only of R/E (1.9)
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where,

€ = correlation length = (typical mass)“1 (1.10)

Work on the pure gauge theory has verified that Eq.(1.8) is obeyed by quantities
such as the string tension ¢, the glueball mass MC’ and the deconfinement tempera-

ture T One now believes that the scaling reglon extends to relatively large

dec”
values of g, namely

= 4/g2 2 2.2 su(2)

w
n

. (1.11)
=6/g% ? 5.5 SU(3)

w
1]

2, The Heavy Quark Potential

An important quantity that can be calculated in the quarkless theory is the stat-
ic potential between two external color sources. I would like to show you a recent
result obtained in Ref. 10 for the gauge group SU(2) (the discrete 120 element
icosahedral subgroup was actually used, but this should provide an excellent approxi-
mation to the full SU(2) group for the values of the coupling constant that were in-

12,13

volved). Using previous calculations of the string tension ¢ to fix the

scale,u‘-13 the continuum heavy quark potentiél was obtained up to an overall additive

constant (other calculations of V(R) have been reported in Ref. 14).

The static potential can be extracted from an evaluation of the Wilson loop a-

round a rectangular contour I' of extension R X t.

W) = {(tr P explig ﬁ A dl]) - (tr(UU...U)F> . (2.1)
r

For t > R one has

WD) ~ exp[-t (v +VR) | . (2.2)

V0 represents the self-energy of the color sources. In Ref. 10, Wilson loops were
evaluated for R = a,2a,3a and 4a at several B-values, 2.2 <B < 3.1. A correla-

tion length & was then introduced.

b, /2b2
- -1 2|1 ° 1
g€ = ,012 AL = .,012 a bog exp m 3 . (2.3)
o8

The coefficient .0l12 was chosen so that § is given by § = 1//S6, if one uses the
string tension O measured in Refs. 11, 12, and 13. Although R/a takes on only

four values by combining data at different B, one can work at many more values of



124
X = R/E. As mentioned before, in the scaling region all the data points for E*V(R)

versus R/E should fall on a single curve. The result is shown in Fig. 1 and one

sees that scaling holds qulte well.

2.0

0.0~ ‘

132

L A L 1 1 L L L A L L L L

04 08 12 16 20 24
x=R/

Fig. 1. E*V(R) versus X =R/E. E 4is the correlation length defined in Eq.(2.3).

In order to obtain Fig. 1, one had to subtract VO(B) for each £ separately. I re-
fer to the original paper for details on how this was accomplished. Fig, 1 still con-

tains a single overall additive constant that remains undetermined.

Although Fig. 1 represents the heavy quark potential for SU(2) and not for
SU(3), it is still tempting to try to compare with phenomenological charmonium poten-

-1 (or /o) has been set to

tials., I have made a rough comparison in Fig. 2. §
400 MeV. This corresponds to renormalizing the theory such that the R >> 1 behavior
of V(R) reproduces the experimentally measured Regge slope. Once the scale has been
set one can express R and V(R) in physical units, fm and GeV respectively. The
full curve in Fig. 2 is a phenomenological potential taken from Ref. 15 multiplied by
9/16, the ratio of the fundamental representation quadratic Casimirs of SU(2) and
SU(3). This factor 9/16 will hopefully take into account the bulk of the changes
necessary in going from SU(3) to .SU(2). Keeping in mind that the Monte Carlo re-
sults can be shifted by an overall additive constant, one sees that the agreement

between phenomenology and quarkless QCD is fairly good.
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Fig. 2. Same as Fig. 1 with & = set to 400 MeV. The full curve is a phenomenolog-
ical potential from Ref. 15 converted approximately from SU(3) to SU(2).

3. Lattice Fermions and Spectrum Calculations

Recent advances in lattice gauge theory have led to the first round of Monte

Carlo spectrum calculations for the full non-abelian gauge theory with quarks.z-8

One must now work with the full action SG + SF' In order to be able to perform
Monte Carlo calculations, one formally integrates out the fermionic variables and

ends up with an effective action,

Seff = SG - tr n(A[U]) . (3.1)

A[U] is the lattice Euclidean Dirac operator defined in Eq.(1.4) or (1.5). 1In
most of the 4D fermion Monte Carlo calculations to date (except for Refs. 6 and 7)
one has ignored the second term in (3.1), namely one sets det(A[U]) - 1, This amounts
to neglecting virtual quark loops. 1In the loopless approximation (also called the
quenched approximation) there is no feedback from the fermions on the gauge degrees
of freedom. One can first evaluate the quark propagator G(x,U) in a fixed back-
ground gauge field configuration. One then builds physical, gauge invariant quanti-

=S
ties such as meson or baryon propagators and averages over U with weight dU e G.
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These calculations require in addition to a pure gauge Monte Carlo also efficient
numerical matrix inversion methods to invert A[U] and obtain G(x,U). Most calcu-
lations in 4D gauge theories have utilized the Gauss-Seidel method although other me-

16,17

thods have also been proposed. Hadron masses are extracted by writing the meson

or baryon propagators D(x) as

. -m_t

D(x) | =Zae " . (3.2)

averaged over
spatial positions

One then hopes that it is possible to go to sufficiently large t so that only the
lightest state contributes to (3.2). Periodic boundary conditions actually restrict
the allowed values of t to be € Nt/Z, where Nt is the number of lattice sites
in the temporal direction.

As mentioned in the Introduction, the first estimates of the hadron spectrum
are in reasonable agreement with experiment. Considering that these are first prin-
ciples calculations of the spectrum of a very complicated theory, this is very en-
couraging news. On the other hand people are still struggling to understand and bring
down the error bars. I will not attempt to show you table after table of hadron
masses as they are quoted in the many references. Different groups have worked with
different lattice sizes, at different values of P and used different fermion me-
thods. They have also averaged over different numbers of U configurations and have
different criteria for extrapolating to the physical values of m or K (it turns
out one can never work exactly at Kphys or mphys since the matrix inversion me-
thods break down there). In order to be able to compare various references one must
first understand the dependence of the final result on the many variables in the cal-
culation. The next round of fermion Monte Carlo spectrum calculations must answer
the following questions:

1. How do mass estimates change when one varies Ns and/or Nt?

2. Has one averaged over a sufficient number of independent gauge field configura-
tions?

2. Do hadron masses scale (i.e., obey Eq.(1.8))?

3. Do we understand how to extrapolate to physical values of m or K?

4. Are there matrix inversion methods that enable us to work closer to mphys or
K ?

phys’

5. How do virtual fermion loops affect the final results?

Most of the points raised above are technical ones. There are also more basic
questions concerping lattice fermions that still need to be checked. Just as one
must verify scaling and try to test the restoration of Lorentz (rotational) invari-
ance in as many quantities as possible, a sensible continuum limit of theories with

fermions must exhibit all continuous chiral symmetries for m = O.

It is well known that there are many difficulties with lattice fermions and
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chiral symmetry. Let me discuss separately the cases r =0 and r # 0.

For r= 0, SF of Eq.(l.4) becomes the "naive" lattice fermion action. It de-
scribes 16 species (flavors) of Dirac fermions. For finite lattice spacing, the
m = 0 theory does not have the full U(16) X U(16) flavor symmetry of the continuum
model. It has only a subset of the continuous axial and vector symmetries. The re-
maining continuous symmetries are supposed to be restored in the a - 0 limit. How-
ever even at finite lattice spacing, there are enough discrete symmetries to prevent
quark bilinear counter terms from developing. This is the main advantage of the

r = 0 formulation.

One can actually reduce the number of flavors from 16 to 4 by spin diagonalizing
the fermionic action. A convenient way to achieve this is to perform the following

canonical transformation.18

Y(x) = T(x) ¥(x) = x(x)

_ -y (3.3)
Y(x) = Y(x) T (x) = X(x)
where
_ %o ¥ X9 %g
TR =Y, ¥ ¥y Yy - (3.4)
Then 4
Sp = m 2 RO X0 +3 T R T, 60 W0, x+8) K(x 1)
X X K
(3.5)
- vT -y x(x -y
where
X X +x X+ %
T =1, 1= ¢D0%Le=cD°0 Lnw=-cn’ 2. @8

Although the x(x)'s start out as four component spinors, Eq.(3.5) shows that the
different components decouple and one can work with single component fermionic vari-

ables. This leads to the "staggered" fermion method.

The Euclidean staggered fermion action describes 4 flavors. At finite lattice
spacing the m = 0 theory has only one continuous axial symmetry (nonsinglet) in
addition to the U(l) vector symmetry. The full U(4) X U(4) symmetry is restored
only in the a - 0 1limit (up to anomalies). Again discrete symmetries prevent mass

counter terms from developing.

The staggered fermion method has been used to evaluate ($W>HFO in the quenched
approximation.2’3’9 There were clear indications that {¥y) # O both at strong
coupling and into the scaling region. Since staggered fermions have one continuous

symmetry that is spontaneously broken by <ﬁw> # 0, one should find a Goldstone
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boson even at strong coupling. This particle will be one out of the 15 pions expected
in the 4 flavor continuum theory. This massless state has been observed in Refs. 2,
3 and 7. The real challenge now is to show that the remaining 14 pions also become
massless as one approaches the continuum limit. This will verify that the full

SU(4) X SU(4) X U(l) flavor symmetry is being restored, realized however in the
Nambu-Goldstone mode. Finally at the same time that the 14 pions are becoming mass-
less, one would like to observe that the flavor singlet meson, the ﬂ', remains mas-
sive. In order to achieve this however one must put back quark annihilation graphs.
Although both the naive and the staggered Euclidean fermions are believed to have the
correct U(l) anomaly in weak coupling perturbation theory,19 it is not known how
easily the anomaly will show up in a Monte Carlo calculation.

For r # 0, one obtains the Wilson fermion formulation which has been used in

2,4,5,6 The moment r is nonzero, 15 of the 16

most spectrum calculations.
species encountered in the naive fermion method acquire large masses as a ~ 0. The
Wilson formulation avoids the "doubling" problem. However the term in SF propor-
tional to r breaks chiral symmetry completely., There is no symmetry to prevent mass
terms from developing. With this method one must fix the parameter K of Eq.(1.7)
by some prescription before being able to extract hadron masses. One has tradition-
ally fixed K so that the pion mass comes out right. In particular if one adjusts

K to KC such that the pion becomes massless, one argues that the theory has been
finetuned to its chirally symmetric point. I believe it is important to devise as
many independent tests as possible that one is indeed dealing with a chirally symme-
tric theory at K = Kc'

The Wilson method has also been shown to have the correct TU(1) anomaly.20

There are in principle no obstacles in obtaining a correct pion-eta splitting once
annihilation graphs have been taken into account. Some work in this direction has

already been carried out in Ref. 2.

4. Scales of Chiral Symmetry Breaking

As the last topic, I would like to describe some further studies of chiral sym-~
metry breaking using lattice techniques. My collaborators, J. Kogut, Steve Shenker,
D. Sinclair, M., Stone, W. Wyld and I are investigating chiral properties of theories
with quarks in different representations of the gauge group. We hope that such stud-

ies will shed new light on the mechanism responsible for chiral symmetry breaking.

According to the picture that we have of chiral symmetry breaking, the vacuum
of QCD should be unstable with respect to the formation of quark-antiquark pair con-
densates. Once a condensate has formed chirality of the vacuum becomes indefinite
and it is possible to have nonzero vacuum expectation values of operators such as
VY. This picture tells us that in order for chiral symmetry breaking to occur, at

the very least pairs must bind. Attractive, maybe relatively strong, binding forces
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must exist. It is, however, not at all clear whether long range confining forces are
necessary. 1In fact, initial models in 4D of chiral symmetry breaking were theories
with very short range interactions.21 If an effective four fermion interaction theory
is ever a good guide to what goes on in QCD, maybe chiral symmetry breaking is insen-

sitive to the long distance behavior of the theory.

The question raised above can be studied by considering theories with quarks in
N-ality zero representations (e.g., the adjoint representation). Such quarks do not
experience a confining force at large distances since they can be screened by gluons.
Consequently if chiral symmetry breaking is sensitive to the force law at large dis-
tances one would expect the chiral properties of theories with adjoint fermions to be
very different from in models with fundamental representation fermions. It could also
be that adjoint quarks prefer to bind with glue degrees of freedom rather than form

pairs.

My collaborators and I have performed Monte Carlo evaluations of (WW}z for sev-
eral representations £ of SU(2). We have used the staggered fermion formula-
tion (Eq.(3.5)) and work within the quenched approximation described in the previous
section. We find that quarks in screenable representations also lead to chiral sym-
metry breaking. We conclude from this that chiral symmetry breaking is independent
of confinement and it occurs in general, (depending on the representation) at shorter

distances than confinement.

Having established that chiral symmetry breaking is not associated with confine-
ment, one might ask the following questions: Is it possible to introduce disparate
length scales into a theory with a single gauge group? Does one see evidence for

"tumbl:i.ng"?22

The authors of Ref. 22 have pointed out that in an asymptotically free theory
one can obtain a large hierarchy in length scales by allowing different types of con-
densates to form sequentially. We have attempted to use fermion Monte Carlo calcula-
tions to estimate the relevant scales of chiral symmetry breaking for different repre-
sentations. We find that indeed a hierarchy of scales emerges. Let me be a little
bit more specific about what is meant by the '"relevant scale of chiral symmetry

breaking".

Consider a system at nonzero real temperature T. As T increases one expects
all symmetries that are spontaneously broken at zero temperature to eventually be re-
stored. This. should also be true of chiral symmetry breaking (the simplest picture
of such a phase transition would have the pairs in the condensate unbind as the system
becomes too hot). Thus if one observes the order parameter <(¥V) at different tem-

peratures one should see,

#0 T<T
<W>{ ¢ %.1)

=0 T>T
c



130

The critical temperature Tc sets the relevant scale for chiral symmetry breaking.
We find that if one compares two representations such that their quadratic Casimirs

Cz(ﬂ) obey

Cz(zz) > CZ(L (4.2a)

1)
then

Tc(zz) > Tc(zl) (4.2b)

which is consistent with tumbling ideas.

It is also interesting to compare Tc for the fundamental representation with
23-26

the deconfining temperature Tdec of the quarkless theory. One finds

Tdec < Tc(fundamental) . “4.3)
In Fig. 3 we compare our curve for Tc(fundamental), denoted TF’ with a curve for
Tdec which is taken from Ref. 23. Since temperature is a physical quantity with di-

mension of mass, it obeys the renormalization group relation Eq.(1.8) once one has

entered the scaling region (4/g2 2 2.2).
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Fig. 3. Comparison of the chiral symmetry restoration temperature T_ for fundamen-
tal quarks with the deconfining temperature Tgq.. T4gec 1s taken from
Ref. 23.

From Fig. 3 one reads off the continuum result

T./T

F Tdee ™ 1.6 £ .2 . . 4.4)
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24-26

(Other estimates of T tend to place it slightly higher than in Ref. 23, so

dec
Tdec and TF could be closer than indicated by Eq.(4.4).)
We also have data for the representation £ = 1 (adjoint), 4= % and 4=2

's., We are

and they are consistent with Eq.(4.2) with large ratios between the Tc
currently working very hard to nail down Tc more precisely for the adjoint represen-
tation. We are finding that TA/TF is at least 7 or larger. However, the error
bars are still too big and uncertain to enable us to quote a reliable number. Need-
less to say, many of the reservations and difficulties with fermion Monte Carlo cal-
culations that were mentioned in the previous section also apply here. We are trying
to understand possible sources of systematic errors in our calculations. For instance
previously when we had less data on different sized lattices, our analysis gave

TA/TF ~ 56. We now believe that this number will be reduced when finite size effects
are properly taken into account. 1In a forthcoming paper we will give a detailed dis-
cussiop of finite size effects and other aspects of our calculations. We will also

report on results for SU(3) and U(l) gauge theories.

5. Concluding Remarks

I have tried to give you a flavor of some current work on the lattice. Most of
the projects are very time consuming (and often also very CPU time consuming) long
term endeavors. We may still have some ways to go before we can be truly satisfied
with the accuracy of the results. However it is gratifying that more and more ques-
tions are starting to lend themselves to the lattice analysis and that this nonpertur-

bative method is producing a continuous flow of new results and ideas.
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Recent Developments in the Theory of Large N Gauge Fields

Tohru Eguchi and Hikaru Kawail

Department of Physics
University of Tokyo
Bunkyo-ku, Tokyo 113

It has been known for some time that quantum field theories with global
or local U(N) (SU(N), O(N),,,) symmetry greatly simplify in the limit

N>, The well-known example is the so-called O(N) vector model which
is a theory of massless scalar fields ¢i(i=l,,N) taking values on SN_l.

In two dimensions lagrangian is given by
N N
1 2.2 2
I=J7 L (3,05 %a%, 1o, =1. (1)
i=1 i=1

It is known that the interaction caused by the constraint 2¢iz=l

creates a finite mass gap in this system (N > 3). 1In fact the model
becomes exactly soluble in the large N limit and becomes a free theory
of massive scalar particles. When N is finite, these massive fields
begin to interact weakly with the strength 1/N. Thus the N = @ limit
yields an exact solution which gives a qualitatively correct description

of the system also for finite N.

In the case of gauge theories it is also known that a considerable
simplification takes place in the limit of large gauge group. Both in
the continuum and the lattice formulation of gauge theory the following

characteristic properties have been known of the N = « gauge fields.

1. Dominance of planar Feynman diagramsl (planar surfaces) in the weak
coupling (strong coupling) perturbation theory:;

2. The factorization property of Wilson loop amplitudes.

These properties are derived from a power-counting analysis of Feynman
(strong coupling) diagrams. In the case of weak coupling perturbation
theory a simple combinatorial analysis shows that the weight of a
Feynman diagram becomes NX where X is the Euler characteristic of the

diagram (interaction vertices, propagators and color loops are regarded
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as vertices, edges and faces of a polyhedron, respectively) when we
let gzN to be independent of N (or let g2=0(1/N)). Thus in the limit
of N = » with g2N fixed graphs with the heighest Euler number give the
dominant contributions. In the case of a Wilson loop amplitude, for

instance,

< i A dx >= 0(N 2
expl{uxu 0 (N) (2)

C
the leading contributions come from the planar graphs with the topology
of a disc while non-planar graphs with h handles are down by N_Zh.

Moreover, when we consider the case of more than one quark loop, say

C1 and C2, the leading contribution to the correlation function

<exp i J Audxu exp i J Audxu> (3)
Cl C2
come from the disconnected piece,
. . 2
< A dx >< A dx > = .
exp i { . xu exp i { 1 xu O(N™) (4)
€1 C2
This is because when there exist gluon exchanges between Cy and C2 we
0

obtain a topology of an annulus and hence of order only O(N").
In this way in the large N limit with g2N fixed there exist no correla- |

tion between quark loops and the amplitudes always factor

<Il i A dx > =1 <exp i A dx > 5
; R J T T J Py (5)

C. C.

i i

Since a Wilson loop amplitude may be interpreted as a meson propagator,
factorization implies that at N = ©» gauge interactions are exhausted to
form bound states and mesons do not scatter from each other. 1In this
respect N = » gauge theory is analogous to O(N) vector model where
interactions are also exhausted at N = » in creating a dynamical mass
to scalar fields. The dominance of planar surfaces and factorization
are also shown order by order in the strong coupling lattice perturba-

tion theory.
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Reduction
Now the recent developments on the theory of large N gauge and spin
system3’4’5’6 have uncovered a further property of N = «» gauge fields;

3. Reduction of dynamical degrees of freedom.

By means of reduction one may replace the N = « gauge field theory by a
much simpler system, a model with only a finite number (=space-time
dimensionality) of U(N) (or NxN hermitian) matrices, without loosing
information of the original theory. This is a remarkable result in

the sense that a guantum field theory may be reduced to a kind of
dynamical system with a finite number of dynamical variables.

In the lattice formulation of gauge fields the argument goes as followsa;

we start from the standard Wilson theory defined by the partition

function
d 2 (§ + +
z=1 T du exp{B tr U_ U U U } (6)
vy p=1 YiP v p#Ao=1 Y,p y+p,0 yt+to,p y,0

where Uy,p is an U(N) matrix lying on a link connecting the lattice
sites y and y+p (p is the unit vector in the p-direction) and 4 is the
dimensionality of space-time.

The Wilson loop amplitude is defined by

= < v e >
w(c) tr Ux,qu+u,va+u+v,A Ux-o,o

(7)

for a contour C which connects lattice sites x,x+u,x+u+v,x+u+v+i,, ,x-0,
X successively. We then reduce the model by identifying all link

variables in the same direction

Yo = Y% (8)

and thereby shrink the entire space-~time lattice to a single hypercube.

The reduced model is then defined in terms of matrices Ul 02 . Ud
N 7 rrr 7

and its action is given by

d
+ +

S. = § +tr(UUUU). (9)

r p#o=1 p 0 poC

The analogue of the Wilson loop amplitude is defined by

w.(c) = <tr(UuUVUA s US>, (10)
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where the averaging is taken with respect to the weight Eg. (9) and we
have identified the contour C with the sequence of directions (u,v,Xx,,,

g)
C i (X, x+Hu,x+u+V, x+U+V+h, e« ,Xx=0,x) = (U,V,A,+--,0). (11)

The above correspondence is one to one when we ignore over-all transla-
tions. ‘
We remark that the reduced model Egq.(9) is ivariant under the phase

transformation
Uu — e U (12)
and this symmetry implies

Wr(C) = <tr UquUA Tt U,> =0 (13)
for every open contour C. This is because in the case of an open
contour there exists at least one direction p for which Up and U;
appear different number of times and q;c) has to vanish. It was noticed3
that if the symmetry Eg.(12) is left intact, i.e. not spontaneously
broken, the equation of motion for the Wilson loop amplitudes in the
original and reduced models become identical in the limit N = « with

gZN fixed. Consequently the Wilson loop amplitudes agree
w(c) = Wr(C)- (14)

Also the free-energy per unit volume of the original theory agrees with
the free-energy of the reduced model. Thus the infinite-volume Wilson
theory Eq.(6) and the one-site reduced model Eq.(9) become equivalent
to each other in the large N limit.

In order to elucidate the physical meaning of the reduction let us
consider a "partial reduction" of N = » gauge field where we shrink

the size of one particular direction, say, the time-direction, of the
d-dimensional lattice to a unit distance while keeping the size of the
other directions unchanged. We compare the free-energy of the original

and partially reduced systems,

(15)

N
"
=
2]
=
1
o
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where we have introduced the transfer matrix and L is the original

size of the time-direction. Making use of eigenstates of the transfer

matrix with eigenvalues Ei (i=0,1,2,..) we obtain
F=E,,
~(E.-E.) (16)
- _ i 70
F_ = E, in (L + ) e ).

i
If the system confines, there exist only color-singlet excitations

and the sum over i will not generate N dependent factors. Thus

Fr = E0 + O(N"). (17)
On the other hand we know that the vacuum energy E0 is O(N2) and
consequently

Fr =F, N = o, (18)

Therefore the free-energy of the N = » gauge field is independent of
the lattice size and we may reduce the theory so far as the system

confines.

U(l) symmetry

In the partial reduction of the lattice we have squeezed the time-
direction to a unit distance. This creates.a finite-temperature
situation since the periodic boundary condition is imposed in the re-
duced model. Thus the reduction effectively heats up the gauge system.
It is known that gauge fields, when heated, will undergo a deconfining
transition into a plasma phase at a certain critical temperature Tc

via the spontaneous violation of the invariance under the center of the
gauge group.7’8 Therefore if this transition temperature stays finite
at N = © gauge fields, we would expect that there exists a critical
coupling Ac in the reduced model such that for A (= N/B) > Ac U(l) (the
center of U(N)) symmetry Eq.(l2) is unbroken, however, it will break
spontaneously below Ac (Tc and Ac are related as l/Tc = a(kc) where

a is the lattice constant dependent upon the coupling strength A).
Monte Carlo simulation of the reduced model4’9 in fact shows the
spontaneous violation of U(l) symmetry below Ac =~ 2, This is signaled
by the non-zero expectation value for open loops. Below the transition

point the eigenvalues of the reduced link variables Up's are no longer
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uniformly distributed but are concentrated around an arbitrary point
on the unit circle. The transition is smooth and appears to be 2nd

order. This is consistent with our interpretation of its being the

finite-temperature deconfining transition.

Thus the original reduced model is equivalent to the standard Wilson
theory only in the strong coupling regime x> Ac and the equivalence
will be lost below Ac.

Quenching

In this situation it is possible to restore the broken symmetry by
integrating over the location of the concentration of the eigenvalues
In the guenching procedure of Bhanot-Heller-Neuberger link variables

are diagonalized as

v =v p V'

o PP P
ieg

(Dp)ij = e Gij'

(19)

The angular variables eg's are held fixed when we first average over

marices V 's

p

+ + . +, _+BS(V,9)
I de tr(VuDuVquvav VODGVO) e
W(c;0) = —L . (20)
[ Tav, eTBS (v, 0)

p

We then take an averaging over 0's

Wq(C) = J du(s) W(C;90) (21)

with a 'suitable measure . Using the method of Parisi5 it was shown6

that when one makes a change of variable

VDV =DW . (22)
U wou

and expandg

w = i A 23
U exp iag A/ (23)
in terms of g, the quenched model reproduces the planar perturbation
theory of the continuum gauge fields. Here the eigenvalue e;—ea has

the meaning of the momentum carried by a gluon line with a pair of
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color indices (i,3).

Thus the quenched model reproduces the weak coupling expansion of the
continuum gauge theory for small A while it agrees with the original
reduced model for large A. Hence it is now believed to be equivalent
to the standard theory throughout the range of coupling constants.
Here the possible trouble is that the quenching procedure is justified
only with recourse to the weak coupling perturbation theory and it is
not completely clear if the non-perturbative information of the theory
is coded correctly into the quenched model.

Twist

Another promissing method of avoiding the problem of the degeneracy
of the eigenvalues of Up is to introduce a twist to the system.lo

i21/N

For instance, we introduce a phase factor e into the action.

Then the minimum energy configuration for a plagquette

i2n/N +_+

e tr(UpUOUpUG) + h.c. (24)
is no longer given by Up = U0 = 1 but by

Up = P, U0 =Q

(25)
PQ = QP elZﬂ/N
. . 11
where P, Q are matrices of 't Hooft
0 .l‘ 1 e27r1/N 0
P = D ’ Q= ) . (26)
.1 .
1 0 0 e27r1(N—l)/N

Eigenvalues of P and Q are uniformly distributed on the circle and
thus U(l) symmetric. Therefore the introduction of a twist lifts the
degeneracy of eigenvalues and would restore U(l) symmetry. In fact

10 that the original reduced

there exists some numerical indication
model has no U(l) symmetry breaking in the region of negative coupling

constant X and agrees with the Wilson theory.
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Topological Excitations on a Lattice

Y. Iwasaki and T. Yoshié

Institute of Physics, University of Tsukuba, Ibaraki 305, JAPAN

We study by numerical methods the existence (or the non-existence) of instantons
and the role played by instantons on a lattice, by taking the CPl model in two dimen-
sions as an example.

The CP1 (non-linear 0(3) o) model is defined by

3

2
i T (Buci)(auci) : 2o, =1 (1)

Lo 2
u=li=1

An 0(3) invariant regularization of this model gives the classical 0(3) Heisenberg
model defined by
H=1 2 S()$(a+) , 2)
nu

where g-is a 3-component unit vector, n is a lattice site and ﬁ is a unit vector on
the lattice. This model will be referred to as the standard model.

However there are infinitely many other choices for Hamiltonians which give the
same naive (classical) continuum limit. For example, taking three couplings (nearest,

1)

next-nearest, and third-nearest neighbor), we write in the form

H=73 {al(Vug(n)Vug(n)) + az(vuvv§(n))(vuvv§(n))

+ ag[(V2@) (T23) + (T28m) (281 (3)
where
v @) = £(n+p) ~ £(n) (4)

The correlation functions are given by

<F(S)> = %J 13 (n) 6 (5% (n) - 1)F(S)exp(-BH) . )
n

If we take al = 1/2, any Hamiltonian given by eq.(3) reduces to the non-linear

0(3) © model defined by eq.(l) in the classical continuum limit.

2)

Let us investigate topological properties of the models. Berg and Liischer
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v

have provided a suitable definition of topological charge on the lattice in the form

Q =L q(n¥%) (6)
%

where n* is a dual lattice site. They have found that the topological susceptibility

X, = I <q(0)q(n*)> €)]
t ok

. 2
does not scale as a renormalization invariant (mass)” in the case of the standard

3)

model. Further Liischer™ has explained this phenomenon by pointing out that there
exist short range fluctuations of the topological charge with such a small action
that they overwhelm the contribution of the slowly varying fields, which otherwise
dominate in the continuum limit. The point is that the minimum energy configurations
with Q@ = 1 are not the solutions of the lattice field equation. The spin configura-
tions are planar. They are at the boundary of configurations with IQI = 1 and those
with Q = 0; they are "exceptional" configurations due to the terminology in ref.2).
We call these exceptional configurations "dislocations', following Berg.A)’S) These
dislocations dominate the topological susceptibility X, at low temperatures.

Up to this point they are all well known. Now, let us take the Hamiltonians (3)
instead of the standard one. With positive o

2
fluctuation becomes large. However, the energy of a slowing varying field does not

and a3, the energy of a short range

change much. Therefore by increasing the parameter a, and/or 4y, We can make the
energy of a dislocation much larger than 4w, the energy of an instanton of the con-
tinuum theory.

If the energy of a dislocation is much larger than 47, we naturally expect that
some configurations with Q = 1 are solutions of the lattice field equation. We
indeed find such solutions by increasing az and/or a3. We find them by two ways:
One way is to start from random spin configurations and to lower systematically the
energy of spin configurations until a solution of the classical lattice field
equation is obtained. The other way is to start from a discretized-instanton
Sl(n) + iSZ(n) B

c Z2 (8)

w(n) = z-b

1+ S3(n)

and to lower systematically the energy. Here z = ny + in2 and a, b, ¢ are complex
numbers,

For a 25%25 lattice, with ¢ =1, a = 7.5 + 11.5i, b = 16.5 + 11.5i, the energy
of the discretized-instanton is systematically lowered by replacing a spin in such a
way to minimize its local energy. Even for oy = 0.1 and ay = 0.0 where the energy of
the dislocation is smaller than 47, we obtain a stable instanton. For a, = 0.25 and
ag = 0.25 (these numbers have no Special meanings. We choose them arbitrary) where

the energy of the dislocation is about twice that of the continuum instanton, we
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certainly obtain a stable instanton.

Thus we conclude that the existence (or the non-existence) of instantons depends
on the form of lattice action. Among theories which are identical in the naive con—
tinuum limit, some theories where short range fluctuations are suppressed prossess
stable instanton solutions, while others do not.

Because the Hamiltonians (3) reduce to the same non-linear 0(3) ¢ model in the

naive (classical) continuum limit irrespective of «, and g, all of them are equiva-

lent in perturbative theory, only by redefining thezcoupling constant B. However,
they may give inequivalent non-perturbative effects. We will discuss it below.

First let us give the relation between various coupling constants in the frame-
work of perturbation theory. We follow the method which was first used by ParisiG)
when deériving the relation between the coupling constant of the standard model and
that of the continuum theory.

The relation may be given in terms of the scale parameter
A= £ exp-2mp) ©)
After some calculation we obtain

A(a2=0.1, ag= 0) = 8.9 A(a2=0, a3=0)

(10}
A(a2=0.25, a3=0.25) = 124.3 A(a2=0, a3=0)
If we neglect B in the numerator in eq.(9) we have rough relations from eq.(10)
8(a2=0.1, a3=0) = 8(a2=0, a3=0) - 0.35
(11)
B(a2=0.25, a3=0.25) = B(a2=0, a3=0) - 0.77

At any rate eqs.(10) hold for 8 >> 1 and therefore egs.(ll) are enough for our later
use. Thus the inverse—temperature B = 1.3 in the standard model corresponds to B =

0.85 when a, = 0.1, «, = 0 and B = 0.53 when a, = 0.25, ay = 0.25.

2 3 2
We will mainly discuss two theories with a, = 0, ay = 0 and with a, = 0.25, oy

= 0.25. The case with a, 3

unstable, while the cases with a, = 0.25, ay = 0.25 to the case where an instanton is

0 corresponds to the case where an instanton is

=0’(1

stable.

Next we measure xt defined by eq.(7) by2§onte Carlo simulations on 50%50 spins.
In the case of ay = a3 = 0, Berg and Liischer ’ have already measured Xe for a 100%100
lattice to find that Xe does not scale as expected. We find that for G, = 05 = 0.25,
X¢ is consistent with the scaling for 0.4 < B < 0.6 [where the correlation length £

varies from 2 to 6)]. This is expected because the energy of an instanton is much
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lower than that of the dislocation. The reason why we have considered Xt for the
range of B, 0.4 < B < 0.6, is the following; for B < 0.4 the correlation length is
too small to expect the scaling behavior of X¢ and for B > 0.6 finite size effect
becomes significant.

Qualitative differences between the two theories in physical quantities which are
connected with the topological charge are naturally expected. However, the differ-
ences between the two theories may be more deep. If instantons are stable at B = =,
their effects will remain in the 1limit B + «, while if instantons are unstable at B =
«, their effects will become weak in the limit B -+ =,

As already noticed by Berg and Lﬂscherz), and Martinelli, Parisi and Petronzio7),
the magnetic susceptibility X itself does not scale as expected, although the devia-
tion from the scaling is not so large as in Xeo Our results are consistent with the
previous results for oy =ag = 0 and the data for a, = u3 = 0.25 are consistent with
RG.

The deviation from RG for the standard model might be due to the higher order
power corrections. However, we rather interpret the fact that Xm does not scale as
consistent with RG for o, = a, = 0, while it does scale for a, = a, = 0.25, as results

2 3 2 3

from the fact that short range fluctuations dominate for o, = u3 = 0 at low tempera-

ture, while slowly varing fields (instantons) dominate for @, =0, = 0.25.

If our interpretation is correct, it means that in the continuum limit for a, =

ay = 0.25 X¢ and Xp have their limits, for a, = u3 = 0 they do not have non-trivial
limits. This further implies that theories which are equivalent in perturbation
theory do not necessarily give equivalent non-perturbative effects.

Now let us try to find indications of the topological symmetry breaking proposed
previously by the present authors: In previous papersg? we have conjectured that the
vacuum of the non-linear 0(3) ¢ model (CP1 model) is two-fold degenerate and that a
spontaneous symmetry breaking occurs from the requirement of the cluster property of

the vacuum. We add an external source term proportional to Q

- 4m8Q (12)

to the Hamiltonian (3). We use the Metropolis method to measure hysteresis effects

by changing 6. We measure hysteresis curves for G, =05 = 0 and for a, =0y = 0.25.
Two cases show completely different patterns. In the case of a, = u3 =0, at 8 =0
the residual topological charge is zero, while in the case of a, = oy = 0.25, at ®

= 0 the residual topological charge is about ten. We make the same measurement by
changing random numbers as well as the number of steps. In every cases the patterns
of hysteresis curves are the same, only the residual topological charge at 6 = 0 for
oy = og = 0.25 changes slightly. This behavior is consistent with our assertion that
the topological symmetry breaking occurs for ay = @y = 0.25.

We also investigate the size dependence of Xt for both cases with az = a3 =0
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and a, = a3 = 0.25. If a system has the spontaneous topological symmetry breaking,

the expectation value of the topological charge density is not zero;
<q(i)> = q (13)

Tgerefore the topological susceptivility X¢ has a size dependence Xe qu2 where the
N~ is the size of the lattice. This is analogue of the spontaneous magnetization.
On the other hand, if a system has no spontaneous topological symmetry breaking, Xy
is expected to be size independent.

It should be noted that X is dominated by dislocations in the standard model.
Dislocations are short range fluctuations and therefore they are not influenced each
other; a dislocation with positive topological charge and a dislocation with negative
topological charge can coexist. The situation is similar to that of the dilute
instanton gas picture. Contrary to the standard model, in the model with a, = u3 =
0.25, instantons dominate Xt; instantons are slowly varing fields and they influence
each other. In the continuum limit we cannot apply the dilute instanton gas picture
to this system due to the analysis of the continuum theory.g)’lo)

AT B = 1.3 with o, = 0g = 0, the topological susceptibility xt does not change
even if the size of the lattice is changed from 25%x25 to 100%x100 (via 50%50). On the

other hand, at 8 = 0.6 with e, =0, = 0.25, xt increases if the size of the lattice

3
changed from 25x25 to 50x50. For a 100x100 lattice we have also a preliminary result
for X' it shows also a tendency to increase. These results strongly support our
assertion.

More details are discussed elsewhere.ll)
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OBSERVATION OF AHARONOV-BOHM EFFECT BY ELECTRON HOLOGRAPHY

A.Tonomura, T.Matsuda, R.Suzuki, A.Fukuhara, N.Osakabe, H.Umezaki,
J.Endo, K.Shinagawa, Y.Sugita and H.Fujiwara
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185, Japan

We feel really honoured to give a talk before active researchers in this fron-
tier field of physics, gauge theory and gravity. Although the member of our group are
not familiar with the details of concepts and theoretical approachs in this field,
we understand the importance of the Aharonov-Bohm effect in the electromagnetism, i.
e. the first example of gauge fields. . 2)-4)

Since the theoretical work by Aharonov and Bohm in 1959, several experiments

have been performed to prove this effect and these experiments have been fairly
famous also among electron-microscopist.

We thought the effect has the sound basis beyond doubt but we noticed also that
a few peop1e5)sti11 insisted on its non-existance or doubted the validity of the
experiments and that the controversy still continued.6) Therefore it seemed worth
while to try an experiment in a newly designed form to confirm the effect again.

This was our motivation.

Before going into our experiment, let us explain briefly about those in the past.

The schematic diagram in Fig.1 shows the idea of the elaborate experiment by
M61lenstedt group.”’ The lens and bi-prism are, of cource, electro-magnetic ones in
fact. They fabricated a fine solenoid coil whose diameter was unbelievably small, 4.7
Hm.

Two electron waves from the same source travel around the solenoid and are over-
lapped coherently to cause interference fringes on the film below. Even if the waves
never touch the magnetic flux inside the solenoid, the fringe must be shifted with
the change in the phase difference between the waves owing to the Aharonov-Bohm effect
when the coil current i changes. In order to confirm the fringe shift, they set a
s1it over the recoreding film and moved the film with changing the coil current i.

The result is reproduced in Fig.2. The fringe shift is clearly recorded.

Other experiments -4are similar to this one in principle except that ferromagne-
tic needles were used instead of solenoids.

A11 these experiments were very elaborate ones for the technology of those days
but we must admit that they have one defect in common. That is, the lack of experi-
mental verifications that there is no magnetic flux leakage into the electron paths.

To improve this points, Kupef7)proposed in 1980 the jdea of perfect confinement
of magnetic fluxon by a hollow torus of super-conductive material, as shown in Fig.3.
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Fig.3 An experiment proposed
by Kuper 1980.
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Fig.2 Observed phase change due
to the coil current.
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Fig.4 Electron hologram recording
and optical reconstruction.
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Fig.5 Tungusten tip as electron
emitting source.

Electron —— l l
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Fig.6 Hologram recording of a toroidal magnet.

Fig.7 Interference fringe pattern of electron waves.
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From the profile of the diffraction pattern below, one can tell the phase difference
between waves having passed through the inner and outer field-free spaces around the
torus. However, a tiny specimen of such a structure seems desperately difficult to
be realized for an experiment.

We would Tike to describe our experimentg)hereafter. What was new of our experi-
ment is two-hold.

One point is making use of a very small toroidal magnet which has a closed cir-
cuit structure of magnetism so as to leak no magnetic flux outside of itself. The
usage of a toroidal ferromagnet was independently recommended by Greenberger in 1981.
Our toroids are made of permalloy and its fabrication was made possible by the opti-
cal lithography of microelectronics together with magnetic material technology,
which are both available now in our research laboratories.

The second point of our experiment is an application of holographic technique to
measure the phase difference of electron waves having passed around the toroid.

Let us explain the principle of holography very briefly with Fig.4. Suppose a
monochromatic electron wave irradiates a specimen and eventually reaches a screen,
where only its intensity distribution of this object wave is recorded at first. Then
a part of the wave, called a reference wave, from the same source but free from the
effect of the specimen is overlapped on the screen and we have a different pattern,
which includes not only the intensity of the object wave but also its phase infor-
mation in a form of interference fringes. The pattern recorded on the medium in
the Tatter way is called a hologram.

The hologram is then irradiated by a choherent optical wave usually from a laser
after the hologram is enlarged roughly by the wave length ratio. The interference
fringes on the hologram act as a mixture of optical gratings and diffract the inci-
dent Tight so as to rep@Dﬂuce the whole field of the electron object wave w;g? a
visible light. This is the principle of the holography, for which D. Gabor “got the
Novel Prize in 1971.

The most serious technical problem in electron holography is to assure good co-
herence of wide electron waves. We have been successful in this point by using
field-emission type electron sourceg]); electrons are emitted from a tungusten tip
1ike the one shown in Fig.5 and the sharpness of the tip ensures good spatical cohe-
rence. Fig.6 illustrates schematically the horogram formation in our apparatus.

The hatched part shows the reference wave. When the specimen is empty, we have only
a fringe pattern of equal spacings as shown in the enlarged part of Fig.7. The num-
ber of fringes is a measure of good coherence and is some 10 times as many as that
by conventional electron sources.

' Fig.8 shows the view of an arrangement for the optical reconstruction. The op-
tical system may look complicated, but its function is only to adjust the size and
position of the reconstructed real image.

Fig.9 shows pictures taken by this apparatus from the same horogram of a single
crystal of cobalt.
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Fig.8 Optical arrangement for image reconstruction and
interference microscopy.

Fig.9 Image and interferograms optically formed from
a hologram of a cobalt single crystal.
(a)ordinaly electron-microscopic image, (b)interfero-
gram, (c)contour map of phase change.



151

Magnetic Flux Quantym
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Fig.11 Phase shift due to a
toroidal magnet.

Fig.10 Magnetic flux enclosed by
electron trajetories.

Fig.12 Ordinary(a) and Lorentz(b) electron-micrographs
of a toroidal magnet.

Fig.13 Interferogram of the toroidal magnet in Fig.12.
(a) for parallel comparison wave, {b) for tilted

comparison wave.
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First, the usual electron microscopic image on the left(a) is reproduced accor-
ding to the holography principles. In this case the comparison light beam, reflected
by mirror C in Fig.8, is omitted. The image shows only the outline of the hexagonal
shape and the uniformity of its thickness, but no phase information.

When the comparison 1light beam is superposed, we have an interferogram shown in
the middle(b). Furthermore, we can adjust the direction of the comparison wave so
that the fringes on the background vanish as shown on the right(c). This corresponds
to the coincidence of axes of two light waves, i.e. the comparison wave is parallel.
In this final case(c) the concentric pattern is, in fact, a contour map of the phase
of the object wave caused by the magnetization within the crystal.

Suppose two electron trajectories within the object wave as in Fig.10. Then the
phase difference between these two is described by the magnetic flux enclosed between
them. If the two trajectories are those reaching adjacent dark lines on the contour
map, the phase difference must be just 2m and the enclosed flux equals to the flux
quantum h/e, irrespective of the electron energy.

Thus we can say that the contour map for the parallel comparison wave is equiva-
lent to a projection of the magnetic flux field normalized by a unit of h/e.

Now we will show the results about toroidal magnets(Fig.11). The photographs
in Fig.12 were taken with an ordinary electron microscope. Under usual experimental
conditions the electron deflection due to the Lorenze force is too small to affect
the image at just focusing{a). However, in the image far out of focus(b) the effect
of the deflection can be recognized as white contrast at magnetic domain boundaries.
Thus the closure structure of magnetization or equivalently of magnetic flux is just
as expected.

Fig.13 shows the interference fringes obtained by our holographic technique just
1ike those for the cobalt crystal. The pattern(a) for the parallel comparison wave,
i.e. the projection of the magnetic flux, also shows the closed circuit structure
more accurately; the phase difference between the inner and outer space of the
toroid is equivalent to some 6 wavelengths. From this we can estimate the total mag-
netic flux inside the toroid at same 6h/e, which was consistent with the magnetiza-
tion of permalloy 9500G,the thickness 400 R and the width 6400 A.

An interferogram(b) obtained from the same hologram and tilted comparison wave
can decide the direction of magnetization as well as the phase difference. Here the
phase shift is measured as the discrepancy of fringes between the outer and the inner
spaces around the toroid.

We found also the sample with the opposite direction of magnetization(Fig.14).
In this case the sample width is larger so that the phase difference is larger, some
8 wavelengths.

We intentionally chose the thickness such that the sample is half transparent
for the electron beam in order to count the number of fringes or to trace them. Thus
a part of the electron wave has passed through the toroid and has felt the magnetic
flux inside. It should be remembered that our hologram is taken just at the image
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plane of the electron optical system. The electron wave having passed through the
toroid does not contribute the image of the inner or outer space around it within the
accuracy of electron optical aberrations. 1In the experiment in the past the inter-
ference to be observed was that between electron waves both having travelled around

a specimen;. however, in our experiment, these waves are made interfere with the
third one, called the reference wave, so that the relative phase difference between
the former two can be determined where they do not overlap each other.

As for the flux leakage out of troids, these contour maps themselves reveal that
the leakage was less than one flux quantum so that it does not affect the conclusion.
When the leakage is serious, we can recognize it on the contour map as an example of
unsuccessful preparation(Fig.15).

In conclusion, we have succeeded in measuring the phase difference of the
electron wave around magnetic toroids, which are consistent with the prediction by
Aharonov and Bohm. We would 1ike to believe that we have added solid experimental
confirmation to this famous effect.

Fig.14 Interferograms of a toroidal magnet with magnetization
direction opposite to that in Fig.13.

Fig.15 Toroidal magnet with flux
leakage. (a)Lorentz micro-
graph, (b)phase contour map.
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BPS Transformation and Color Confinement )
K.Nishijima
Department of Physics,University of Tokyo
Tokyo, Japan 113

Interpretation of hadrons in terms of guarks and antiquarks has
been so successful that one can no longer think of its substitute.
The hadron spectrum and high energy hadron reactions are believed to be
described by means of guantum chromodynamics (QCD). Thus, we feel the
existence of quarks so real on one hand, but we have never detected
isolated quarks on the other hand. 1In this way the explanation of the
confinement of guarks and also of gluons became one of the central
problems in QCD.

In the lattice gauge theory the condition for quark confinement
is given by the area law for the Wilson loop [l]. In the present paper
we shall look for the corresponding condition within the framework of
the conventional continuum field theory. As we shall see later this
condition is given by the existence of certain bound states between

a pair of Faddeev-Popov ghosts.

1 a
CEB = - = . + A .3 B + 2B-.B
7F v Flv w o 2
+ i3 ¢c.D c - D + , 1

i3, c-b ¢ w(Yu " m) ¥ (1)

where covariant derivatives Du are defined by

Dc¢c=293c¢c+gA xc,
u 9y
D = (9 -igT-A . (2)
uw ( u"ig u)w
Fuv = BuAv - a\)Au + gAu x A.

a b,c
We have made use of the abbreviations,S*T = s?7? and (SxT)° = fabcs T .
Next we introduce the Becchi-Rouet-Stora (BRS) transformtion of

Heisenberg-fields ([2].
A =D c,
H H

B = 0,

§c = - %g c % c, (3)
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s§c = iB,

8y = ig(c-T)y.

]

This supersymmetric transformation can be expressed in terms of its

generator QB as
80 = ilQp, Ol _, (4)
+

where we choose the -(+) sign when O involves an even (odd) number of
the hermitian anticommuting ghost fields c¢ and c. Kugo and Ojima [3]

have introduced another charge Qc satisfying
1[0, e(0)] = c(x), 1[0, c(x)] = - c(x). (5)

It commutes with all other fields, and it defines the ghost number,
namely +1 for ¢ and -1 for c. These two charges satisfy the relations

110, 951 = Qs 02 = 0. (6)

The second relation implies that the BRS transformation is nilpotent,
namely, 62 = 0.

Then we shall introduce asymptotic fields and their BRS transfor-
mation. Because of infrared singularities in QCD the existence of
asymptotic fields might be doubtful, nevertheless we shall simply
assume it in the present paper. Then the BRS transformation for the
asymptotic fields is linear. When Sa(x) = b(x) ¥ 0 so that 62a(x) = 0,
{a(x), b(x)} is called a BRS doublet. When 8a({x) = 0 but its parent
f(x), satisfying 8f(x) = a(x), does not exist, a(x) is called a BRS
singlet. Doublets and singlets are the only irreducible representations
of the BRS transformation.

By extending the assumed existence of asymptotic fields we shall
further postulate the asymptotic completeness. The state vector space
spanned by asymptotic fields in QCD will be denoted by WZT. Kugo and
Ojima [3] introduced a physical subspace rtjbhys by

rszhys = {] >|] > erZJ', o5l > = 0} (7)

Then, by applying only the singlet asymptotic fields to the vacuum
state a subspace of Z ¥, denoted by'?t}s, is generated. Obviously we

have
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r(j‘) Zj phyS—D'US. (8)

The S matrix exists as a consequence of the asymptotic completeness and
commutes with QB. When |u> and |B> belong to IZ? , the unitarity

condition of the S matrix can be expressed as
+ +
<Bla> = <B|s"s|a> = <8 P(r27é)slu>, (9)

and similarly for SST This relation is a consequence of the Kugo-0Ojima
theorem [3]. p(fiﬁg) stands for the projection operator to the subspace
rz7é, so that no doublets show up in the intermediate states of the
unitarity condition. In this sense, doublets in QCD are analogous to
longitudinal and scalar photons in QED and are confined in the unphysical
state vector space. Interpreting that singlets represent hadrons, the
problem of color confinement reduces to that of demonstrating that both
qguarks and gluons are BRS doublets.

We have already assumed that the vacuum state |0> belongs to rZ}%
and hence to rZﬁ%hys. Thus we have QB|0> = 0 and consequently the BRS
identity

<0[8T(-.+)]0> = 0. (10)
In what follows we shall abbreviate <0[T(---)|0> as <...>. Then, by
making use of the BRS identities we find the following Ward-Takahashi

(W-T) identities [4]:

3,<(D, 0% (), Su(y), B(2)> + 3,<(D, )% (x), Vi), sV(z)>

ig 1% (x-y) - 8% (x-2)) s (y-2), (11)

2550, 23, 622 (y), AS(2)> + 3, <(D,) % (%), AD(y), 88 (2)>

igh (6% (x-y) - 6% (x-2))Dp | (v-2), (12)

Fuv

a o
where M be = lfbac’ Fuv

gluon fields, respectively. We shall write

and SF and D denote propagators of the quark and

It

<0, %(x), SY(y), F(z)> gjd4z'G§<yz'=x)sF<z'—z>, (13)

<007, vip), > = gfalytsply-y B vz (14)
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The Fourier-transform of Eq. (11l) may be expressed as

(p-q)x-Gi(p, q)Sp(q) + SF(p)(p-q)x-éi(p, q)

-1
= iT%(Sp(P)-Sp(q) . (15)
In this equation we may replace Gi and éi by their spin zero projection
defined by
(p-9), (p-q)
0
Gi(p, o0 - A E Gﬁ(p, Q). (16)

(p-q)
In order to simplify our argument we shall choose the Landau gauge
(o = 0) in what follows. In this gauge we have BADAE = 0, and possible
poles in GX due to massless vector particles will disappear in this
projection. A pole due to the massless scalar particle is still present

as can clearly be seen from the W-T identity

<0, (), Py)> = 6 3,0 (x-y), (17)

where DF denotes the free massless propagator. This equation shows that

DAE generates a massless scalar particle, and we introduce asymptotic

fields corresponding to this massless scalar particle as

D.c -+ ka’ c > T. (18)

c by D.¢ - 3,T and write F and F for G and G in

A A A
Egs. (13) and (14). The functions an(p, q)(o) q)(O)

defined are free of the poles at (p-g)” = 0 except for the projection

We then replace D

and an(p, so

operator in Eg. (16).

According to Nakanishi's theorem [5] the asymptotic field T
carrying the ghost number (-1) cannot be a BRS singlet, but it must
be a member of a BRS doublet. Confinement is realized when T is
the second generation of the doublet expressible as

sd(x) = T(x). (19)
Then the BRS identity leads to

<0, T(x), 8vly), ¥(2)> + <0,T(x), ¥(y), 8¥(z)> =0, (20)

and by subtracting Eqg. (20) from Eg. (11) we find
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q) (0) q) (0)

(P—q))\'FX a (p, SF(q) + SF(p) (p—q))\-fka(p,

= iTa(SF(p) - sp(a)) . (21)

We then put p - g = €P with P2 # 0, and apply the limiting procedure
lim€+08/agto Eg. (21). Since the individual terms on the %£. h. s.
of Eq. (21) are of the order of € because of the absence of poles at
(p - q)2 = 0, we obtain

)(0) )(0)

a = a
PX'FX (p, p: P SF(p) + SF(p)PX'FX (p, p: P

_oaqa 9

= 1T P)\ ESF(p). (22)

FX and EX gain a possible dependence on the direction of P through

the factor P)\Pu/P2 originated from the projection operator in Eq. (16).
Eq. (22) shows that FX and/or F

ipy + m = 0. For the symmetry reason both must have this pole implying

) Must share a pole with SF(p) at

that both 8§y and §y generate a pole at the quark mass.

When T is the first generation of the doublet contrary to Eq. (19),
however, the BRS identity (20) does not hold. Then we have to go back
to Eqg. (15) because Eq. (21) does not follow. Since the functions G)\a
and éka are not free of the pole at (p—q)2 = 0, the individual terms
on the £. h. s. of Eq. (15) are generally of the order of 1 and only
the sum of the two terms is of the order of e. Then application of
the limiting procedure mentioned above leads to én equation in which
derivatives of SF appear not only on the r. h. s. but also on the
£. h. s. in a sharp contrast to Eq. (22) in which the SF on the £. h. s.
is not differentiated. 1In such a case, however, we cannot conclude
that G
falls into this category. . )

Thus, when Eq. (19) holds, {pth, Gwln} represents a BRS doublet
and quarks are confined. A similar argument starting from Egq. (12)

Y and ék must have a pole at the quark mass. Perturbation theory

shows that gluons are also confined under the same condition.
We shall reexpress the condition (19) in a more convenient form
by using the BRS identity.

o
1

<T(x), T(y)>

<63(x), T(y)>

il

- <d(x), 8T(y)>. (23)
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This implies the existence of 6T. 8Since T' is the asymptotic field of

¢ and 6c v ¢ x ¢, there must exist the asymptotic field of ¢ x c
carrying the same set of guantum numbers as that of ¢ but for the ghost
number. Conversely, when 8T exists, there must be an asymptotic field
d for which <a, 8I'> # 0. Then we can replace DXE in Egs. (13) and (14)
and F, .

A A
After that we can repeat the same argument leading to the quark con-

by DXC - Bxéa to introduce the poleless vertex functions F

finement.

Thus the existence of the asymptotic field for ¢ x ¢ is a suffi-
cient condition for color confinement. Quarks and gluons are confined
when they form bound states with the ghost ¢ as is clear from the
explicit expressions for §¢ and SAH in Eq. (3). When the ghost c itself
forms a bound state with another ghost, the ability of forming a bound
state with the ghost is communicated to other colored particles through
the BRS identities.

The Bethe-Salpeter equation for the bound states between a pair of
Faddeev-Popov ghosts can be solved exactly in the ladder approximation,
but the normalization integral is not convergent. It can be shown,
however, that introduction of a parameter of the dimension of mass
is necessary for the convergence of the normalization integral.

A promising way of improving the approximation to make the normalization
integral convergent is to exploit the renormalization group method in

which a mass parameter enters as a renormalization point.

*) A preliminary version of the present paper will be published in
Physics Letters.
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COVARIANT OPERATOR FORMALISM OF GAUGE THEORIES
AND ITS EXTENSION TO FINITE TEMPERATURE

Izumi OJIMA
Research Institute for Mathematical Sciences, Kyoto University
Kyoto 606, Japan

On the basis of "thermo field dynamics" allowing the application of the Feynman dia-
gram method to real-time Green's functions at T#0°K, a field-theoretical formulation of
finite-temperature gauge theory is presented. It is an extension of the covariant
operator formalism of gauge theory based upon the BRS invariance: The subsidiary con-
dition specifying physical states, the notion of observables, and the structure of

the physical subspace at finite temperatures are clarified together with the key for-
mula characterizing the temperature-dependent "vacuum".

1. Introducticn

Although thermodynamic aspects of gauge theory are currently discussed in the so-called
imaginary-time formulation of QFT at finite temperatures, which is believed to be the
only choice pertaining to the Feynman diagram method, this belief is not correct as
shown by Takahashi and Umezawa [1]. They proposed a real-time formulation named
"thermo field dynamics" in which statistical averages are expressed in the form of
temperature-dependent "vacuum" expectation values and in which the Feynman diagram
method can be applied to real-time causal Green's functions at a finite temperature
(i.e. statistical averages of time-ordered products). In contrast to the imaginary-
time formulation having no time variable, we have here both a temperature and a time
variable without being bothered by the cumbersome discrete energy sums over the
Matsubara frequencies and the full information about spectral functions is attained
without analytic continuation in energy variables.

Thus, this is a formalism to be regarded as a natural extension of QFT (at T=0°K)
to the case of T#0°K. According to [2], we briefly describe here a field-theoretical
formulation of gauge theory at T#0°K on the basis of the covariant operator formalism
of gauge theory [3] and this "thermo field dynamics".

2. Thermo field dynamics

The point of thermo field dynamics [1] is to introduce fictitious "tilde" operators

A corresponding to each of the operators A describing the system and to perform a

temperature-dependent Bogoliubov transformation mixing A’s with AT’S, which realizes

the state space at a finite temperature and the temperature-dependent "vacuum" [O(B)>

giving statistical averages. :
This is seen in the simplest example of a harmonic oscillator defined by

H= eaTa, [a,aT] = 1. (2.1)

* T[T, +

By introducing tilde operators &, & [=(&) =(a )] as duplicates of a,a commuting with
-r-

a"a"

T4

=1, [a,8] = [aT,a] = ... = 0, (2.2)

(4,8

the temperature-dependent "vacuum" |0(B)> is determined by the Bogoliubov transforma—
tion as follows:

11

a(B) = a coshS(B)—éTSinhe(B), a(g) = & coshe(B)—aTSinhe(B); (2.3)
cosng(g) = 1/(1-P9)Y/2 simo(p) = eP/2/(1-e7BE) /2, (o)
a(g)lo(g)> = &(g)|o(8)> = 0. (2.5)

It can easily be checked by the aid of (2.3)n(2.5) that statistical averages over
the Gibbs ensemble are given by the "vacuum" expectation values:
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<A> = Tr{fexp(-BH))/Tr{exp(-BH) = <0(B){A|0(B)>. (2.6)
The origin of the Bogoliubov transformation (2.3)v(2.5) is traced to the following
relations:

lo(g)> = Zn>oe_8n€/2|n>@|n>/(l—e_BE)_l/2
= expl6(p)(a'a-5a)1{0> = exp(-iG)]0>, (2.7)
a(B) = exp(-iG)a exp(iG), &(B) = exp(-iG)a exp(iG). (2.8)

Although the unitary operator exp(-iG) has its proper meaning only for the system
with finite degrees of freedom, these formulae will be useful heuristically also in
the later discussion of gauge theory.

Now, the essence of (2.3)}(2.5) can be summarized in a formula

explp (B-7)/21M0(8)> = M' |0(g)>, (2.9)

which reproduces (2.5) in the case of M=a,aT'with the help of (2.1)v(2.4) and ﬁ=ea+a.
By extending the definition of M antilinearly, (2.9) holds for any polynomial M of a
and al. Taking account of the commutativity of tilde and non-tilde operators, we can
derive from (2.9) the KMS condition [4] characterizing Gibbs states ,
<AB(t)> = <B{t-ip)A>. (2.10)

The basis for (2.9) can be found [2] in connection with the algebraic formulation
of statistical mechanics[5] due to Haag, Hugenholtz and Winnink [6] and Tomita-Takesaki
theory [5]. The key concepts there are the modular conjugation operator J and the
modular operator exp(-gH) defined by

Jexp(-gE/2)M|0(g)> = M |0(g)> for Medr, (2.11)
where Wt is the algebra of operators desribing the system. J is an antiunitary operator
satisfying 5

J° =1, Jjo(g)> = |o(g)>, : (2.12)

_ J®I = ' (= commutant of W ), (2.13)
and H satisfies

Hl0(B)> = 0, (2.14)

exp(itH)Mexp(-itH) = W, (2.15)

JHI = -H. (2.16)
Thus, by identifying M with JMJ and H with H—ﬁ,

M= 3, (2.17)

H = BE-H = 5-J4J, (2.18)

(2.9) can be derived from (2.11) with the help of (2.16) and (2.12).

(2.17) and (2.13) explain the commutativity of tilde operators with nontilde ones.
In the case of fermions, however, § should anticommute with ¥ in order to keep the
Bogoliubov transformation meaningful, whence (2.17) for fermions is modified by the
Klein transformation [2]:

¥ = iJyJexp(in(F-JFJ)), (2.19)

Here F is the fermion number operator. In contrast to (2.9) which requires modifica-
tion to cover the cases with fermions, (2.11) remains unchanged, and hence, it should
be taken. as the key formula characterizing the temperature-dependent "vacuum" |0(g)>
at E?l/kBB independently of a specific model (except for gauge theory discussed later
in §i4).

Now, corresponding to the "total" Hamiltonian (2.18) which is consistent with (2.16),
the "total" Lagrangian & of the "total" system consisting of tilide and non-tilde
objects is given by

L=X-F=XL-JEL]. (2.20)
Since the Gell-Mann-Low relation_caq‘bg_yerified relative to the splitting of & into
the free and interaction parts, & = + ,» and since the Wick theorem holds (at the

operator level in contrast to the Bloch-DeDominicis-Wick theorem in the imaginary
time formulation), we can develop the Feynman diagram technique also here on the basis
of the propagators such as
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o(8) T[Mx) ](f(y),%(ym 08 )>
ot
b e 1/(p 24 0) 0
s —m 1
- in P . e—lp(x—y)UB(|5l,B)( U]’;( 13],8); (2.21)
(2m) 0 -1/ (p2-m°=10)

N _ rcosh6(B) -sinh6(g)
Up([P158) = [ 1me(s) cosne(e)
where 8(B) is given by (2.4) with e replaced by (p +m

(2.22)
2)1/2

3. Covariant operator formalism of gauge theory [3]

To apply thermo field dynamics discussed in §2 to the case of gauge fields, we reca-
pitulate the points relevant here of the covariant operator formalism of gauge theory
based upon the BRS invariance [3]. The Lagrangian density

a,Uv a, U,a a ..Ha a
= + - + 2- .1
b4 ML ter( P50, P )-A3'B «B*B%/2-13"c (D c) (3.1)
is invariant under the BRS transformation whose generator is given by

QB = Jd3x[Ba(DOc)a—Baca+(i/2)gza(CXC)a]; (3.2)
[1a5,4,] = Dje, [i05,B] = 0, [1Q;,9] = igc’Tp,
{iQB,c} = -(g/2)exc, {iQB,E} = iB. (3.3)

Although the state space ) necessarily contains unphysical particles with negative norms,
they have been shown [3] to decouple from all the physical processes by quite a general
norm-cancellation mechanism called quartet mechanism. This is based upon the subsidi-
ary condition spec1fy1ng the physical subspace Z}h SE{lphys>} given by
% lphys> = o, P (3.4)
and the relation for the projection operator P onto the subspace f) of states con-
taining physical particles alone, phys

P+{Qy,R} = 1. (3.5)
The basic propertles of QB leading to (3.5) are the following:

QB {Qg, QB}/2 =0, (3.6)
lQC,QB] = QB, (3-7)

where QC is the Faddeev-Popov (FP) charge
[ch,c] =, [ch,c] = —c, otherwise [iQC,Q] = 0. (3.8)

Since the positive semi-definite space TJ contains zero-norms, the usual Hilbert

space with positive definite metric is obtalned by taking the quotient of t/ with
respect to its zero~norm subspace ZJ = QpV,

phys _’Vphys/v = {|q>> : |¢>+V |¢>€vph s

in which every physical process is described. The trace operation in the statistical
average should also be taken in this Hilbert space H

s (3.9)

. phys’ .

> = el Ry me (o) - Tt o FR 5>/ T<E o B) 5, (3.10)
where H and A are operators in HPhyS obtained as quotient mappings from the Hamiltonian
H and an observable A in T/ satisfying the defining relation for observables [7,3],

[Q,B,A]'Vphys = 0. (3.11)
For the observable A satisfying a stronger condition

[ag,A] = 0, (3.12)
(3.10) can be written [8] in terms of the trace in the total space{ as

<pA> = Tr(Aexp(—BHf“Qc))/Z(B); 7(B) = Tr(exp(—BH+ﬂQc)), (3.13)

by using (3.5) and the fact that Q, vanishes inﬂfphys=P54 (3.13) applied (in disre-

gard of (3.12)) to FP ghosts leads to the periodic boundary condition of their tempera-
ture Green's functions [9,8].
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4. Gauge theory at finite temperature [2]
Following the discussion in §2, we first try to express the r.h.s. of (3.13) in a form
of a "vacuum" expectation value

Tr(Aexp(-gH+nQ ) )/Z(8) = <o(g)[A[0(g)>, (h.1)

irrespective of the condition (3.12) to guarantee the equality in (3.13). In this
case, the heuristic formula for ]O )> corresponding to (2.7) is

|o(g)> = 7§ expl BE /2- 1Nﬂ72 |k>®|2>/Z )l/2 (b.2)
with k,%

Hix = Ek|k>, iQC|k> = Nk|k>; (4.3)

Mg = <k}2>«6(Nk,—N2); <k|i> = |k = Nk = nil' (L.h)

Note that the trace in ¥ with indefinite metric should be understood as

TrO= z (n_l)kl<2|01k>. (4.5)
k,%

To generalize the relation (2.11) characterizing |0(B)> to the case of gauge theory
with indefinite metric and to determine the propagators, we work out explicitly the
Bogoliubov transformation leading to (4.1) and (4.2) for the free Abelian gauge theory
in Feymman gauge (o=1): +

|o(g)> = expl|d o (|38 -a (p )a“ (pl+a (pla ( )

l+ ! e u~P
—i(c1(p)c (p)+e(p)elp)+c (p)&' (p)+elp) p)}llo>s  (L.6)
2 (p,8) = a (p)cosno( IPI,B)—a:(p)s1nhe |p\ 8),
e(p,8) = c(p)cosho( 3] .8)-cT (p)sinho( 3] .8
©(p,8) = c(p)eosho(|B|,8)+c (p)sinne(|B] .8 (5.7)
a (p.g)|0(g)> = c(p,g) |0(e)>=c~p,e lo(g)> = o, (4.8)
with similar equations to (4.7), (L.8) for & , &, c. According to (2.17) for bosons
and (2.19) for fermions, tilde operators are defiped by
au = Ja J, ¢ = iJeJexp(- ﬂQc) T = 1JcJexp(—ﬂQ ), (4.9)
with the antiunitary J satlsfying (2.12), (2.13) and the "total" FP charge
Q. =Q-Jq J. (4.10)
c e e
The relations (L4.8) as well as the ones with tildes are unified into
Jexp[-(8H-1Q_)/2]ofo(g)> = ot|o(g)>, (k.11)

which is a generalization of (2.11)., The propagators to be used in the Feymman diagrams
are given in momentum space as
% . - 2, . T2
F.T.<O(3)|T[Au] (AV,A\))|O(B)> = -iUL(|B] ,B)gw[l/(p +i0) 0 ]UB(|P| ,B)
-i0)

A 0 —l/($2

F.T.<o(g)|T(cj(3,-§)1o(s)>=-UB( |71 .8) [l/(p2+10) 0 ]UB(
(4
0 -1/(p°-i0)

where U_(|B],8) is given by (2.22) with m=0.

In (4712), we have allowed the appearance of unphysical negative norms by applying
(4.1) to non-observable guantities A ,c and T for the sake of developing the Feynman
diagram method. Therefore, we have to treat again at finite temperature an 1ndef1n1te—
metric space V(@) obtained by applying A Au, c, &, etc., to the "vacuum" |O
This is taken care of by the "total" BRS charge defined by

i3] .8), (4.12)

QB = Qy QB = Q —1JQBJexp —nQ ) (4,13)
which satisfies Qﬁ|0(g)>=0. Since @; defined by (4.10) and Qﬁ satisfy
T =03 [40,,5,) = Ty (h.1k)

similarly to (3.6) and (3.7), the quartet mechanism discussed in §3 works again here
on the basis of the subsidiary condition for physical states
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Qqlphys> = 03 VA8) = {e>e PB);G,le> = 03, (4.15)

phys

ensuring the positive semi-definiteness of PAB)
defined similarly to (3.11) by the condition

[QB’O]v(S)phys = 0, (L4.16)
which allows us to transfer C?lito the phzs1ial_§1lb§ff space H(B)phyS:U(B)phys/oKB)O
by taking its quotient mapping . Since H, H‘ﬂQc/p, Q. and J also satisfy (4.16),

phys Likewise, an observable ¢ is

the relation (L4.11) for the observable ¢ satisfying (4.16) can be transferred into

H(e)Phys,
3§xp(—[3ﬁ—ﬂac]/2)&|0(8)> = Jexp(=gH/2)00(8)> = @ [0(8)>,  (4.17)

where we have used Q_=0 valid in H(B)phys' The relation (2.11) for the standard cases

with positive metric is thus recovered in H(B)phys'

At the end, we add a few comments. Firstly, as for the renormalization of the Feynman
diagrams in this formalism, it has been proved [10] that all the UV divergences at
T#0°K are removed by the counterterms set up at T=0°K. Secondly, the Lorentz (boost)
invariance of relativistic QFT is shown to be broken spontaneously at T#0°K without
any Goldstone bosons but with continuous zero-energy spectrum due to particle pairs
having opposite energy-momenta [11]. Thirdly, in view of the general condition imposed
on the well-defined charges, supersymmetry turns out to be unable to be implemented at
T#0°K [11]. Finally, the application of this formalism to the curved space-time [12]
and to gquantum gravity will be of interest.
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PATH INTEGRATION AT THE CROSSROAD OF STOCHASTIC AND DIFFERENTIAL CALCULUS

Cécile DeWitt-Morette, Department of Astronomy and Center for Relativity,
The University of Texas, Austin, Texas 78712
Ever since Newton differential calculus has been a very successful language for
the description of physical systems; stochastic calculus on the other hand has only
recently become an instrument of thought but has already been used in challenging
problems. For instance the traditional quantization scheme can be summarized in the

following chart.

The description of a physical system starts with | its dynamics being given by
its configuration space a lagrangian
or its phase space or an hamiltonian

The classical lagrangian or the classical hamiltonian is then used to
quantize the system

Lagrangian — Hamiltonian --— Hamiltonian operator
Ye-—  Path «=—=!
integration

where the dotted arrows indicate that the corresponding construction is
not unique.

The stochastic scheme on the other hand proceeds as follows.

The description of a physical system starts with|{ its dynamics being given by

a fibre bundle on its configuration space a stochastic differential
or on its phase space equation

Then there is a unique prescription for the following constructions.

stoch. diff. eqn. + Path integral + Hamiltonian operator
‘.

Its WKB approximation
(Lagrangian)

Here classical physics is obtained as the WKB limit of quantum physics.

Before presenting some applications of the stochastic scheme, I recall briefly
the key concepts of stochastic calculus. Differential calculus is based on the as-
sumption that dx(t) is of order dt; but if dx(t) is for instance of order (dt)l/z, as
in brownian motion, then 1lim dx(t)/dt is undefined and, at best, one can only speak
of the probability that a particle which is at x, at time t  will be at x  + dx(t) at
time t + dt. Thus stochastic calculus begins with a probability space (Q,%,w) where
Q 1s a set of points w€Q, the events are subsets of Q which make a o algebra ¥, and

random variables are measurable functions
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ot (Q,¥) > (R™, Borel o-algebra) henceforth abbreviated to ¢: @ > R" .

Random or stochastic processes are sets of random variables indexed, for instance by

time T, {x(t)} where

x: TxQ>RBY , x(t):Q-»m" .

w is a measure on Q such that w(R) = l. For quantum physics the concept of measure
has to be generalized to the concept of prodistribution - technically a projective

family of tempered distributions on a projective system of finite dimensional spaces

[1]; a prodistribution is defined by its Fourier transforms 3w. The condition
w(R) = 1 becomes Fw(0) = 1. Here I shall simply refer to measures, promeasures, pro-
distributions as "integrators".

A stochastic differential equation defines a stochastic process x in terms of a

known process z, e.g. let z: T x @ > R be brownian with z(t,) = 0 and let

t
x(t,w) = xo(w) + f X(x(t,w))dz(t,w) where X is given.

to

It is usually abbreviated to dx = X dz , x(to) =X

Stochastic integrals [ X(x(t))dz(t) when dz(t) is not of order dt have been
given meaning by Itd and by Stratonovich.

Very few stochastic differential equations can be solved explicitly, but expec-

tation values of functions of stochastic processes

Eo(x(t)) == é dw(w)e (x(t,w)) = <4 (x(t))>

are functions of t and the initial point x_, = X(to) whose properties can be deter-

o
mined from the stochastic differential equation satisfied by x(t) without solving it.
The prototype of such a situation is the Feynman—-Kac formula: given the stochas-

tic differential equation

]
L

x(e))dzi(r) + A% (x(t))de x(ty)

{dxa(t)
V(x(t))v(t)dt v(ty)

dv(t)

Then Y(t,xo): = é dw(w) v(t,w)¢(x(t,w)) is a solution of the diffusion equation
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2
9¥.= by Xg(x )X@(x ) _jlji__+ A%(x) jﬁi_+ V(x )Y :=#HY
>t i 0T o” 07 T o
XO [o] XO
¥(t,x) = olx)) . (2)

To obtain a path integral solution of the Schrddinger equation for H = ih¥ with & =
%-E—A + A% 5%—-+ 5% V one must modify the above scheme and work with complex gaussian
(technically %rodistributions) over the space of paths vanishing at t rather than toe
Note that the Schrédinger equation obtained from the stochastic process (1) where V
is replaced by V/ih, is not the equation of a particle in an electromagnetic poten-
tial; indeed there should be an A2 term. One can, of course, modify the stochastic
equation (1) to bring out the desired terms but then one 1is faced with having to
choose the order of the factors in the hamiltonian operator. On the other hand 1if
one sets up the problem on the appropriate fibre bundle one has an obvious choice for
the stochastic differential equation. In the case of a particle in an electromag-
netic field the appropriate fibre bundle is the U(l) bundle over the configuration
space. Given a fibre bundle the "obvious" choice of stochastic differential equation
is described in the two following examples where (i) the fibre bundle is a. principal
fibre bundle (ii) the fibre bundle is an associated vector bundle [3], [7].

1) A particle of mass m in a riemannian space M, dimension n, metric g, with the
riemannian connection.

Let O(M) be the orthonormal frame bundle, p€ 0(M) is a palr (x,u) where x€ M and u is

a frame at x

. eh
u: R > TXM

Given a path x: T-+M, x(to) =X, and a frame uy at x, the connection defines a path

u: T > O0(M), u(to) =u, and a map
X: 0(M) x R" > T o(M)
such that

39E) ~ ¥(u(e)) u(e))t SO
dt dt

Recall that dx(t)/dte Ty ,)M and (u(t)ldx(t)/dt € R® . If the path x 1s not dif-
ferentiable, one can define a stochastic frame by the corresponding stochastic dif-

ferential equation (in the Stratonovich sense because It6 calculus is not tensorial)



169

du(t) = pX(u(t))dz(c) ,

where y = (ﬁ/m)l/2

that pz has the dimension of length. A stochastic path on M is the projection of a

and z is brownian, the brownian path z being multipled by u, so

path on the bundle: x(t) = n{(p(t)). Given an arbitrary (good) function ¢: M+ R,
then é dw(w)p(n(p(t,w)) is the path integral representation of the solution W(t,xo)

of the diffusion equation

W(to,xo) = o(x,)

where A is the Laplace-Beltrami operator on M defined by the metric g on M. It is an
easy matter to write the stochastic differential equation which gives a diffusion
equation with a vector and a scalar potential. The corresponding path integral has
been computed as an expansion in powers of yu for the terms of order p-z, p—l, po in
[1] and more recently for the terms of order pl by a recursion method [2] which in
principle can give higher order terms in p.

11) A particle in a gauge field in flat space.

Let r: ¢(x(t)) be the parallel transport from t to t_ of ¢(x(t)) along the stochas-
tic pagh x(t) = pz(t) for p = (ﬁ(m))l/2 and z brownian. Then é dW(w)T:o¢(X(t,w)) is

the path integral solution ¥(t,x,) of the diffusion equation

v 1,
OF 2 u2av
YA

‘Y(toyxo) = ¢(Xo)

where A is the laplacian constructed from the covariant derivatives defined by the
gauge connection.

Both examples can be summarized by saying that a stochastic connection yields a
diffusion equation with covariant derivatives. Starting from a stochastic process on
a fibre bundle has the following advantages:
i. It is a unifying scheme which applies to a wide class of apparently different
problems [3].
ii., It gives simple answers to such problems as parallel transport along a brownian
path, short time propagator on riemannian manifolds, canonical relationship between
lagrangian function and hamiltonian operator.
iii. It is cast in a framework which guarantees gauge invariance.

The Feynmn-Kac formula and its generalization to stochastic processes on fibre

bundles is but a small example of the bartering which goes on at the crossroad of
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stochastic and differential calculus [4]. Stochastic calculus is also used in quan-—
tum field theory [51, [6].
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Manifestly Covariant Canonical Formalism
of Quantum Gravity

—— A Brief Survey —

Noboru Nakanishi

Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606, Japan

General relativity and quantum field theory are two brilliantly successful fun-
damental theories of physics. It is, therefore, of very fundamental importance to
unify both theories in a consistent and beautiful manner, because if it were impos-—
sible to do so then either general relativity or quantum field theory might have to
be abandoned in order to achieve the ultimate unified theory. The purpose of this
talk is to claim that a quantum field-theoretical formalism of gravity has been for-
mulated in quite a satisfactory way.

Unfortunately, however, there seems to be no consensus about what theory of quan-
tum gravity is to be called satisfactory. Relativists usually expect that quantum
gravity should inherit the geometrical concept of general relativity. On the con-
trary, according to most particle physicists, quantum gravity is nothing more than
a quantum field theory of massless spin-two particles, and though the Einstein gravity
is unitary and Lorentz invariant, it is not satisfactory because it is not renormal-
izable. Their primary concern in quantum gravity is thus not the connection between
the spacetime structure and gravity at the quantum level but how to remove the ultra-
violet divergence in perturbation theory.

I completely disagree to such a standpoint. It is totally nonsense to discuss
the divergence problem of quantum gravity in perturbation theory, because Feynman
integrals become meaningless when the contributions from the energies greater than
the Planck mass are significant. In other words, since the gravitational constant K
is a fundamental constant at the same level as the light velocity ¢ and the Planck
constant T, the perturbation expansion in quantum gravity is mathematically inade-
quate just as the expansioninpowers of 1/c or T 1is. Accordingly, quantum gravity

must be formulated in a non-perturbative way. Of course, it is a very important and

extremely difficult problem to invent a divergence-free non-perturbative approxima-
tion method, but I emphasize that it is a problem at a stage different from construct-
ing a satisfactory formalism itself. I believe that the invention of an appropriate
approximation method is not a prerequisite for the judgement that the formalism is
satisfactory.

I make some comments on the path-integral formalism because one might assert
that it already provides a satisfactory formalism for quantum gravity. The path-
integral formalism is well-formulated for scalar field theories and it yields correct

results in perturbation theory. I must emphasize, however, that in gauge theories
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and in quantum gravity, the non-perturbative approach based on the path-integral
formalism has no justification for its validity, because the proof of unitarity has
been made only in the perturbative way. Since the non-perturbative functional meas~
ure of a path-integral is quite ambiguous, its definition should be made so as to
guarantee unitarity, but there is no idea for finding such a definition. I believe
that the path-integral formalism may be at best a convenient calculational technique,
but it cannot be worth being called a fundamental formalism. Indeed, given an oper-
ator formalism, it may be possible to derive the corresponding path-integral, but
the converse is generally impossible. This is because the path-integral formalism
does not contain complete information; for example, it has no information concerning
the hermiticity assignment for field operators in the indefinite-metric case.

In my opinion, a satisfactory operator formalism should be based on the follow-
ing four principles:

1. Lagrangian and canonical formalism.

2. Manifest covariance.

3., Indefinite-metric Hilbert space with subsidiary conditions.

4. Asymptotic completeness.

I believe that mathematical rigor should not be regarded as a basic principle. The
positivity of Hilbert-space metric is mathematically very convenient, but it is rather
a source of various pathological features of quantum field theory. As is well known,
it is inevitable to use indefinite metric in manifestly covariant gauge theories.
Though a consistent positive-metric formalism of quantum electrodynamics is possible
in the Coulomb gauge, I conjecture that no consistent non-perturbative formalism is
possible in the positive-metric Hilbert space for non—abelian gauge theories nor for
quantum gravity.

The celebrated operator formalism of a gauge theory is the Gupta-Bleuler formal-
ism1 for quantum electrodynamics. It is a satisfactory formalism from my point of
view. But I note that it is more reasonable to introduce an auxiliary scalar field
B(x) 1into the fundamental Lagrangian. I believe it natural to have a gauge-fixing
condition as an independent field equation. Then B(x) should be regarded as one
of fundamental fields. I wish to call such a formalism, in general, "B~field formal-
ism." The Landau gauge can be properly formulated only in the B-field formalism.

It took longer than a quarter of a century to achieve the correct extension of
the Gupta-Bleuler formalism to non-abelian gauge theories. This too much long delay
has, unfortunately, brought people's blind confidence in the path-integral formalism.
‘The manifestly covariant canonical formalism of non-abelian gauge theories was formu-

2,3

lated quite successfully by Kugo and Ojima. The basic ingradients of the Kugo-
Ojima formalism are as follows:

1. B-field formalism.

2. Correct hermiticity assignment of the Faddeev-Popov (FP) ghosts.

3. Becchi-Rouet-Stora (BRS) invariance.
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Then it is crucial to note that there exists the BRS charge QB and that it is nil-

potent (QB2=0) and hermitian (Q; =Q.). The physical states are defined by a subsid-

B
iary condition

! > =
Qpiphys 0.

Then one can quite generally prove the unitarity of the physical S-matrix under the

postulate of asymptotic completeness. This fact is extremely important because it

is the only non-perturbative proof of unitarity in non-abelian gauge theories.

Now, I proceed to the manifestly covariant canonical formalism of quantum grav-.

y.6-20 As in the Kugo—0Ojima formalism, it is natural to introduce the B-field

it
bp(x) and a pair of the hermitian FP ghosts cc(x) and E&(x) and set up the
fundamental Lagrangian in such a way that the action integral is BRS invariant.

But it must be remarked that there is an important difference from the case of the
Yang-Mills theory: The invariance under the general coordinate transformation in
general relativity is a spacetime symmetry. Hence the corresponding BRS invariance
is also a spacetime symmetry. I defined the "intrinsic" BRS transformation §, as

a fermionic derivation satisfying §?=0, by6

TR k U, M seshesen Q TR
sl Ky =wk(Tae ot E T tet KL
1 L i=1 1 L j=1 7] 1 L
TR 3
for any classical tensor ¢ V. es ey and by (The signs of § and cp are changed
1 2

for convenience.)

G(XU) = Kcu, whence g(cu)

]
(=

8(c ) = 1bv, whence g(bv)

"
o

- cM
[8,5,) = =kd c*ed, .

Here g(xu) k" is owing to the basic rule of constructing the BRS transform,

namely, the rule that the infinitesimal transformation function is replaced by one of

FP ghosts. The vanishing of Q(cu) represents the abelian nature of the translation

which is the global version of the general coordinate transformation. The more con-

21-25

ventional BRS transformation, which I denote here by §,, is given by

5,9 = 8@ - ke’oy9

for any field ¢ bv,E;). The second term is the "orbital" part of the BRS trans-

formation.
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The gauge-fixing term JzGF is chosen so as to be a scalar density under the

general linear transformation. I believe that the requirement of general linear in-

variance for gauge fixing is quite natural, because the introduction of the Minkowski
metric an into the fundamental Lagrangian is too abrupt and destroys the spirit of
general relativity unnecessarily violently. The simplest, most natural expression
for is given

{GF g by

_ _ L.
IGF— K g Bubv,

where éuv z /g guv with g = det g It is noteworthy that general linear invari-

uv’
ance can be realized only in the framework of the B-field formalism.

The FP-ghost term J:FP is determined by the requirement that
-1 -1 uv, —
/~g ("tGF * Lgp) =80k g aucv);
then

My — P
J:FP = -ig aucp avc .

The total Lagrangian is given by
L= Lyt Log* Lyp * Ly
where ‘[E is the Einstein Lagrangian,

Ly = @ g R,

and 'ZM denotes the matter~field Lagrangian.

It is very important to note that 'CFP contains simple derivatives only but
no covariant derivative. Its form is quite similar to the FP-ghost term of quantum
electrodynamics. Though it is widely believed that quantum gravity is similar to the

Yang-Mills theory, I emphasize that quantum gravity is much more similar to quantum

electrodynamics. This feature is, of course, the consequence of the abelian nature
of the translation group. The reason why people could not be aware of this very
simple observation is that they did not make clear separation between the intrinsic
part and the orbital onme.

Since the operator formalism which follows from the above Lagrangian £ is of
outstanding beauty, I wish to claim that it is the "correct" formalism of quantum
gravity. One might say that since the choice of étGF+‘cFP is rather arbitrary,
the fundamental thing is the classical Lagrangian. But I disagree to this opinion.
Since quantum theory is to be more fundamental than the classical theory, the quantum

Lagrangian must be more fundamental than than the classical one. Hence I believe
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that the expression for J:GF-+'ZFP should be uniquely determined in the correct
theory. This standpoint is very crucial also in considering quantum field theory in
a background curved spacetime. Since it is usually constructed on the basis of clas~
sical general relativity,Duff26 has criticized it by pointing out that the starting
Lagrangian is quite ambiguous owing to the freedom of field redefinition. His dif-
ficulty is totally resolved if one starts with the full quantum-gravity theory having
the uniquely specified gauée fixing.

Now, the field equations which follow from £ are as follows:

Ruv - % guvR - Euv + % gqu = —KTuv .~ (quantum Einstein equation),

with

= cen T . &P
EIJ\) = apbv + 1K3ucp avc + (u < v),
~HV P
Bug =0 (de Donder condition),

SHV, Py
Bu(g avc ) 0,

~UV, —
3 (g7 0 ¢ 0.
(e o,e)
Taking covariant derivative of the quantum Einstein equation, I obtain a remarkably

. . 6
simple equation,
~HV
9 ab) =0,
u(g ), p)
The four equations other than the quantum Einstein equation can be put together into
~UV
3 3 X) =0
u(g 8 ) ,

where X = (xx/K,bp,co,E}). This remark will become very important later.

Canonical quantization can be carried out consistently without employing Dirac's
method of quantization27 (which has.serious difficulty in the quantum version of con-
straintszs)' The second derivatives of &y in J:E and the derivative of by, in
lLGF are eliminated by integrating by parts. Canonical fields are guv, cG, E},
and matter fields; bp is not regarded as a canonical field. Despite this difference
from the standard canonical formalism, one can prove the equivalence between field
equations and Heisenberg equations.7

It is quite remarkable that all equal-time (anti-)commutation relations between
any two fields and between any field and the first time-derivative of any field can

be calculated explicitly in closed form.6 For example, I have
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_ . ~00,-1,0 0 3,
[gw(X),bp(y)]0 = -ik(g ) (Gugpv + Gvgup)é -y,

. . ~00,-1 _ -
Lg,, (58, (D1 = -2ik(@™) “le 80 = 88,0 ~ &8up

+ (goo)—l(GOSO

6080 + S8y, + WIS - ),

vp

. o s 0 0
where a subscript O of a commutator indicates to set x =y .

From the BRS Noether current, I can calculate the expression for the gravita-—
tional BRS charge Qb. By using the quantum Einstein equation and dropping total
divergence, I find

_ .3, ~0x p P

Qb = Jd X g (bDBXC 9 bp c)

s

A

which is nilpotent (Qb2=0) and satisfies
ilq,, 91_ = 6(9) - k3. @
b TAo =8 A
for any field 9(x). The subsidiary condition is set up by

lephys> = 0.

Then the unitarity of the physical S-matrix can be proved without recourse to pertur-—
bation theory.

The presence of the orbital term in [Qb,? ]_ is a very important characteristic
of quantum gravity. As its consequence, any loca{ operator &¢(x) has a non-vanishing
(anti-)commutator with Q unless ®(x) itself is a BRS transform of another oper-—
ator. Hence, in contrast with the gauge-theory case, ®&(x)]0> is not a physical
state for any non-trivial local operator &(x). Accordingly, Lehmann's spectral func-
tion of any non-vanishing two point function can acquire the contribution from nega-
tive-norm intermediate states without contradicting unitarity. Thus Lehmann's theo-
rem29 breaks down in quantum gravity, that is, the exact.two-point function may have
a milder (perhaps oscillatory) high-energy asymptotic behavior than that of the cor-
responding free Feynman propagator.3 This fact supports the old expection that

quantum gravity may provide a natural ultraviolet cutoff, without employing any kind

of approximation.
The above remark also resolves the Goto-Imamura difficulty31 for the current-

current commutator

SUISNORMOINIE

Despite the fact that it must be zero if one relies upon the canonical anticommutation
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relations, one usually assumes the existence of the Schwinger term32 in order to

avoid the contradiction with the result of general framework. As is well known, how—
ever, the Schwinger term is the most pathological beast in quantum field theory. If
quantum gravity is taken into account, one cannot prove the non-vanishing of the above
commutator because of the presence of negative-norm intermediate states.30 Thus the
Goto-Imamura difficulty is resolved without introducing the Schwinger term.

It is straightforward to define the canonical energy-momentum tensor including
gravity. It is interesting to note that the symmetric energy-momentum tensor cannot
be defined so as to be a tensor density under the general linear transformation in
contrast with the canonical one. By using the quantum Einstein equation and drop-
ping total divergence, I find that the translation generator PU is given by a re-

markably simple expression

P = K_]'Jd:ix 5% b

Hu ATu
independently of the expression for J:M. 0f course, the well-defined energy-momentum

operator depends on XL but the above expression is sensible as a translation

M,
generator, because the volume integration should be carried out after commutator is
taken.

Likewise, the generator of the general linear transformation is shown to be

o ~1{.3 ~0A; M u c (T M el

= K - 8b. - - . .

M Jd x g Ix akbv GA v lK(CvBAC Bxcv c)1
It should be noted that ﬁuv cannot be a well-defined operator. Indeed, if it were
well-defined, one could exponentiate it, that is, one could consider finite general
linear transformations. Then the equal-time (anti-)commutation relations imply that
any two fields would (anti-)commute at all non—zero spacetime separations. Of course,

however, Muv is sensible as a generator. For example, I have

e TR u M
LM L] = Sp8y + Si8gy + X080,

It is very important to note that general linear invariance is necessarily spon-
taneously broken. Since translational invariance should not be spontaneously broken,

the vacuum expectation value of gOT(X) must be a constant. Then I can set

<0|gOT(x)]0> =N,

without loss of generality just as in the case of the Higgs model in which one can

assume without loss of generality that the vacuum expectation value of the complex

scalar field is a positive constant. From the above two formulae, I find
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10> = e¥n_ + 8¥n_ = o0.

. AU
<
. OI[M v*8ot o VT T OV

Thus Muv is spontaneously broken. But its antisymmetric part

—_ _ AU AU
M = - M
oB 1r‘om B “eu o

is not broken. It is nothing but the Lorentz generator in the absence of spinor

fields. The gravitational field is the Goldstone field of the broken ten components

of ﬁuv.3 Thus the physical graviton mass must vanish exactly.

Now, the most remarkable result of the manifestly covariant canonical formalism
L . . . . 14,15
of quantum gravity is the existence of a sixteen~dimensional supersymmetry. As

mentioned already, the (super)current
= ~UV
erx = 8 X

. A o — . . .
is conserved, where X = (x /K,bp,c ’CT)’ which is natural to be called the sixteen-
dimensional supercoordinate. Let X and Y be two sixteen—dimensional supercoordi-

nates. Then %JFU(X) = 0 implies that
mH(x,Y) =V e(x,y)é‘”(xavy - 8.XY)

is also conserved, where €(X,Y) = ~1 if both X and Y are FP ghosts and
€(X,Y) = +1 otherwise; v+1 = +1, V-1 = +i. From those conservation laws, I

obtain conserved (super)charges
PO = Jd3xp°(x),
M(X,Y) = jd3xm°<x,y).

Here X in P(X) and X and Y in M(X,Y) are not arguments but indices, each of
which takes 16 values.

From the definition of M(X,Y), it is evident that
M(Y,X) = - €(X,Y)MX,Y),

whence one sees that M(X,Y) has 128 independent components.  Since, of course,
P(X) has 16 independent components, the theory possesses 144 independent symmetry
generators altogether. The previously given generators PU’ ﬁuv and Qb are expres-
sible in terms of P(X) and M(X,Y).

By calculating the (anti-)commutators with field operators, I can determine the

symmetry transformation laws corresponding to P(X) and M(X,Y), and verify the
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invariance of the action under them. It is very important to note that those trans-
formation laws could not be discovered if quantization were made by the path-integral
formalism. The Noether (super)currents of those symmetries can be confirmed to
reproduce the original (super)currents PU(X) and WQH(X,Y) apart from total
divergence.

The generators P(X) and M(X,Y) form a superalgebra quite similar to the
Poincaré algebra. Hence I call it "“sixteen-dimensional Poincaré-like superalgebra"

34,35

(Some people call it "choral symmetry" because it was proposed in the nineth

paper of the series.). I define the sixteen-dimensional supermetric n(X,Y) by
A A A - — A A
n(x /K,bp) = n(bo,x /) = nle ,cp) = —n(co,c ) = 60,
n(X,Y) = 0 otherwise.

. . . 15
Then the (anti-)commutation relations between generators are as follows:

[P(X), P(Y)]$ =0,

M(X,Y), P(U)]x =/~ E€X,DINE,WPEX) - €X,Y) X+ Y)],

M, Y), MU,V = /= €&, T [n (¥, DME,V) - €U, VI, VINE, D] - EX,Y) [x-]}
This superalgebra is a natural "super" version of the Poincare algebra.

The symmetry implied by a generator is a spacetime symmetry if and only if it

has the B-field b_ as an index. Thus the sixteen-dimensional Poincaré-like super-—

algebra contains both spacetime and internal symmetries in complete harmony. Further

more, it is quite remarkable that it realizes, in some sense, the democracy between

spacetime coordinates and quantum fields.

Some symmetries among the 144 generators are necessarily spontaneously broken.
Unbroken ones are 10 Poincaré generators and 74 M(X,Y)'s involving no spacetime

as an index. The Ward-Takahashi-type identities
<0|[M(x,Y), 0’]¥I0> =0

hold for those 74 generators, where (¢ denotes an arbitrary T-product of field
operators. The perturbation-~theoretical validity of those Ward-Takahashi-type iden—
tities has been confirmed at one-loop leVel.18

Though the sixteen-dimensional Poincaré-like superalgebra includes no particle-
physics symmetry other than the Poincaré algebra, in quantum gravi-electrodynamics
it is possible to extend this superalgebra so as to include the electromagnetic U(1)

symmetry.17 In this way, therefore, there might be a possibility of unifying all
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. . . o s 36,37

physically relevant symmetries without contradicting the no-go theorem.
Now, another very interesting feature of the manifestly covariant canonical for-

malism of quantum gravity is a revival of general covariance at the purely quantum

level; more precisely, in this theory tensor analysis becomes relevant for certain
commutation relations. Since the inevitable violation of general covariance in quan-
tization has been quite regretable from the point of view of relativists, this revival
of general covariance is quite noteworthy as the evidence showing that the theory is
the rightful successor of Einstein's general relativity.

Since the B-field bp is not a canonical field, the equal-time commutator be-
tween bp and a canonical field may not necessarily vanish. It is found that the
commutator between bp and a local operator which is a tensor at the classical level

Hyte oy
has, in general, quite remarkable regularity. Let ¢ Vl"'VQ(X) be a tensor gener-

ically. ThHen the general form of the equal-time commutator isl3

b
!k, b 5]

\)1- ..\)}Z,

e '... ’

R Lovit o MitttHe 3

[2 u Vo eeey S L8780 Ly ey 18T G,
1p 177V 1 i 1Y %

~00
This commutation relation is tensorlike in the sense that it is consistent with the
rules of tensor analysis, that is, its form is preserved in raising or lowering tensor
indices, in constructing tensor product of two tensors, and in contracting upper and
lower indices. The validity of the abovetensorlike commutation relation has been

verified explicitly a large number of examples including the Ricci temsor R _.

uv
Quite surprisingly, the tensorlike commutation relation can be extended into the

. . 20 . . . .
four~dimensional form. The four-dimensional commutation relation between bp and

a tensor consists of two parts: The main part is tensorlike, consistent with taking
covariant derivative, and manifestly affine (i.e., translation and general linear)
covariant, while the remaining part is of different character and has the same form
as the four-dimensional commutation relation between an FP ghost and that tensor.
Hence, in particular, one sees that the equal-time commutation relation between a
tensor and bp is tensorlike with no additional terms if and only if that tensor
commutes with an FP ghost at the equal time.

In discussing the four-dimensional commutation relation, the quantum-gravity
extension of the Pauli-Jordan invariant D-function has been introduced.2 Since the
metric tensor is now an operator, the new invariant D-function, which I denote by
H(x,y), must be a bilocal operator. It is uniquely defined by the following four
properties:

(1) Bx,y) = -By,x).
@) aﬁ[‘g‘”(xmj.s(x,y)]
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(3) lg(x,y)lo = 0.

@ 9FBey |, - 13261 3 k- y).

[Here, even if the operator ordering is reversed in (2), the defined {x,y) can be

shown to be the same.] Then £(x,y) can be shown to be affine invariant in the

sense that

i[p, Hx,y) ] = (a§ + a\y)).s(x,y),

i, Bx, ;1 = o) + Y1) By

But, of course, J8(x,y) is not invariant under finite general linear transformations.
It has no c-number lightcone singularity, and therefore the short-distance expansion
breaks down in quantum gravity. This fact is important in order for quantum gravity
to play the role of a natural regulator.

In all the above, the gravitational field has been described by the metric tensor,
but when there are Dirac fields, the fundamental gravitational field must be the
vierbein (tetrad). Since the six additional degrees of freedom in the vierbein are
of local Lorentz transformations, quantum theory can be constructed quite similarly
to the Kugo-Ojima formalism for the Yang-Mills field.

It is very crucial that the local-Lorentz gauge-fixing term is chosen to be a
scalar density under the general coordinate transformation. The right expression

1
turns out to be 0

Lier = 'éwfuabavsab’
where fuab denotes the spin connection and S.b is a new antisymmetric scalar B-
field. Since the spin connection contains first derivatives of the vierbein, 5.1
cannot be regarded as a Lagrange-multiplier field. Owing to this form of QtLGF’ all
components of both the vierbein and the B-field s describe dynamical degrees of

ab
freedom.

‘ The local-Lorentz FP-ghost term 'ELFP is added in such a way that.CLGF +'£LFP
becomes a local-Lorentz BRS transform of some quantity. Then the manifestly covariant
canonical formalism of quantum gravity can be extended quite beautifully to the
vierbein case. Canonical quantization can be carried out consistently without using
Dirac's method, and all equal-time (anti-)commutation relations are found explicitly

. 11 . . .
in closed form. Almost all results established in the metric-tensor case, such as

. . . . . o
the field equations and the equal-time commutation relations for guv, bp’ c , and
Z}, various expressions for generators, the sixteen—-dimensional Poincaré-like super-—
10,11

algebra, the tensorlike commutation relations, etc., remain intact.

An important modification is necessary, however, for the spontaneous breakdown
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of general linear invariance. 1In the vierbein case, even the antisymmetric part,
— ~ . .
M of MPV is spontaneously broken. The unbroken one is given by

aR’

— ab
Mg = Mgt MaalepL

L

ab . . .
where ML is the generator of the global version of the local-Lorentz transformation.
The true Lorentz generator MdB is thus characterized at the level of the representa-

. . 19 . . P .
tion of field operators, ? just as the electromagnetic charge is in the Weinberg-

Salam model. This fact is conceptually very important: Lorentz invariance should not

be regarded as a first principle determining the fundamental Lagrangian; Lorentz in-

variance is an S-matrix symmetry rather than a fundamental symmetry. I therefore
conjecture that the usual supersymmetry having a spinor charge is not on the right
way toward the ultimate unified theory.

Finally, I summarize the main achievements of the manifestly covariant canonical
formalism of quantum gravity.

1. The theory is a beautiful and transparent canonical formalism of quantum
gravity. Equal-time commutation relations such as [guv, ékp] are explicitly found
in closed form.

2, Unitarity is proved in the Heisenberg picture. Since the perturbation series
of quantum gravity is unrenormalizable, it is very important to construct the formal-
ism without using perturbation theory.

3. There is a possibility that the ultraviolet divergence difficulty of quantum
field theory may be ultimately resolved by taking account of quantum gravity: The
theory achieves the evasion of Lehmann's theorem without violating unitarity.

4. The theory is manifestly covariant as in the Gupta-Bleuler formalism of
quantum electrodynamics.

5. Though general covariance is broken by gauge fixing, which is necessary for
quantization, general linear invariance still remains unbroken at the operator level.
It is spontaneously broken up to Lorentz invariance, and the corresponding Goldstone
field is nothing but guv. ‘

6., The theory is invariant under a huge superalgebra, called "sixteen-dimen-
sional Poincaré~like superalgebra", consisting of 144 symmetry generators. It con-
tains both space-time and internal symmetries in complete harmony without contradict-—
ing the no-go theorem.

7. The theory has a very interesting property, called '"tensor-like commutation
relation". General covariance is revived in this way purely at the operator level.

8. All the above establishments are beautifully extended to the case in which
vierbein is the fundamental field.

9. The Lorentz invariance of particle physics is characterized by spontaneous

breakdown, whence it cannot be a first principle.
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A GAUGE INVARIANT RESUMMATION OF QUANTUM GRAVITY

Andy Strominger

The Institute For Advanced Study
Princeton, NJ 08540

Abstract

Quantum gravity is expanded in powers of 1/D, where D is the
number of dimensions. The extra dimensions are highly compactified.
The expansion is gauge invariant. The leading term is equivalent to
the iterated one loop matter corrections due to a free, massless
scalar field without the %—R¢2_ term necessary for conformal
invariance. The 1/D expansion is renormalizable. Flat space is

found to be unstable under small fluctuations.

Despite many valiant efforts, the question of whether or not
pure quantum gravity is a consistent theory remains unresolved. The
standard expansion in powers of the dimensionless parameter
GE = (Newtons constant) x (typical energy) encounters nonrenormaliza-
ble high energy divergences. No definitive conclusions can be
drawn from this, however, since GE is not small at high energies and
we cannot expect an expansion in GE to give a good estimate of
high energy corrections.

What is needed is an expansion parameter that is small at high
energies. Such a parameter has been suggested by Tomboulis.l
Tomboulis considers gravity coupled to N matter fields, rescales
Newton's constant, and then expands in powers of 1/N. The resulting
effective action is, to leading order in 1/N, simply the classical
Einstein action with one loop guantum matter corrections. For
conformally invariant matter fields and certain choices of
renormalization constants, it also turns out to be asymptotically
free, renormalizable, and unitary with a Lee-Wick prescription.
There are, however, several drawbacks to this approach:

(1) Since no graviton loops are included, it is not clear
that we are learning anything about guantized gravity. We may
have just swamped out the gquantum gravitational effects by dominating
the theory with matter fields. If one were to use the same approxi-
mation scheme for QCD, for example, one would conclude that it was
neither asymptotically free nor confining.

(2) Qualitative features of the expansion depend on the type of

matter fields (i.e. scalar or fermion), how they are coupled, and how
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it is renormalized. Most choices lead to various types of insta-
bilities. In particular, without conformal invariance, various diffi-
culties arise from the spin zero degrees of freedom. Since conformal
invariance is not an observed symmetry of the real world, this
somewhat obscures the physical relevance of the expansion.

In view of the above, it would be nice to find a way to resum
gravity itself--with no extra matter fields. We could then analyze
the internal consistency of quantum gravity and would be spared the
ambiguity associated with different choices of matter couplings.

Such a resummation is in fact possible. Pure guantum gravity
contains a hidden expansion parameter that is small at all energies.
That parameter is 1/D, the inverse number of dimensions. The funda-
mental fields of gravity are arranged in a DXD matrix. Just as in
Yang Mills, Feynman diagrams contain factors of D that arise from
traces over this matrix. With an appropriate rescaling of Newton's
constant, S matrix elements can be expanded in a series of non-
negative powers of 1/D, and the leading term can be explicitly eval-
uated.

Before proceeding further, however, we must define how the
theory is to be extended to D dimensions. There are two
inequivalent methods.

The first method is to simply take the standard D dimensional
Einstein action on a D dimensional manifold. This theory is
invariant under the full D dimensional diffeomorphism group.
Extraction of the leading term in the 1/D expansion requires analysis
of the D dependence of both the trace factors and of the phase space
factors in the D dimensional Feynman integrations. This analysis can
be found in Reference [2] and will not be discussed further here.

In this talk we consider a different approach. The extra di-
mensions are compactified to very small circles. Excitations of the
metric along those dimensions are necessarily very short wavelength
and very high energy. If the circles are made small enough, such
excitations are negligible. The effective theory then consists of a
D dimensional matrix of fields on a four dimensional manifold.

This theory is equivalent, via the Kaluza-Klein mechanism, to
gravity coupled to (D-4) massless U(l) fields and (D-4) (D-3)/2
scalar fields. For the purpose of analyzing the large D behavior,
however, it is not convenient to reexpress the theory in terms of
these fields.

The Feynman rules for this theory are determined from the

standard Einstein action with gauge fixing and ghost terms:
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_ 1 [ .4 -1/2 1 oBf -1
s = ;;5 J d'x det [G]{+ 59 [tr[G,BG,d]

+ tr[G,BG'l]tr[G,dG"l]]

v, -1 1 _AB, BV,
+ 3g Vtr[G ’UG] + 5 9 vI BgAB
+ L F_F? + € MABE (1)
20 A A A
where
(6)ap = 9aB
A,B=1,2,...D
a,B,u,v =1,2,3,4.
1 A . A - MAB .
o FAF is a gauge fixing term and Ep €g the corresponding ghost

action. K is the gravitational coupling. Where the indices label
derivatives, they only run from 1 to 4 since the arguments of the
fields are four dimensional. This has been indicated by the use of
Greek indices. The invariance group of this action is
+
Xy T Xy EA(XU)

under which

9ap Xy * Iap g Tep(X)iae (2)

This contains four dimensional coordinate transformations and con-

(xu) +€A(xu);

stant translations in D dimensions. The expansion presented here is
in the inverse dimensionality of this latter invariance group.
Isolating the large D behavior in terms of " =gUV ;nuv is
awkward because of the double trace term in (1). It is not de-
scribed by any simple set of diagrams, and in fact gets 'a contribu-
tion from every diagram.
This difficulty is circumvented by using an exponential

parametrization:

gAB - e2KQ/D(eK¢)AB. (3)

¢ is a traceless DxD matrix and @ is a scalar. The factor of 1/D in
front of 2 is necessary to ensure that @ has a D independent
propagator. The action may now be written:

1 K¢, aB, 1 1 (1, R$,AB, K¢, ,uB, Ko
+ g 6 -5 - —= (5 (R0 AR (KN HBrg (R

ot \ 2K
1r r® 4+ 2 MPBe )
+ = ;
2a A BJ
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The large D behavior can now be examined by rescaling the coupling:
K > K/D (5)
and counting powers of D in Feynman diagrams. Alternately, one may
note that, because of the trace, the first term in (4) is order D
while the subsequent terms are order one. The ghosts are the
fermions (fundamental multiplet) of this theory and can't contribute
to the large D limit. This has the pleasant consequence that the

large D limit is gauge invariant.

The quantum contribution to the large D limit thus comes from
fluctuations of the first, trace term of (4). Since

-K(1- 2/D)(eK¢ apB af

1 J—
Z trio, b,gl =7 V=9 g " tr i, 0. ,] (6)

we arrive at the following conclusion: The 1/D expansion of guantum

gravity is equivalent to the 1/N expansion of gravity coupled to N

2
free, massless scalars, where N =D",

This result might seem obvious in view of the fact that the
theory is equivalent, via the Kaluza-Klein mechanism, to gravity
coupled to (D-4)(D-3)/2 scalars and (D-4) U(l) fields. As we have
seen here, however, the 1/D expansion arranges the fields in such a
way that it is not just the scalar fields that contribute to the
large D limit. This analysis shows that contributions remain when
D=4 and the "extra" scalar fields are not there. The expansion
should remain valid at D=4, where it describes pure quantum gravity.

The leading 1/N corrections for quantum gravity coupled to N
massless, free scalar fields has been discussed in various forms in
the literature. The resummed propagator has a 1/p4 behavior at high
energies which allows the theory to be renormalized with an R2 type
counterterm. Because there is no conformal invariance, however,
difficulties arise from the spin zero modes. This can be seen by
evaluating the energy of static, spatially varying perturbations of
flat space. This energy is equal, by standard arguments, to minus
the effective action and can be obtained from general formulae
computed by Hartle and Horowitz. For our case, it is given by:

Elh, ] =§J —(i% Ezlhgglz

as5[ 76872 52) o1 2| | k2 B2 1npl/u?
- I\’ITE'P In™17f |2+

32 /u ) 192072
T oB Y 8 1. T
=P~ "h - =h
where h B is the trace part of haB and haB =P, hyGP 8 308
is the traceless part of h in momentum space. It is readily seen

ap

that the energy can be decreased by fluctuations in h This means
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that flat space is unstable and is not the ground state expectation
value of the metric.

Several different conclusions may be inferred from this:

(1) The Einstein action is not a fundamental action but an
effective action and should not be quantized. The sickness we found
is a result of incorrect gquantization.

(2) Quantum gravity needs matter fields for consistency (e.g.
supergravity).

(3) Quantum gravity is a good theory. The instabilities are
just telling us that we have the wrong ground state.

(4) Quantum gravity is a good theory but the 1/D expansion is
bad at D=4.

A final conclusion awaits further analysis.
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"The Gauge Invariant Effective Action for Quantum
Gravity and Its Semi~Quantitative Approximation"
Bryce S. DeWitt

University of Texas at Austin

Introduction

The configuration space of quantum gravity is PR(M), the set of
all pseudo-Riemannian metrics on spacetime M. The gauge group of quan-

*
tum gravity is Diff (M). A gauge transformation § acts on PR(M):

*
£ : PR(M) - PR(M) g e Diff (M)
¢ > E(w) ¢ £ PR(M) (1)
Gauge transformations divide PR(M) into orbits. The orbits can be

*
shown to comprise an infinite dimensional manifold PR(M)/Diff (M).
This manifold is the space of physically distinct fields.
Infinitesimal gauge transformations take the form
i i
0> + 69 sp” = Q" lelsg® (2)
The Qlu are components of a set of vector fields on PR(M), the Killing

flows. The Lie brackets of the Killing flows define the structure

*
constants of Diff (M)

Y
= c . (3
[ga’gs] gy aB )

PR(M) may be endowed with a gauge invariant metric y . Gauge invariance

is expressed by

£ vy=0 (4)
Q Y
o
Any metric that satisfies this equation projects to a metric on
*
PR(M)/Diff (M) . 1In the case of quantum gravity Eq.4 has a unique one

parameter family of local solutions,

l'I‘he dynamical variables (which in gravity theory are the metric com-

ponents guv)are denoted by ¥1. The index i is to be understood as a
combined discrete-continuous label. The implicit summation convention
involves integrals as well as sums.



190

vo'r! g VT T Vo vV gt
vH = g;ﬁ(gu g T +g"Tg 0ag" Vg s (x,x ")

[N

- g = ~det(g ) | (5)

The dynamics of the gravitational field is described by the clas-

sical action S, which is a real valued scalar function on PR(M) 2
- 2 B - -2
S[¢] Mp fg Rd*x 16wG up (6)
The classical action is gauge invariant:
S =0 (7

With guv chosen for the basic dynamical variables ¢’ the action

of the gauge group on PR(M) is linear. Linearity may be expressed by

i
Q a,jk

1
o

(8)

where the comma denotes functional differentiation. By repeatedly
functionally differentiating Eq.7 and making use of Eq.8 one obtains

the infinite sequence of equations

S,iQ az 0
S,IJqu __S,jQJa,l
S,iijk(x = 'S,kaka,i‘S, ikau,j
S, ijkl’,Qzu = _S,Kjqua,i—s,iﬂquu,j_s,ijﬂqza,k, etc. (9)

These are the bare Ward-Takahashi identities of the theory.

The classical field equations are

S,i[w] =0 (10)

Given a solution ¢ of these equations one is often interested in a
solution ¢ + 8¢ which differs infinitesimally from ¥ . 8¢ satisfies

the equation of small disturbances

2
We use units for which £ = ¢ = 1 and a spacetime signature = +++ .
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- - i _ j
0 s’i[¢+6¢] S’i[¢]+s’ij[¢]6¢ S’ij[wlsw (1L

The second functional derivative S’ij[w] appearing in this equation
is effectively a linear differential operator. Because of the gauge
invariance of the theory this operator 1s singular. Equation 11 has a
well defined solution for a given set of boundary conditions only if

one imposes a supplementary condition

p* Tolspd = 0 (12)
When condition 12 is satisfied Sy satisfies

Fy lplovd = 0 (13)

where

def

a B
F.,. =8 ., + PP, 14
ij ;i3 Tag i ] (14)

The functions Pai appearing in Equation 12 are often chosen so

that small disturbances are y-orthogonal to gauge variations:
ar -laB .J h| i _ (15)
PT. = LT L 89T =0

n g Yj1 Qg Yy

It is convenient to impose the following gauge covariance condition

on the continuous matrix na

8

i [ [
= - - 16
"ag,i%y ¥ "M% ya "as® ys (16)
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The effective action

Suppose spacetime is such that we can introduce coherent "in"
and "out" states, |in,vac>, |out,vac>. These states are sometimes
known as relative vacua, i.e., they are vacua relative to a given
background. The effective action I is defined by

<out,vac|in,vac> = elr[w] (17)
I'is a complex valued scalar field on the space CR(M) of complex metrics
on spacetime M., The field ¢ appearing on the right hand side of Eq.1l7
is arbitrary. It does not need to be a classical background.

In what follows it will be convenient to define

[+ o i
=P
% o] NCALEALY
o Y o g
F 0@ glv] 87 g
a - pQ i
Vigylel = j[w]Q o, i (18)
and to extend the domain of all functionals to CR(M).

G;ag is known as the ghost propagator and VaBi is known as the
ghost vertex. The vacuum-to-vacuum amplitude (Eq.l17) may be expressed
by the following functional integral

eiF[W] = const, x feis[w+¢]d¢
% -1
= const. x (detn[¥])2(det@[¥])
1(slo+o1+sn_ [912%;[012P 101sTeT)
fe aB J
-1
x det(l- @[w]Viple) = do (19

The value (although not in the explicit functional form) of the
second integral is independent of the choice of Pai and ndﬁ provided

a regularization is adopted that yields

Y ot =0 (20)
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If the P's and n's are chosen covariantly then the effective action
is gauge invariant (QuF = 0) and satisfies simple Ward-Takahashi

identities:

i _
r,iQ a 0
io- h|
T3 & 71 3%,
k _ k k
I ik o T ri®a,1 ~ 01k, 4
R a a a
2 = - - -
e %7 Tose®a, s~ Toaex@ s ~ TL132% ok (21)
The equations
I [el =0 (22)
, i
are called the effective field equations. The solution of these non-

local equations satisfying the given boundary conditions is called the
effective field. 1If the background is chosen to be the effective field
the l-particle reducible graphs may be omitted from the loop expansion

of T:

slel + z[¢]

i ) L4 -.\
i L \
-3 2n detnl[e] - EO-‘- i K
.'<.’\
1 17 %1
- L1100 =

I'le]

i[e]

In these graphs solid lines denote the Feynman propagator for Fij[¢],
written G13[¢]. A dotted line represents G3a8[¢]. A vertex at which
a solid line meets two dotted lines represents the vertex function

Vasi[¢]. Vertices at which three or more selid lines come together
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represent functional derivatives of the classical action (the 8§ ijk
$] >

s,ijkl,Etc')' The solid circle denotes 4n det G[¥]. The dotted circle
denotes fn det@[sﬂ].

The effective action has the following important properties:

1. The functional form of T depends on the P's and n's but the
effective field and the value of T do not.

2. The tree functions built out of T yield the exact scattering
amplitudes.

3. The effective field is an operator average:

<out,vac|fi|in,vac>

$ = <out,vac]in,vac> (24)

4, If ImT = O then the "in" and "out" states are nearly identical
and ¢i becomes (approximately) an expectation value.

5. T , not 8, governs the dynamics of quantized spacetime (e.g.,
near the Big Bang or near classical singularities).

6. In Yang-Mills theory the use of T simplifies the renormalization
program. (See Abbot 1981, CERN preprints TH. 2973 and 3113,) and (Hart
1981, Ph.D. dissertation, University of Texas).
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The general structure of T

In this section I shall attempt to adduce some plausibility argu-
ments for the general structure of T . Begin by considering the func-
tional I[¢] which represents the difference between I' and the classical
action, i.e. the radiative corrections to the classical action (Eq.23).
The functional I, like S and T' , is gauge invariant. In quantum gravi

ty this is expressed by:

8 =
( Z/dguv);v 0 (25)
Let us assume that the Minkowski metric an is a stable solution of

the effective field equation just as it is of the classical field equa-
tion 6S/6guv = 0. That 1is, let us assume that Poincaré group,which is

relevant for asymetrically flat spacetimes, is not dynamically broken.

(61/8g, )y . , = O (26)

33

whence in virtue of 25,

2
E__ﬁ_(ls__ =0 (27)
guv ottt Jsv g =1

voT 2
Denote by e (p) the Fourier transform of E§—£E~———— s
g,,%8 g = 1

with the § function expressing momentum conservation removed. Equation

25 1s equivalent to

"V pyp. = 0 (28)

v

of which the general solution, respecting Lorentz invariance and the

index symmetries of ZuVOT, is:
HVOT
z (p)
=1 HO VT, UT VO 2 _uv oT,_ 4
40Cn""n""+n""'n""-3n""n" )p

HO VT O, UT_V

V1 g, Vo T_ v o T_ oru
MV T+ T ¥ p T4t TpVp%+n " Tty n”

p)p

L4
+t3p pvpopT]E (p )

1 v o
[n"¥noTph- (oY N

o vV _o_T 2
3 p%p " +n " o p" ) p2+p 0 p%p 12,

(29)
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If A in Equation 5 is chosen to be -1, then the Fourler transform

of (Fij)g - is:
i 2 uc VT, UT VO _UV OT, 2, UvoT 30
Gp (n 0t =0t T ) pTHE (p) (30)

The full graviton propagator is the 10 x 10 matrix inverse of this:

() = uy %n n 40 . -%n n
uvot P O VT Ut vo 3 uv ot
2 + +n PN
Wp N6PyPr nvrpupo N aPyPetyoPyPy p
2 -2 4 2,,-1
X[pTtup P I (p7)]
1 -2 —2 4 2. -1
“3Hp M0 GT[p tup TP L, (p )]
“2 M pop (PuP)P 2+2p p.p p. 1]
3'p uv-o T uviotT
2 2 2 -2 4 2, ,-1
x [z, (pT)-2, (") 1p +up, P I (p7)]
2 -2 4 2 -1
x [pT+up "pZ,(p )] (31)

As can be seen from the form of this expression the particle spectrum

is determlned by the zeros of the functions [p2+uP-2p421(p2)] and

[p +uP 2p42 (p )]. It is not difficult to show that if I is expanded

as a functlonal power series in ¢uv=guv—nuv then the term of lowest

order is quadratic in ¢UV and is uniquely determined by Eq.29 to have

the form

fa ‘*x;d‘*xv[§il((x—x')z)cum(x)c“”“(x')

zz((x-x')z)R(x)R(x')] (32)
where Cuvor is the llnearlzed Weyl tensor, R is the linearized curva-
ture scalar and Zl and 22 are the Fourier transforms of Zl and 22

respectively.
In the one-loop approx1mation without subtraction, the dominant

singularities of both Z and 22 are proportional to i/ (x- x') This

1
singularity structure, which renders expression (32) logarithmically
divergent, arises from products of pairs of Green's functions

1/(x—x')2, together with loop factors -i, in typical self-energy graphs
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How does it get modified in the exact theory?

3,4 in the case of

A partial answer to this question is known
ladder graphs in which the free ends at the top of each ladder are
joined together to make a single line, leaving only the two free ends
at the bottom. The dominant high-energy contribution to the infinite
sum of all such graphs can be expressed as the solution of the following

simple integral equation

X(p) = —pt— - 1 J (X(k) a4

p%-i0 (2n)“u;f p-k)2-10 (33)
Since the integral in this equation is a convolution integral the
equation is easily solved by taking the Fourier transform:
- 2=
X(x) = 6(x)[1-ip, "X(x)] (34)
where G(x) is the standard scalar propagator,
C(x) = A e PTF up o i L
(2m* ) pZ-i0 P T 2mZ xZ+i0 (35)
yielding
- _ G(x) _ i 1
X(x) = L#ip 726 (x) ~ (2m)7 xZ-X FHi0 (36)
with
‘o = 5 (37)
Hp
The line at the top of the ladder graph contributes a factor
1/(x—x')2 as always, but the rungs when summed to all orders, con-
tribute expression 36 as a factor. The singularity of the rung factor

lies on a hyperboloid at a distance AP outside the Minkowski light

cone and implies noncausal propagation relative to Minkowski space-time.
This is neither surprising nor alarming. When the metric itself under-
goes quantum fluctuations "real'" space-time is Minkowskian only in an
average sense.

These results suggest that I, and 22 may be well approximated by

1
choosing each to be proportional to

3

B. S. DeWitt, Phys. Rev. Lett. 13, 114 (1964).
4 12

I. B. Khriplovich,Yad.Fiz.2,950(1965)[Sov.J.Nucl.Phys.3,415(1966)].
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1

: 1Yy [ i
iG(x~-x")X(x-x") Iy~ (x—x')‘[(x-x')‘—kpl]

i L 1
(2m)™a* [(x-x')f-xpiﬂo - (x~x')i+io]

1
i ) dg (38)
2m % Yp JO [Ge-xT)Z=Ex _7+1072

The final integral gives concrete expression to the old idea that quan-
tum gravity smears the light cone. A more complete theory, which sums
other graphs besides ladder graphs, would presumably insert a smearing
function w(§) in the integrand.

If il and I, have the form 38 then their Fourier transforms are

2
given by

1) ((1p2p2-10)%)
(APsz—iO

2y =% _ 71 - 1 /
I,20P7) % Ay, ) xpipé—ioj\”)

This function is complex for space~like momenta and real for time-like
momenta. In both cases it tends to zero for |p2|>>u2. With this ap~

-2
proximation the functions p2+uP p”Zl 2(p2) have no zeros other than
»

p2=0 on the real pzaxis, provided a4 avoid values lying between ap-
>
proximately .024 and .054 as well as an infinity of isolated points
clustering about the origin between -.011 and .009. If a; 4 lies be-
>

tween .024 and .054 then the graviton propagator has timelike ghosts.
If a; , = one of the discrete values then there are tachyon ghosts.
>

-2
The functions p2 + Hp p”Z (p2) have an infinity of zeros in the lower

1,2
half pzplane, i,e,, in the upper half (p0)2 plane. In the p0 plane

these zeros are in the first and third quadrants. Let E=w+iy (w>0,v>0)
be one of the first-quadrant zeros. The corresponding "instability"

+
modes have time dependence e-iEt. The mode that propagates positive

frequencies into the future is

e-1EL o-lwt + vy (40)

The mode that propagates negative frequencies into the past is

elEt _ elwt ~- Yyt (41)
Both modes are eliminated by the "in'" and "out" boundary conditions.

Therefore they do not lead to real instabilities. However, they make

Wick rotation impossible. This means that if the above approximation

has any validity whatever, Euclideanization is not permitted in quantum
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gravity.

Equations 32 and 38 admit of immediate generalization to an approxi

mation for I , and hence for T , that is invariant under the full dif-

feomorphism group:

T = UPZ Jg%RdL‘x

21qk b1 g llf i i
+L1P Jd X}[d X' g8 [U(X,X')—%XPA'FiO = U(X,X')+io]

po' vB' oy' 18’ _ 1 '
X %Alg g g g CU\)UTC(I'B'Y'5' leZRR (42)

Here g 1is —det(guv), gua' is the parallel displacement bivector, s
6(x,x') 1is half the square of the geodetic distance between X and x',
and cquT and R are the Weyl tensor and curvature scalar of the full
nonlinear theory: A and A are numerical coefficients whose precise
values depend on the numbers and kinds of matter fields included, but
whose magnitudes are not vastly different from unity. The i0 in the
"propagators" specifies how the poles are to be skirted in the double
integral, and the other factors 1 remind us that both T and the effec-
tive field, which is an "in-out" average, are generally complex valued.
Although expression (42) has been derived by arguments starting
from flat space-time, I propose that it be taken seriously even under

conditions of strong curvature (R uPZ) and with topologies other

thanﬂ(ﬂ Efforts are currently uizzzway at the University of Texas to
test it on Friedmann-Robertson-Walker universes to see whether, under
generic realistic conditions, it will suppress the initial curvature
singularity. Among the properties of Friedmann-Robertson-Walker models
that simplify this investigation is conformal flatness. The Weyl tensor
disappears from expression (42) taking with it the parallel displacement
bivectors, leaving o(x,x') as the only difficult geometrical quantity

to compute and A as the only adjustable constant.

Before desciibing these efforts, I wish to make a few comments on
the reasonableness of expression (42) as an approximation to the true
effective action. Expression (42), based as it is on a quadratic ap-
proximation to I that is determined solely by the graviton propagator,
cannot be expected to yield accurate vertex functions (third functional
derivatives and higher). Nevertheless it is well known that in regions

of momentum space where I (p2) and I (p2) are slowly varying, e.g., in
1 2

5
B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach,

New York, 1965), Chap. 17.
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the ultrahigh-energy region ]p2|>>up2 (see comments following Eq. (39))
the vertex functions are fully determined by the graviton propagator

in virtue of the gauge-invariance condition (25). Therefore, if E

and E are well approximated by (38) then expression (42) has the cor-
rect gtructure as x' - x and will yield qualitatively correct dynamical
behavior. More accurate vertex functions at lower energies could in
principle be obtained by adding to expression (42) higher multiple
integrals in which the curvature appears cubically, quartically, etc.,

1
along with factors involving gua and o(x,x').
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Numerical Work

The effort to solve the effective field equations based on the
effective action (42) is being carried out by Richard Rohwer at the
University of Texas. In the case of Friedmann-Robertson-Walker uni-

verses the line element may be written in the form
ds? = —az(t)dt2+a2(t)dg2 (43)

Here we are specializing to the case in which the spatial sections

t = constant are flat. This is because we are primarily interested in

the neighborhood of the Big Bang and in our actual universe the curva-

ture in time at this epoch is much more important than the curvature in

space. With this line element Eq.42 takes the form

-1 .
PZ6VuP2 f o a a?dt
2 1 2 -2,-2 2. 222
—lZﬂVuP A de | dt s“dsa o (ca“d+caa“—~-a“aqd)
2
- 0
i
o(t,t',s)—gxpi+io

x(ot'a'2§'+a'a'é'2—a'2é'd')

i
o(t,t',s)+i0
y -1
+6VuP ca dt - (44)

where V is the volume of space and the last term expresses the effect
of the radiation which is assumed to fill the universe, a choice of
scale being made so that the energy density is equal to 6uP”when a = 1.

There are two effective field equations for this effective action

§T
Sa - 0

oy (45)
Sa

Because of gauge invariance these two equations are not independent

but satisfy the identity

[o2]

r . 6T

d = —_
“4dt 5a - 2 35a (46)
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It evidently suffices to work with %§-= 0. Explicitly one finds

—(6VuP2)—1(6P/80)a=1

o
"

"
s
e

1
=
1Y

-0

o«
' 2 1D i _ i

+“hA2J de JS ds faa [c(t,t',s)-gxpi+io c(t,t',s)+10]
o]

. ' i i
_aZaU,t(t,t s S)[[c(t,t',s)—g)\PZ‘FiO]Z— [c(t,t',s)+10]z]

x(a.zav+a'év2)
o« o« o0
+4TWA J dt'J dt"Jszds(a'2§'+a'é'2)(a"za"+a"é"2)
2
o0 o

o

x —a"z(t)[c,s(t',t",s)]2—2c(t',t",s) %

i i
x [c(t’,t",s)-%kp‘+10 - c(t',t",s)+10]
(47)

The idea of the computation is the following. Begin with a Big
Crunch followed by a Big Bang, having the form a =~ |t| (which is a
solution of the classical field equation) but with the Crunch at
t = 0 smoothed out (by hand) over a region of the order of the Planck
time. Substitute tﬁis value of a into the integrals appearing in
Eq.47 and obtain new values for a by putting the terms involving no
integrals on the left hand side of the equation. Then iterate this
procedure, hoping that the sequence will converge. Unfortunately we
have been unable as yet to get the program to this stage because we
have been encountering unforseen difficulties in evaluating the bilinear

0 . We began by attempting to compute it from the Hamilton-Jacobi

equation,

-2
20 = guvc,uc,v = —(c,t)2+a (c,s)2 (48)

but discoveredlsubsequently that every reasonable way for converting
this equation to a set of difference equations leads to unconditional
instabilities. Another possibility is to solve directly the geodesic
equations. However a new problem arises, namly that of caustics, which

indeed occur for these metrics. We are now thinking in terms of
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computing the scalar propagator in the given metric and inverting it to

obtain an approximation to o . Note that the presence of the factors

i and 10 in Eq.47 causes a to become complex. This in turn causes ¢

to become complex. Complex functions can be handled on the computer

in a straightforward way but it is important to call attention to the
added complication.



Background Field Method of Gauge Theory and the Renormalization Problem
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§1l. Introduction

D)

The background field method was proposed by DeWitt and has been discussed

(2)

later in many papers. This method has an interesting feature that we can quantize
gauge theories without losing gauge invariance. As a result, in the renormalization
procedure gauge invariant quantities need to be considered. This is a very important
advantage in discussing the renormalization problem of non-Abelian gauge theories
(especially of gravitation).

In this paper we will discuss a systematic renormalization procedure by using
the background field method and by generalizing the counter-term formula of

3

't Hooft to two loop processes.
§2. Background Field Method
In the background field method the generating functional of the S-metrix is

given by
W) = J D¢eis(¢+¢) =J Déexp i{S($) + S 1¢i +§1!— S ij¢i¢j + eeel}, (2.1)

where S ,, S 3 +++ denote functional derivatives of the action S(&) with respect to

¢i(x) & (y), **+, and 8 i¢i’ S ¢.¢j are abbreviations of

,ij71
S i¢i J 4 65_('L ¢ (x) , S ij¢i¢j = J A __5_5@__4, (x)¢ ). 2.2)
’ 6¢ (x) ’ 8¢, (x)6¢ (y)

In (2.1) the background field $ is defined as a solution of the field equation S’i($)
= 0.

If we consider a system which includes gauge fields in this formalism we can
introduce two kinds of gauge transformations. By taking the Yang-Mills fields as an

example we define such transformations as follows:

c-type gauge transformations

~ a abe b ¢ a
= + - 3w,
¢u ¢u gt Tw ¢u u

(2.3)

a a abc b, c
= + gf ,
¢u ¢u g w ¢u
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q-type gauge transformations

Yya _ T a
2=,
; (2.4)
a a abc b c ~c a
= +gf w + -9
¢u ¢u g (45u ¢u ) X
Under the both transformations (2.3) and (2.4) the total field A = ($+¢) has
ordinary gauge transformation properties
b, ¢ a
A'? = a4 gr®CPy C g @ .
o . gf” W . uw (2.5)

The important point is the fact that only $ field (¢ field) has the transformation
properties of gauge field under c~type (q-type) gauge transformations.
As concerning gauge fixing we have to fix the q-type gauge only in (2.1). Then

we can choose a gauge fixing condition (the background gauge) such as

a a abc
D = (3 . 2.6

A ¢ ¢ 9 = (2.6)
Since (2.6) transforms covariantly under (2.3) it is evident that W($) is invariant
under (2.3) even if the gauge fixing has been performed. This important fact
simplifies the discussion of the renormalization problem of the gauge theories in the
point that the counter Lagrangian can be expressed in term of gauge invariant

combinations such as (Fui)

§3. Counter-term Formula

Without loss of generality we can expand the action S($+¢) around $ as

() - SO - 5 9,

1 1] H 1j Lijk
jd x{ 3 ,0;W 0 ¢j + ¢1N133u¢ + 5 ¢ Mg, + 2 ¢i3u¢j8\)¢k
00,0 + 1500 6+ TG 00 000
ijkl Ve
og0,0,0,0, + 00 00,0, 003 G.1)

where coefficients W, Np’ M, E, Qp’ A, Fuv’ Zp and © are functions of the $. In
(3.1) we assumed that S(¢+$) has derivative couplings up to second order. This is
satisfied both for Einstein gravity and for the Yang-Mills type gauge theories.

In this paper we will restrict ourselves to the case £ =T =1 =0, Wij = —GiJ.
By introducing a kind of covariant derivatives Vu¢ =93 ¢ + N1j¢j under some trans-

formations which will be mentioned later (3.1) can be rewrltten by
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S(4+) - S(§) - S 4y

(b 1 1 -
= Jd x5 V70 5 0Ky g05 Q505057 0 ¥ Aygubi050p + Oy gipbibybiepls 34

where X,, = M,, - ('8

ij ij ij’

A = A, = + §¥ oM HooH . .
Ragie = hugic * 30T + Mgy * Megiyp) -3

The action (3.1) is invariant under the following transformations

v WMo M AT _

Op =0 T Aty Niy = Ny AN T Ny T Mg e

[ _ - H _ H
Mig =Mt MM T Mg T Yadd Mg T g o

JB_ oM U M u

Y = Y T e T Mot MNee%ige o

Al = A Ay, + 23 A @, + cyelic(i,],k)

0 T VA &) SRR TIE VA1 Y A 235%

o! =

\'ijk/@ Aimemju + cyclic(i,j, k,2) . (3.4)

By considering dimensions of the coefficient functions and their transformation

properties under (3.4) which include c-type gauge transformations as a special case,

one~loop counter-terms for (3.2) are given by(3)
ALone-loop(i;) - _ C“ + j; Yuquv) (3.5)
8 ij 31 24 “ijtjil .
n
A H -5 _ - .
where YiJ BuNlj BvNiJ N kaj Nika and € = 4 - n. Slmt:?rly we can obtain

two-loop counter-terms which were given explicitly in our paper
When we apply these counter-term formula to the pure Yang-Mills type theory as
an example we find

ZC ( ZC )2
one-loop _ , two-loop _ _ {11 g% 17 g %2 }F a)2 i (3.6)

S6c 2 ' 3-29¢ 4 ne

AL

from which the renormalization group function B(g) can be found to be

3 5.2

gt g C
g = - 114 22 - 177 42 + o, (3.7)
3.2 T 3-2 Ll

In the calculation of (3.6) we used the background field gauge condition (2.6)

(o) = - =21—u (Du@»}f‘)2 , (3.8)

L
gauge
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where the gauge parameter ¢ is fixed to be o = 1. In order to cancel all the

subdivergence it is necessary to be renormalized such that

2
a=1-——g§—-C2+“‘. (3.9)
47 e

84. Conclusions and Discussions
We obtained the counter-term formula up to two-loop by using the background
field method. Although we did not discuss the cancellation mechanism of
%)

subdivergences in this formalism, it was examined in detail in our previous paper .

The generalization of this formula to the gravitational theory is in progress now.
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SUPERSYMMETRIC GRAND UNIFICATION

Norisuke Sakai
National Laboratory for High Energy Physics
Tsukuba, Ibaraki, 305 Japan

Abstract:

After a brief discussion of motivations and prototype models, we
review recent studies of model building and of proton decay in
supersymmetric grand unification. A new effect is mentioned for
AB # 0 four-scalar interactions induced by an intermediate scale

(lOlo N lO12 GeV) supersymmetry breaking.

I. Gauge hierarchy and naturalness

Up to the highest accelerator energies electroweak interactions
are now adequately described by the SU(2) x U(l) gauge model. Color
SU(3) for strong interactions seems to be supported by all the avail-
able data too. This SU(3) x SU(2) x U(l) gauge model has been beauti-
fully unified into grand unified theories (GUT) such as SU(S)[l]. GUT
has achieved several nice points:

i) The unique gauge coupling provides a true unification of ele-

ctromagnetic, weak, and strong interactions.
ii) Quantization of charge. The equality of charges of proton
and positron is a mysterious accident in the SU(3) x SU(2) x
U(1l) gauge model, but it is explained by symmetry reasons in
grand unified theories.
iii) A number of quantitative successes such as sinzeW(MW) and
mb/mT.
iv) Possibility of proton decay and of explaining the origin of
the baryon number in the universe.
On the other hand GUT has left several important problems still un-
answered:

i) There are vastly different mass scales of gauge symmetry bre-
aking for SU(2) x U(l) and GUT (gauge hierarchy), e.g. M%/MéUT
~ 1072¢ in su(s).

ii) How to explain fermion masses and generations?
iii) How to incorporate gravity?

and so forth. Among them we now have some hope for a natural solution
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of the gauge hierarchy problem.

Some time ago 'tHooft has clarified the concept of naturalness:
If a theory contains small parameters, it should acquire a larger
symmetry for vanishing values of the parameters[2]. Namely these
parameters are protected from getting large values by the approximate
symmetry. In that view gauge hierarchy becomes natural, if there is
a larger symmetry in the limit of vanishing mass-squared for Higgs
scalar which is responcible for the SU(2) x U(l) symmetry breaking.
For particles with spin one-half (one), chiral (local gauge) symmetry
protects their masslessness. Since no symmetry is known which direct-
ly guarantees masslessness for spinless particles, we are led to two
alternatives:

i) Theories without elementary scalar particles (technicolor

models)[3].

ii) Supersymmetry (SUSY)[4]. Higgs scalar can be guaranteed to be
massless if SUSY relates it to a spin 1/2 fermion which is

massless because of chiral symmetry.
II. Supersymmetric grand unified models

1. SU(5) with explicit soft breaking of SUSY[S]'[6]

i) The standard SU(5) GUT has been successfully made supersymmetric.
One fine tuning at the tree level is needed for light Higgs doublet,
but is not disturbed by radiative corrections (nonrenormalization
theorem[7]).

ii) Since the naturalness is not spoiled by explicit soft SUSY
breaking of order
Am < TeV, superpartners of quarks and leptons can be given small
masses (< TeV).

iii) Renormalization-group analysis including many new particles
showed phenomenologically acceptable values for sinzew(MW) and mb/mT
[8]}

, but grand unification scale M tends to be larger than the

GUT
nonsupersymmetric model.
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2. SU(3) x SU(2) x U(1l) x U(l) models

i) Experimentally scalar partners of charged leptons are found to be

heavier than 16 GeV[9]. On the other hand spontaneous breakdown of
SUSY gives a mass sum rule at the tree level[lol
2 2 _
ZmBoson - ZmFermion =z g<b> (1)

U(l)

where the right-hand side is a measure of SUSY breaking, so-called D-
terms associated to broken U(l) subgroups. There are only two such
U(l) generators in the SU(3) x SU(2) x U(l) model: weak hypercharge Y
3 of SU(2). Unfortunately both Y and I

vanishes by summing over quarks (leptons).

and the third component I 3

2 2 _
M calar quark quuark =0 (2)

Therefore we are forced to enlarge the gauge group in order to have a

(6] The simplest of

[11]1,[12]

scalar partner heavier than quarks and leptons
such possibilities is the SU(3) x SU(2) x U(1) x U(1) models
ii) 1Irrespective of details of grand unification, one may look for a
low energy SUSY model with SU(3) x SU(2) x U(l) x 8(1) gauge symmetry.
The model must satisfy:
a) Anomaly cancellation for renormalizability.
b) U(1) and B(l) be traceless for the absence of quadratic
divergences (this might be unnecessary according to ref. 7).
c) Spontaneous breaking of supersymmetry.
Much efforts have been devoted to build such a model[ll]_[l3],
but so far their models did not satisfy either one of the above three
requirements. Recently we succeeded to construct a model with all

three properties[l4].

The result shows, however, a few annoying
features too: a) Asymptotic nonfree (B-function for SU(3) is zero at
one loop). b) Too many fields with the same gquantum number. There-
fore it appears difficult to embed the model into a simple group.
[15] Th

. ey
take a mass scale in the Lagrangian (3(1) D-term) to be of the order

of the Planck mass M

iii) A different viewpoint was proposed by a CERN group

p1° Because of that they argued to disregard the
nonrenormalizability due to anomalies. Their model contains a SUSY
breaking mass scale p much larger than the electroweak mass scale MW.
However the effect almost decouples from our low energy world of

gquarks, leptons and Higgs doublet except effects of order uz/MPl,
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which is identified as MW'

3. Intermediate scale SUSY breaking

i) The mass sum rule (1) was the stumbling block of SUSY model
building. Recently several people realized that radiative corrections
violate the sum rule to give a desirable mass pattern at two loop
order[l6]. In this picture the electroweak mass scale arises as a
radiative correction to the SUSY breaking at higher energy scale. In
particular if particles affected by the SUSY breaking u at the tree
level are themselves extremely heavy (of order M ~ MGUT)’ they approx-
imately decouple from the low energy world. Therefore the effective
SUSY breaking in gquarks, leptons and Higgs doublet supermultiplets is
of order auz/M. Identifying auz/M v MW and M ~ MGUTzor MPl’ one

obtains the SUSY breaking mass scale u as lOlO ~o10 GeV, inter-

mediate between M and My (geometric hierarchy[l7]).

SUSY breaking] M>p
sector

radiative corrections
quark, lepton o pe
Higgs doublet My = &7

Fig. 1. Particles in the SUSY breaking sector are superheavy.
Effective SUSY breaking in quark, lepton, and Higgs doublet
is induced by radiative corrections.
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ii) A realistic SU(5) model based on the above idea was constructed

by Dine and Fischler[lS] with M v M Witten's mechanism[lg] of

GUT”
generating large mass scale as a radiative correction was also imple~

mented in a SU(5) model[l7], but was found to have several severe

problems[zol. Polchinski and Susskind studied decoupling and worked

out a systematic way to extract the effective low energy theory[Zl].
The resulting picture is a theory with explicit soft breakings of
SUSY, which are derivable from and constrained by the underlying high
energy theory.

iii) Most recently a very interesting type of models were proposed
where an explicit SUSY breaking arises as an effect of embedding SUSY
GUT models into supergravity. This will be discussed by R. Arnowitt

in this conference.
III. Proton decay in supersymmetric models

1. Model independent analysis in SUSY models

i) Proton decay offers the most spectacular and important information
on the grand unification. Possible baryon-number violating effective
interactions are known to be constrained by low-energy symmetries such
as SU(3) x SU(2) x U(l)[22]. Model-independent operator-analysis has
also been done for SUSY and SU(3) x SU(2) x U(l) as the low-energy

symmetry[23]’[12].

One finds a dimension-four AB #¥ 0 operator, but
one can easily forbid it, for instance, by imposing a discrete sym-
metry, "matter parity", namely a sign change of quark and lepton
superfields. On the other hand in SUSY models, dimension-five opera-

tors generally exist such as

i[qqqx]=£AAxpxp+... (3)

M F= e F M q_"q_"g_"4_
where g_ and &_ are quark and lepton superfields and Ac and wq are
scalarquark and quark. The GUT mass scale is ‘denoted by M. A typical
term arises as an interaction between two scalars and two fermions (of
quarks and a lepton) due to the baryon-number violating Higgs fermion
exchange in SU(5) model for instance. If there are SUSY breaking
Majorana masses for gauge fermions, the dominant contribution to

proton decay comes from a loop diagram containing the dimension-five
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operator[24].

Fig. 2. A loop diagram with the dimension-five operator and
the SUSY breaking Majorana mass for gauge fermion AW'

A detailed analysis gave the rate consistent with the present
experimental bound and predicted the dominance of decay modes with
neutrinos and higher generations[25].

Since proton decay due to the dimension-five operators is rather
close to the experimental bound, one may wish to construct models
which forbid these operators. Discrete symmetries, R-invariance {(a

global symmetry)[23], (12]

and local U(l) symmetry were proposed for
such a purpose. In this case SUSY restricts the dimension-six four-
fermion operators to those of mixed chirality which can be experi-

mentally verified from lepton-polarization measurement.

2. AB # 0 four~-scalar interaction induced by intermediate scale SUSY

breaking

In the case of intermediate scale SUSY breaking, there are addi-
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tional important operators for proton decay. Using the method of ref.

21, we performed a systematic operator-analysis with a new superfield

¢, responcible for the SUSY breaking[ZG]. More precisely the F-

component of c_ develops a vacuum expectation value uz intermediate

between M MGUT and Mw,

U(l). For instance we obtain new operators of dimension six which

and hence ¢, must be singlet of SU(3) x SU(2) x
give four-scalar interactions after SUSY breaking such as
l—z[qqqzc]=‘—*7AAAA (4)
M M - !

where q_ (%_) and Aq (A denote. left-~handed quark (lepton) super-

)
L
field and its scalar_companent. It contributes to proton decay through

two-loop diagrams with Majorana masses of order M for gauge fermions.

W

Fig. 3. A two-loop diagram with the SUSY breaking four-scalar
interaction and the SUSY breaking Majorana mass for gauge
fermion Aw.

Since Mw > uz/M in the geometric hierarchy picture, the contribu-
tion of the four-scalar interaction to proton decay is of the same

order as the dimension-five SUSY operator (apart from powers of coup-
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lings etc.): (U/M)2°(1/M§) = (l/M)’(l/MW) = l/uz. In certain models
SUSY breaking Majorana masses for gauge fermions are negligible[27]
and make the above four-scalar interactions and the dimension-five
SUSY operators unimportant for proton decay. In that case more impor-
tant operator is another type of four-scalar interactions with mixed
chirality such as

iz[q_q_u+e+c+c_]D = (ﬁ)4Aq_A _Au A, (5)

q. Yy ey

+
field and its scalar+comp$nent. The operator can contribute to proton

where u (e+) and Au (Ae ) are right-handed u-quark (electron) super-
decay through two-loop diagrams without the Majorana masses for gauge
fermions. In the geometric hierarchy picture its contribution to the
proton decay is of the same order as the dimension six SUSY operator
(u/M)4-(l/Mé) = l/M2. Therefore the new AB # 0 four-scalar inter-
actions can contribute to proton decay with comparable order of
magnitude as the supersymmetric AB # 0 operators for both cases with
or without significant Majorana mass for gauge fermions.

Existence of a type of four-scalar interactions in a model was
also noted recently in ref. 28, but a systematic operator-analysis of

proton decay in intermediate scale SUSY breaking is found in ref. 26.
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ASPECTS OF GRAND UNIFIED MODELS WITH SOFTLY BROKEN SUPERSYMMETRY
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Supersymmetric theories have an outstanding property of no-renormalization for
F-terms. This may give an important key to the solution of the gauge hierarchy
problem in the grand unified theories (GUTs).

If nature chooses a supersymmetric theory, the supersymmetry must be broken at
low energies spontaneously or explicitly. In spontaneously broken supersymmetric
theories, however, there is a severe constraint on masses of component fields in a
given supermultiplet, and in order to construct a realistic model, we must introduce
disgusting complexity in the modell).

On the other hand in the explicit breaking scheme, it is possible to construct
2)

a realistic model with minimal set of supermultiplets The minimal supersymmetric

SU(3)xSU(2)xU(1) model contains the following supermultiplets:

vector multiplets SU(3) sU(2) Y/2
v, v, Ay D, (1L, 1, 0)
v, v;, Ay D, (1, 3, 0)
A vy, Ay D, (8, 1, 0)
left-handed Higgs multiplets
Hy s Ay L P (1, 2,-1/2)
H,y @ Ay s v, F, (1, 2, 1/2)
left-handed matter multiplets
Lo A, ¥R, FGD) (1, 2, -1/2)
e, t A(R), W), Fey (1, 1, 1)
q. Alq)), w(qr), F(q) (3, 2, 1/6)
S AG), v@E), FE) (3%, 1, -2/3
a:oa@), v@), r@) (3% 1, /3

where r(=1,2,3) are generation indices.

In this scheme, gauge fermion masses (Ml, M2 and M3 for Al’ Xz and Xa respec—

tively) and all mass terms of the scalar components of matter multiplets (m2(¢) for
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A(p) with ¢ =2r, e, 4 Gr’ ar) and those of Higgs multiplets (mi for A mz for A

r 1°

and m§ for Al—A2 mixing terms) are freely adjustable parameters of the theory.

If the explicit breaking scheme is the case in nature, the low energy phenomena

2

give considerable constraints on the values of these breaking parameters as we will
see below.

All m2(¢) for ¢ =2r, e, 9. Gr’ Er must be large ('\:0((102 GeV)z)) and positive.

If any one of them (except ;r) are negative, U(l)EM or color SU(3) conservation
breaks down.

In order to obtain desirable symmetry breaking SU(Z)XU(l)->U(1)EM, Higgs scalars
A, and A, must acquire non-vanishing vacuum expectation values through the minimiza-

1 2
tion of the Higgs potential

2 a a ' 2
- Bt t o 2 g'm ot 2t 2
Vo= (A AL+ Ay AT+ Sg(aA) - Ags)
2.t 2+ 2 * %
+ mlAlA1 + mZAZAZ - m3(A1A2 + AlAZ)'

3) .

The existence of the Higgs vacuum requires the following conditions

2
m

2 2 4 22
Lty > 2fmgl, my > mimy

that is, mg must lie between the algebraic and geometrical average of mi and mg.
Since we expect that our SU(3)xSU(2)xU(1l) model is embedded in some grand unified
group GGUT’ we reject the possible existence of U(1)-D term in tge I;grangi;n.
Therefore if there are no soft-breaking effects, which implies my=m, and my = 0,
SU(2)xU(1) does not break down.

The existence of the superpartners of leptons, quarks and gauge bosons induces
the flavor changing neutral interactions such as s+d + d+s and H>ey. In order
to suppress such effects, the following stringent conditions must be satisfied to
validate the super-GIM mechanisma):

[mz(ql) - mz(qz)l /mz(ql) < 0(107,
In?e) - 0’| / w’(ay) < 0(107).

It is implausible to expect all these conditions are satisfied by accident.

It may be desirable to find some kind of systematic treatment of breaking parameters
which guarantees all the requirements. It may well be likely that all soft-breaking
terms come from the single origin.

Here we examine the exciting possibility that at the unification energy scale
(u EMX), the theory is almost supersymmetric and the sg§t-breaking terms exist only

in the GGUT invariant mass terms of gauge fermions A's

the other soft-breaking terms are generated through radiative corrections

At lower energies, all

6)

In order to clarify whether this "minimal" soft-breaking scheme really gives

the required soft-breaking parameters at low energy (u EMw), we must examine the
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renormalization group analysis.

The supersymmetric part of the lagrangian consists of the usual "kinetic" terms

and the F~component of the super potential7)
W= f(kHle) + h(qud) + h(qqu) + m(HlHZ)'

The soft-breaking terms are given by8)

= - - _ 2 +
ngreak = { MAA L - Mok, = Modhg + h.c.} Z _ L _mT(@)AG) Ae)
$=2,e,q,u,d
2.1 2+ * %
- BTANAL - BoAA, FmA (A4, + AA)

+ {fmfA(z)AlA(E) + hm A9 A A@) + ﬂmﬁA(q)AzA(ﬁ) + h.e.}.

The Higgs scalar mass terms are given as mi=m2+Ai, m§=m2+A§, m§=mA3.

By examining the renormalization group equations for this minimal model, we see
that all the supersymmetry breaking parameters are generated through radiative

. . ... 5
corrections starting from a boundary condition )

m ’\:‘0(102 GeV)

_ _ 2
Ml = M2 = M3 M~ 0(107 GeV)

H

m(¢) = Al = A2 = A3 =m=m =mny = 0 at u =MX.
The gauge fermion loop contributions give large positive masses of order 102

GeV to the scalar partners of leptons and quarks through the following remormaliza-
tion group equation:

4 Aeta® @) = -8 | g2c,(R) M2 + [Yukawa coupling].
i=sU(3),8U(2) ,U(1)
Since the Yukawa coupling contributions are negligibly small for the scalars of the
first and secopd generations, those with the same SU(3)xXSU(2)xU(l) quantum numbers
are almost degenerate. Therefore in our scheme the super-GIM mechanism works well
to suppress the dangerous flavor changing neutral interactions. Combining with the

renormalization group equations for gauge fermion masses

2 9 N 2 2 3 D52 2.3 o a2
(4m) waty = 228" My, (4m) Vet = 2g°M,,  (4m) Wauts 6g M,
we get the following mass relations at 1 =Mw:
MZ/Ml = 2,01, M3/Ml = 7,19,
m(t )/M = 1.78, m(ér)/Ml = 0.95,
m(q ) /M, = 6.60, m(Gr)/Ml = 6.40,

m(Er)/Ml 6.38, (r=1,2)
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where MX=2.37>< 1016 GeV -and a-l =41T/g2(u =MX) =24.1 are used.

G
In order to obtain desired Higgs vacuum, which is characterized by the condi-
. 2 2 2 4 22 . .
tions m1-+m2> !m3| and m3>m1m2 at u~—Mw, parameters m, M and Yukawa couplings at

I =MX must be in the appropriate domain. If all Yukawa couplings are negligibly
small, Higgs scalars A1 and A2 receive the same renormalization effects and the
relation mi-=m§ follows. Therefore the breakdown of SU(2)xU(1l) does not occur.

It is indispensable in our minimal scheme that at least one of the Yukawa couplings
is large enough to generate siéable mass difference between mi and mg. The only
candidate which can be freely large is.the top quark Yukawa coupling h. Therefore
the occurrence of the spontaneous breakdown SU(Z)XU(l)-*U(l)EM requires the
existence of the lower bound of h. The detailed calculation shows h(u =Mx)2 0.095.

This lower bound turns out to be that of top quark mass,
m = <A2>h(u =Mw) > 60 GeV.

Matter scalars acquire additional mass terms through vacuum expectation values
<A1> and <A2>. Especially their couplings to the D-components of the gauge multi-
plets give the following mass terms,

2
MW cos28 AT[IS—Y(tanzew)/Z]A

where 6 =cot_1(<A1>/<A2>). Their contributions are not always positive. The most
dangerous is that for the lightest scalars A(Er) (r=1,2). Their physical masses

are given by
2. - 2 2
m (er) - M” cos26 tan ew.

Since mz(ér) =(O.95)2Mi, the positivity of this physical mass requires the lower

bound of Ml' The detailed computation gives

M, > 30 GeV.

1

In conclusion, our "minimal" soft-breaking scheme in the minimal supersymmetric
SU(3)xSU(2)xU(1) model embedded in the standard GUT group works well. The spontane
ous breakdown SU(Z)XU(l)--*U(l)EM occurs through radiative corrections. The ‘super-
GIM mechanism works well to naturally suppress the dangerous flavor changing neutral
interactions. In order for our scheme to work, following constraints must be

satisfied:

=
v

> 60 GeV,

=
]

My/2.01 = My/7.19 >30 GeV.
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Supersymmetric Dipole Mechanism and Vacuum Energy

)

*
Nobuyoshi Ohta

Department of Physics, Faculty of Science

University of Tokyo, Tokyo 113, Japan

Much attention has been paid recently to supersymmetric theories
in the hope of resolving the gauge hierarchy problem in grand unified
theories. Quadratic divergences in elementary scalar theories make it
necessary to adjust a parameter to 38 decimal precision to achieve the

1)

large hierarchy. The remarkable non-renormalization theorem in

supersymmetric theories may provide a natural resolution of this
problem.z)

One of major questions in this approach is how to break super-
symmetry taking the following points into account:

i) Supersymmetry must be broken in realistic models,

ii) if supersymmetry is broken spontaneously at the tree level,
the unrealistic mass formula ZJ(~1)2J(2J+l)m§ = 0 always follows,

iit) Supersymmetry remains unbroken by perturbation if it is so
at the tree level.

It then seems more realistic to accept the following explicit breakings

which are soft in the sense that no quadratic divergences are genera-

ted.3)
a) L, = ui(A2 + Bz),
b) L = usa’ - 8%,
c) Lo = u3_>\_>\, (1)
d) Ly = 114(A3 - 3AB2),
e) Le = ugA,

*) Fellow of Japan Society for the Promotion of Science.
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where A and B are the scalar and pseudoscalar fields of a chiral
multiplet, respectively, while X is the spinor field of a vector multi~
plet.'

We shall show, however, that all these soft breakings can also be
derived by the mechanism of spontaneous breaking and discuss the vacuum

4) 5)

energy in this scheme, which was originally proposed by Slavnov.

Let L0 be a supersymmetric Lagrangian of chiral multiplets and/or

vector multiplets, which are called the matter fields. we also intro-
N . .

duce left handed chiral superfields S- and S_, and consider the addi-

tional supersymmetric Lagrangian

s = L Bm2sts)) - %(ED) (£s*s* +nS ) + h.c., (2)

oo =

oo .
where £ and n are real constants and ¢_ is a left-handed chiral super-

field made of the matter fields. Expressed in terms of component fields

S_ = (a_l O s f__)l g_ = (g_l gz_l %_) and 2;_ = (X_l 'II)’_I %’_)I eq-(2)

-

becomes
AL = auafaug_ +a_igd_ + £1F
N
+ E{A_f - a_ %S + tat} + nf_ + h.c., (3)

where %S = C$T. The first line can be diagonalized by orthogonal

transformations
¢y v 5 1 1 a_ o_ f_
-1 W (4)
0, ¥, I, V2 \-1 1/ \a. 9 %
resulting in v
_ +_ M _ +_ M - . _ . + _ +
AL = 3 ,67°87¢) = 3,453 Oy + 0y iAW) -0, ifv, + £ f-£F,
Byt et ety 7 o c +, +__+
+ B - ) - By B W+ ¥ (47-07) +h.c.]
2
o + gt
+ () +E,+ £, +£)). (5)

V2
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From eq. (5) we derive the field equations

E o+
09, =09, = - = ¥, (6a)
1 2 /3 -
n
gy, = iy, = % ve, (6b)
TS H o " (6c)

Clearly, the fields ¢l and wl_ are fields of positive metric while ¢2
and wz_ are ghosts of negative metric, forming a supersymmetric set of
dipole fields. We show that these dipole fields are unobservable yet
break supersymmetry spontaneously. For this reason we call this scheme
"supersymmetric dipole mechanism."

It is easy to see that ¢l - ¢2 and wl— - wz_ are free fields:
D(¢l = ¢2) = 1z(wl_ - wz_) = 0, (7)
which allow us to impose the subsidiary conditions
(+) _ (+) _
(¢ = ¢,) ' |phys> = (¥_ - ¥, )" [phys> = 0. (8)

The combinations ¢l - ¢2 and wl_ - ¢2_ turn out to be zero-norm fields,
while ¢l + ¢2 and wl— + ¢2_ are removed from physical states by eq.

(8), and the net result is that they produce the breaking term sponta-

neously
n Nt
~En(A_ + A]), (9)
which is obtained by substituting (6c) into (5). Note that, although

supersymmetry is broken spontaneously, there appear no physical Goldst-
ino nor vacuum energy. This situation arises because one of the
Goldstinos is of negative metric. We can also show that the mass
splittings between bosons and fermions are generated without contra-
dicting supercurrent conservation.

Eg. (8) gives the desired breaking terms Le’ Lb’ L

a and Lc in
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(1) by setting %_ =9 , @E, ¢E and ?++W__, respectively, where W++
and ¥__ are the spinor superfields of the gauge field strengths. The
term La can be obtained essentially in the same way by replacing the
chiral multiplets S_ and g_ by two vector multiplets V and 3.4)

Now we wish to point out another peculiar feature of this model by

choosing the Wess-Zumino model for the matter part and ¢_ for g_.

2 1 2 1-. 1.2 1
(auA) + f(auB) + Ewlz¢ + 3FT + 56

= 2
L0 =

N

+ m(AF - BG - %W) + g(AzF - B2F - 2BABG - Ay - B@inw). (9)

The additional Lagrangian gives a linear A term and thus the scalar
field A acquires a nonvanishing vacuum expectation value a. The vacuum

energy is
V(a) = 3(m + ga)’a® + /2t a, (10)

and a is determined by the minimization condition of this potential.
Obviously V(a) may vanish or become negative, contrary to naive expec-
tation. This is precisely due to the presence of negative-metric fields
To see this, we have only to consider the linear part of the super-

current

g, = v, [Em o+ gaay + (L o+ By + (L= Ry ). (11)
u L) /3 vz 202
By using the canonical equal-time anticommutators of y, wl and wz,

we get

1 + 3 1 2 n £a, 2 n fa, 2
Z<0{}{s_, s }|0o> = Jd x[{=(m + ga)al}” + (— + ) - (= - =),
4 g a’ Ca /z vz 2 7 2]

(12)

where the negative sign in the last term is due to the negative metric
of wz. Eg. (12) agrees with (10), implying that the naive argument for
positive vacuum energy must be modified in the presence of negative-

metric fields.
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In conclusion, we have shown that all the explicit soft breakings

of supersymmetry may be regarded as spontaneous, providing with a

theoretical basis for their softness. This model is a first nontrivial

example with supersymmetry broken spontaneously but with not necessarily

positive vacuum energy owing to an unobservable Goldstino of negative

metric.

Finally, from our results, we conjecture that the absence of

quadratice divergences may lead to supersymmetry either unbroken or

broken spontaneously. Some results in this direction have been obtained

recently.

6)

The author wishes to thank Professor Y. Fujii for useful advices

and careful reading of the manuscript.
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NOSONOMY OF AN INVERTED HIERARCHY MODEL

T. Banks
Department of Physics and Astronomy
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Israel

This is a report of an unsuccessful attempt to build a realistic
Grand Unified model based on Witten'sl inverted hierarchy mechanism.
The work was a collaboration with Vadim Kaplunovskyz. Witten's pheno-
menon is a common property of supersymmetric gauge theories in which
supersymmetry (SUSY) is spontaneously broken by the vacuum expectation
value of an F term.

Details of the mechanism:

oW =
1) Wi—# 0 for all ¢i and W = cijk¢i¢j¢k+cij¢i¢j+ci¢i
2
imply that the potential V = %%— has a line of degenerate minima
i

extending to «. Call this flat direction X.
2) The one loop radiative corrections to the potential V(X) for large X
have the form
M4C£nX/M (M is the Lagrangian mass scale).
In a gauge theory C can be negative. Renormalization group analysis2
shows that in many cases V(X) develops a minimum at X = O(Mel/g )
with g a_small coupling and M the SUSY breaking scale.

2
3) Since g—g = 0 the partner of X is the Goldstone fermion.
X

4) when X>>M some particles get mass of 0(X). These are precisely those
particles which couple to X (to order %). The large part of the mass
matrix is

<X>C

b0

xij itj
So the couplings of particles of mass <M to the Goldstone fermion
are 0(M/X). This implies that supersymmetry breaking in the spectum

has the pattern

Supersymmetric mass breaking
0 (X) 0 (M)

0 (M) 0 (M2/x)

<0 (M2/X) 0 (Mz/X)

so only particles of mass < O(Mz/X) can be identified with the real

world.
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The model:
Fields A,Y in 24 of SU5
X,2 in 1 of SU5
H,H in 5,5 of SU5

+ quarks-lepton superfields

W = Atra®y + A'(tr(a?)-m?)x

+ BHAH + vyZHH
+ quark lepton couplings to H+H

When X, Y get large expectation values all chiral superfields except

Al,l' Y8,1’ Y1’3, X, Z, H, H+quarks and leptons get masses of 0(X)

(indices refer to SU3><SU2 transformation properties). Also
SU5 hd SU3><SU2><Ul
Coset gauge boson masses are 0(X). Al 1 gets mass of 0(M). The other
1

masses are O(MZ/X) or O.

Diseases of the Model

I. Renormalization

With 3 generations of quarks and leptons color is not asymptotica-
lly free above 10 TeV and becomes strong before the GUT scale is reach-
ed. (2 loop terms ¥ 1 loop)
Most realistic model has 2 generations but

A
e.m 137

AQCD Vo100 Mev
24

= MGUT =10 GeV 18

Best we can do with MGUT < 10 GeV 1is

M = 1018 GeVv

o

A "~ 100 MeV
1

OLe.m.’\' 13

1
e.m QY 137 forces AQCD 10 kev

The problem is caused by the light Mv10 TeV color octet superfield Y

choosing «

8,1
which is essential to the inverse hierarchy mechanism. We have not been

able to construct a model without this field.
II. Gravitational Problems
1) Gravitino mass density of the Universe
Pagels,Primack% Weinberg4 bounds on the SUSY breaking scale
M < 2x10% Gev or M > 10" Gev
(actually the lower bound on M may be higher depending on the details

of R symmetry breaking. We make the optimistic assumption that our
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model's R symmetry can be arranged so that this mimimal bound is satisfied).

In an inverse hierarchy model

e 4

o £ 100 Gev and 10t 18

GeV < X < 10°° Gev

The first estimate is due to the fact that SUZXU1 breaking in these models is a2loop

.. . 2
radiative correction”. So

109 GeV <M < 1011 GeV

The model is barely compatible with the minimal bound. Factors of Wz could be
important. Note compatibility = X 2> 10'® Gev.
2) Gravitational corrections to the effective potential classical coupling to super-

gravity implies5

LR R

EEMEE
o¢ M 2 M 2

p p
In Witten's original scenario Mp = 0(M) in the fundamental gravitational Lagrangian

+

¢ ¢
Z

M
P

lZ

and the physical Planck mass arises from a non-minimal gravitatiomal coupling Vg X R
to the X field. But in this case the above gravitational correction completely
swamps the radiative corrections which create the inverse hierarchy effect. So we
must give up Witten's attractive explanation of the ratio between the supersymmetry
breaking scale M and the Planck scale (this problem was pointed out to me by Ed
Witten).
ITII. The Revenge of Hierarchy

SUZXU1 breaking must be a radiative effect since tree level scales M, X are

both > > 100 GeV. To obtain a nontrivial effective potential for H, H we must couple

them to SUSY breaking. There are two (?) possibilities

= wrong SU. breaking

5

6W = BH,Y'H’
I J 1
(Witten)

SW

It

BHiAjH

<A> =2,

_3_3

gives mass of O(M) to all components of H, H. Solution by fine tuning

§'W = yiH

10

tune Y (accuract 107~ 10_11) to cancel doublet mass. Brilliant solution of fine
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tuning problem - the sliding scalar:
8§'W = yZHH

(proposed independently by Witten, T.B. and Kaplunovsky, Dine + Fischler, Dimopoulos
+ Raby)é’2

If the radiative effective potential favors parallel expectation values of the
doublet components of H, H (and it does for some values of parameters)z’6 z will
adjust itself to exactly cancel the doublet mass.

Unfortunately there are radiative corrections to the effective potential for
Z which are much bigger than this term, so <Z> will probably not sit at the right

point. We still have a fine tuning problem of 0(10—10

). This problem is more
serious than the others but it may be curable by a change in the treatment of
H, H. The other problems seem to be quite general features of inverse hierarchy

models at least for an SU; gauge group. We have not been able to find models

based on SOlO’ Thus we conclude that Witten's inverted hierarchy does not work.
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GRAND UNIFIED THEORIES WITH SYMMETRY
AND LOCAL SUPERSYMMETRY

R. Arnowitt, Pran Nath, and A.H. Chamseddine
Department of Physics
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Abstract

The properties of local supersymmetric (LS) grand unified models based on the
gauge group (N=1 supergravity)xSU(5) are described. The gravitational interactions
of supergravity cause a dynamical symmetry breaking of both SU(2)xU(l) and super-
aravity at the mass mg = sz v 300 GeV where m is the scale of supersymmetry
breaking. These results are maintained at the one loop level. The models described

are realistic in that they are in accord with low energy phenomenology.

1. Introduction

Over the past year, supersymmetry has played an increasingly important role in
model building in grand unified theory. The intrinsic appeal of a symmetry which
combines fermions and bosons into irreducible multiplets, along with the fact that
realistic supersymmetric (SUSY) GUT models now exist(l) has greatly stimulated inter-
est in such theories. Thus SUSY models can correctly account for the b quark to T

lepton mass ratio mb/m the electro-weak mixing parameter sinzew, and yield proton

s
lifetimes tp'v1031 years. Perhaps most remarkable is the fact that supersymmetry
offers a nossible way of maintaining a mass hierarchy without the necessity of fine
tuning the parameters of the theory in each order of perturbation theory(z). of
course, supersymmetry must be broken in the real world, and if the mass hierarchy
is to be maintained in the presence of this breaking, the scale of supersymmetry
breaking mg must obey mg "~ 1 TeV, so that Higgs masses remain small. It has been
pointed out, however, that cosmological considerations require that the actualscale
of suoersymmetry breaking occur at a mucﬁvhiqher mass(3 , i.e.,atm™" 1011 GeV, and
a number of models have recently been proposed(4) where the low eneray phenomena are
“protected" against seeing directly the effects of the suversymmetry breaking phen-
omena at the intermediate mass scale m.

The above SUSY models are all based on global supersymmetry. For most of these
theories, the GUT mass M is quite large, i.e., MV 1016 GeV and hence kM % 10_2
(where the Newtonian constant is G = K2/8n). Thus gravitational effects may no
longer be nealiaible. We present in this report a description of some of the prop-
erties of a new class of GUT models based on lgggl_supersymmetry(5’6’7) (LS) con-
structed by coupling M=1 at supergravity 8 to a set of scalar left

multiplets, and a gauge vector multiplet. The gauge groun of the theory is thus
(N=1 supergravity)xG. We will choose G to be SU(5) here (though other possibilities
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can be considered). Gravity is thus included into the grand unification, and gravi-
tational affects are indeed found to be important. Some of the material presented

here overlaps with other work in this area. Thus the idea that local supersymmetry

should be incorporated in GUT models has also been suggested by Weinberg(g)

and by
(10} .

Ovrut and Wess The coupling of supergravity to an arbitrary number of chiral
multiplets and a gauge multiplet has independently been worked out by Cremmer et ‘

a1, (1)

2. Survey of Results

Before describing the details of LS GUT models, we 1ist here briefly some of
the results obtained, and how LS GUT differs from the global SUSY GUT: (1) If super
symmetry is not spontaneously broken in SUSY models, the different vacua arisina
from the breaking of G [e.g., SU(5), SU(4)xU(1) and SU{3)}xSU{2)xU(1)] remain degener-
ate. IN LS GUT, however, the gravitational interactions produce a splitting of

(5.9,10) of size NKZMG (energy/vol). Thus one of the problems of SUSY

these vacua
models is automatically overcome (without introducinag any ad hoc terms in the super-
potential to break supersymmetry). (2) If one introduces a super-Higgs potent-

t1a1(12’13) with mass scale m, into the supernotential,

gg_y = MP(Z+b) (1)

(where Z is a scalar superfield and b is chosen to adjust the cosmological constant
to zero) then one can construct LS models where there is simultaneous spontaneous

(5)

breaking of both supersymmetry and SU(2)xU(1) at the same mass scale mg where

_ 2
me = km (2)
Since experimentally, electroweak breaking occurs at me 300 GeV one has m ~ 1010

-10* Gev in agreement with the cosmological bounds 3) on m. Eq. (2) is a remark-

energy phenomena. It can occur because supergravity allows "semi-gravitational"
phenomena. (Recall that « ~ Gl/z.) The LS model thus relates supersymmetry break-
ing to electro-weak breaking, the Tow eneragy regime being dynamically "protected"

from the relatively high super-Higgs mass scale m by the factor km in Eq. (2). It
is interesting to note that Eq. (2) represents a form of "geometric hierarchy"
{(arising here at the tree level) in that m ~ /ﬁ;ﬁ;~ where m, is the Planck mass.
(3) As discussed in (1) above LS GUT automatically produces'O(KZ) splitting of the
different gauge vacua even before supersymmetry breakina. If one arranges the phy-
sically interesting vacuum [e.g., SU(3)xSU(2)xU(1)] to have zero cosmological cons-
tant, then unfortunately it will lie highest. While Weinberg(g) has pointed out
that this vacuum is most likely stable against finite bubble formation leading

to decay into the Tower vacua (since they are in anti-deSitter svaces) it is of
interest to ask whether one may circumvent this problem more directly. When the
super-Higgs potential is included, this is indeed the case, and one may construct
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LS models where the SU(3)xSU(2)xU(1) vacuum is the absolute minimum(6). In these
models the O(KZ) corrections to the splitting cancels, and the degeneracy is 1ifted
in the K4 order by the super-Higgs effect. One finds that the vacuum splitting is
now Nms4 = K4m8 (instead of %KZMG). Models of this type may have interesting cosmo-
logical consequences since the smallness of mg implies that the Universe will not
choose the physical vacuum until relatively late in its development. (4) A key fea-
ture of the above tree results is that those fields whose vacuum expectation values
(VEV) vanish in the alobal limit, k+0 (e.qd., the electro-weak Higgs fields) grow
VEV's of size ng = sz (rather than ~m or KMZ). It is clearly important that these
features be maintained when loop corrections are included for the theory to be physi-
cally viable. We have examined the one Tloop terms(7) and have established the
following:

(14) if supersymmetry is not spon-

taneously broken at the tree level, it does not break perturbatively at the loop

(i) As is well-known in global supersymmetry

level. A similar theorem holds at least to one loop in LS GUT models: if the super-
Higgs potential is set to zero (so no tree spontaneous symmetry breaking of super-
symmetry occurs) and if the cosmological constant is set to zero, there is no pertur-
bative dynamical symmetry breaking at one loop to arbitrary order in k. The result
follows from a remarkable set of cancelations of k-dependent terms (over and above
the global cancellations) in the Toop expression and may in fact hold also at higher
order. .

(i1) When the super-Higgs potential is present, the one loop contributions pro-
duce non-vanishina contributions to the effective potential of size %A4ms4 = A4K4m8
where A is a characteristic dimensionless coupling constant. The tree effective

4 and so the loop corrections do not destabilize the tree

potential is of size’wgms
results (provided the counlina constants are small enough so that the loop expansion
is valid). The significant phenomena here is the cancellation of terms of size

»<M3m2 and |<2M2m4 which would have swamped the tree results and hence negated the pre-
vious results. Thus, even in the presence of gravitational effects, the loop correc-
tions shield the low energy reaime from the large mass m, and produce supersymmetry

breaking effects of size m = sz.

3. Supergravity Couplings

Standard arand unified models-are based on a set of left-handed spinors XLa,
a = 1...N describina quarks and lentons, aauqe vector mesons V % in the adjoint re-
presentation of the aroup G (a is the group index), and a set of scalar Higgs mesons.
For alobal SUSY models, each of these fields must become members of a supersymmetry
multiplet. The two basic multiplets for constructing supersymmetric theories are the
scalar left handed chiral (F-type) multiplet,

L=z, % h) (3)
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and the vector (D-type) multiplet with components
(C, &, H, K, Vu, A, D) (4)

In Eq. (3), z = A+iB is a complex scalar field and h = F+iG are auxilliary (con-
straint) fields. In Eq. (4), £ and A are Majorana spinors, C,H,K,D are scalar
fields with D also an auxilliary field. In constructing models, both the matter
spinors xLa and the Hiags mesons are placed in left handed scalar multiplets. Thus,
the quarks and leptons gain supersymmetric scalar partners ("squarks" and "sleotons")
and the Higas mesons gain spinor oartners ("“higgsinos"). The cauae vector mesons are
placed in a vector multiplet. In the Wess-Zumino aauqe(15) only the last three com-
vonents of Eq. (4) are non-zero:
V= (VHO‘, 2%, D%) (5)

Thus, the gauge mesons gain spinor partners ("gauginos"). A convenient tensor calcu-
lTus of multinlets exists whose rules follow naturally using superspace methods(16).

We now discuss the coupling of these multiolets to superaravity. The coupling
of a single chiral multiplet and of the vector multiplet to supergravity had orevious-
1y been obtained(17’18).
arbitrary number of chiral multiplets with simultaneously a gauge vector multiplet

For GUT models, it is necessary to generalize this to an

being present(5’11). We briefly summarize the analysis and some of the results.
The basic rules for counlina F and N type multiolets of Eqs. (3) and (4) to super-
gravity maintaining supergravity dauge invarianceare civen in Refs. (17,18). To
construct the most generally allowed Lagrangian then, one forms the most general F
and D type multiplets [of Eqs. (3) and (4)] out of the matter and Higas chiral multip
lets Za and the cauge multiplet V¥introduced in Eq. (5) which are also invariant
under the gauge group G. One then couples these to supergravity according torulesof
Refs. (18,19). A convenient way of carrying out the calculation is to first couple
the gauce multiplet V to the chiral multiplets Za (according to how the Za transform
under G) and then couple the resultant structure to supergravity

Using the rules for mu1tip1ét multiolication, computing the F and D contribu-
tions to the Lagrangian, eliminatinc all auxilliary variables, and making various
simplifyina point transformations, one obtains after much labor the final form for
the Lagranqian(5’11) It is, of course, too lona to record here! We give now the
tree effective potential of the theory which arises from the non-derivative couplings

of the scalar fields z,: ‘ 2
+ o] o 2
V(z, 2) = 5 E[6,6," - 2 Peg’] + % > [2,7(1%2),] (6)
where (TOL)ab are the group generators,
2
+ 1 2.+ _
G, =alz), a+ %f z,9(z); E=exoyz oz 5and g, = 8g/5z, (7)

Here g(za) is the superpotential whose specification describes the specific model.
(We have also chosen for simplicity interactions that normalize the spin zero kinetic
energy to unity.) We will give below the fermion mass matrices of the Lagrangian,
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after the question of spontaneous breaking of supersymmetry is discussed.

4. Spontaneous Symmetry Breaking

Eq. (6), of course, correctly reduces to the global supersymmetry effective
potential in the 1imit «-»0, and exhibits the gravitational clothing produced by
supergravity. In all spontaneous symmetry breaking solutions that we will discuss,
the second (T%) term of Eq. (6) vanishes, and so we will neglect it in the follow-
ing. The extremum condition, V a s 0, yie]ds on the real manifold the relation

Tapp = (8)
where 2 4
T =0, +5 (2,00 +2,0,) + 5 2,2,0 - %6, g (9)
ab " “,ab 2 a’’h b¥,a 4 “a®b- ab
If det Tab # 0, then Eq. (8) requires that Ga = 0. These conditions imply that
supersymmetry is not broken (since the supersymmetry transformation reads 17)

6xLa = - % vE Ga+€L + ... and so<6xf> vanishes at the minimum). The gauge group G,
however, wou1d‘in general be broken. The requirement Ga = 0 leads to a set of solu-
tions z, = Za(1) at which the effective potential becomes
i 3 2 i i)y,2
Vin0) = -3 P yje ()12 < 0 (10)

Thus the gravitational interactions remove the degeneracy in O(Kz) of the different
(5’9’]0). (The
spacing of the vacua are generally of size K2M6, where M is the GUT mass, for most
models.) However, it may turn out that Ga cannot vanish for some channels, implying
that Tab has at least one zero eigenvalue at the minimum. Under this circumstance,

gauge vacua found in SUSY models even before supersymmetry is broken

supersymmetry will have broken spontaneously. This, of course, is the interesting
case, and what happens depends in part on the model chosen.

As an interesting case we consider a model based on the global SU(5) SUSY GUT
of Sakai and Georai and Dimopou]os(1) where g = 9 + 9 with

= X Y . X
9 = A1 T, Z + 5 T Z + 2H, - (3% v 3M8 y)H + A5UH H

+ €y MY 0 g, = n°(Z + B) (11)
where ZX is in the adjoint 24 representation, H‘x and H are 5 and 5 Higgs multip-
lets, U is a singlet and MY and M”_ are the matter 10 and 5 representations. 9o is
the super-Higgs potentia1(]2’13) of Eq. (1). If 9 is set to zero, one finds to
lowest order three global solutions ]), i.e., HX H “, U, MY and M’y vanish and

(1) ny(o) =05 (i) fxy(O) -5 " y 56x565 I

<

sy px (0) x X .y y
(ii1) y = M[2s y - 5(875875 + 6 46 4)] (12)
These solutions preserve SU(5), SU(4)xU(1) and SU(3)xSU(2)xU(1) respectively as well
as supersymmetry. If we set 9y = 0 then a9 breaks supersymmetry and Eq. (8) yields
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70 Caz - By s B0 - e v B )k a = 8l (13)

where B(o)
solution of Eq. (8) for the full g = gy + g, can be obtained as a perturbation
around Eqs. (12) and (13). We find that the solution generated out of case (iii)
of Eq. (12) simultaneously breaks SU(3)xSU(2)xU(1) down to the physical vacuum
SU(3)ch(1) and supersymmetry at the same mass scale mg = km” by growina VEV's for U,
H,~ and K<

has been chosen to set the cosmological constant to zero. The general

U=-axm/(/Z ) W =W =ym/(/Z )8 (14)
where x and y obey the algebraic equations

4+ x(3-/T-60) +y2 4 (1-3)% = 0 (15)

y2(3 - /3 - 6)) 4+ 2xy2 X =03 %= Ap/hy
Eq. (14} implies

mg = £(246 GeV); £ = Ag/y v 1 (16)
and hence the super-Higgs mass scale is

m = vE (2.4 x 1010 Gev) | (17)
which is consistent with the cosmological estimates(a). The gravitino mass is

M3 /o = ;%: exp(2 - ¥3 ) = £(228 GeV) (18)
It should be stressed that relations such as Egqs. (16)-(18) are obtainable only
because the theory correlates the supersymmetry breaking with the SU(2)xU(1) break-
ing. Otherwise one would not be able to theoretically estimate M3 /-

The above theory is “realistic" in the sense that the breaking of SU(2)xU(1)
occuring allows one to recover all the usual low energy phenomenology. Flavor
changing neutral currents are suppressed and there are no Tight scalar bosons (since
they gain a common mass ~v ms). The gluino and photino are massless at the tree
Tevel but presumably grow mass ~ 10 100 GeV at the loop level.

5. Ground State In LS GUT

As was pointed out in Sec. IV, even if supersymmetry is not broken, the degen-
eracy of the different gauge vacua is generally lifted in O(KZ). The different
solutions will in general have large cosmological constants, however. One can, by
adding a constant to the superpotential a(z) cancel the cosmological constant in any
one solution (i.e., choose the constant so that g(z 1)) vanishes). Eq. (10), however,
shows that all other solutions will Tlie Tower in anti-deSitter spaces(s’g’lo).
Weinberd has pointed out that most 1ikely the Minkowski solution is stable against
decay into anti-deSitter spaces by finite size bubble formation ? . However, it is
important to note that the above result that the Minkowski solution Tie highest is
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actually model dependent and not a aeneral property of LS GUT.

To see this, we again write a(z) = gl(z) + gz(z) where 95 is the super-Higgs
potential. Then one may evade the above result if we choose gl(z) such that 91(2(1))
all vanish at least in the global 1limit «-+ 0, re-establishing the degeneracy to
O(Kz). Further, the existance of the super-Higgs potential implies that super-
symmetry has broken and so that one linear combination of the Ga’ call it Go, is non-
zero. Thus Eq. (10) is modified to read

R AL AR P FIC LS BEN T (19)
It is clear that the r.h.s. of Eq. (19) is no longer negative definite, and which
state Ties lowest depends on the model. It is indeed possible to construct a
gl(z) for which the SU(3)xSU(2)xU(1) is the absolute minimum (with SU(4)xU(1) lying
higher). In models of this type, the different vacua are separated by O(ms) ~v 1TeV.
Thus the cosmology of such models may have interesting new features.

6. Loop Corrections

When loop corrections to the effective potential are included, Eq. (8) is
modified to read

E Tabi + La =0 (20)
where at the one loop level La has the form
_ 24 2, 2 2,2
L, = g (-1)°%(29 + 1)TrMJ M, a nM " /u (21)

In Eq. (21) MzJ is the mass matrix for the particles of spin J. One may obtain the
spin 0 mass matrix by differentiating Eq. ( 6). MWritina z, = Aa + iBa, and evaluat-
ing all VEV's on the real manifold we find

2\ A _ . 3 2. I
(M )ab = g’ac g’bC + §9abcg9c ] K (g’ab g+ g9a g’b) (22)
2B _ . - N B N
(M )ab = 9sac Iope " Irape Ye T2 K (g’ab -9, g’b)
2 .
2 ~ 2
+ K 6ab(§,c 99C - KT .g ) (23)
where we have introduced the notation
|<2 2
g = exp(G z,7)a(z) (24)
The fermion mass matrices are defined by
F _1-a b -a o
“Lhass =2 X MapX * 9 X Mg (25)

The formulation of Sec. (3) yields the values

2
Mab = 92ab - %?'5ab g - %'g’a Up/B My T (Td)abzb (26)
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We note the mass matrices contain k dependence both implicitly in the function § and
explicitly. Since

~ KZ +

g’b = (EXp T Za Za)Gb (27)

the vanishing of §,a is equivalent to no supersymmetry breaking. For this soluticn
the vanishing of the cosmological constant then implies § =0 at the minimum.

We first consider the situation where g(z) does not contain a super-Higgs.
One may then show(7) that if at the tree level there exist solutions with zero
cosmological constant and no breaking of supersymmetry (§,a =0 = §) then perturba-
tively this situation is maintained at the one loop level to all orders in k. This
result follows from the fact that Eqs. (22), (23) and (26) imply that La has the

form

(l)g,b N Ta(1)g (28)

where Tab(l) and Ta(l)
Eq. (28) arises from the fact that there is a remarkable cancellation of « dependent

are regular in the 1imit @,a,ﬁ + 0. The special structure of

terms in La that do not have either one factor of gy, or . Eq. (20) now clearly has
the solution @,a = 0 = § maintaining the tree situation. A1l other possible solu-
tions with zero cosmological constant would have to be non-perturbative (i.e., with
loop corrections cancelling the tree pieces).

We next include in the super-Higgs potential. We saw in Sec. (4) that super-
symmetry then spontaneously breaks gt the tree level gith ;hz Higgs mesons growing

vacuum expectation values Mg = K and all Q,a S o= km (except in the super-

Hiags channel itself). There is again a cancellation of all the large terms of
4 in La yielding a remaining part La N A4K3m6 = A4ms3

(7). This is to be compared with the

order KMm3 and K2M m where A

is one of the dimensionless coupling constants
tree terms where Tabi N A2m53. Thus the 1ooplgorrections again "protect" the Tow
energy phenomena from both the GUT mass M~ 107" GeV and the intermediate mass scale
mo 1011 GeV and preserve the general structure of the tree results!

Finally, one might ask if it is possible to grow the super-Higgs term dynami-
cally and deduce the size of the mass m rather than inserting it by hand. The above
discussion shows that this can only be achieved non-perturbatively and it is in fact

possible to construct models that do this 7). In this case one finds

m v 2L 121172 o 10M Gev (29)
Theories of this kind contain only two mass scales: the Planck mass K'l and the

GUT mass M, both m and m being deduced from these.
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THE AUXILIARY FIELD / ULTRAVIOLET FINITENESS CONNECTION

P.K. Townsend

Laboratoire de Physique Théorique de 1'Ecole Normale Supérieure
24, rue Lhomond, 75231 PARIS CEDEX 05, FRANCE

ABSTRACT :

The status of the auxiliary field program for supersymmetric field theories is
reviewed, with emphasis on the implications for improved ultraviolet behaviour, and
conversely on the implications of ultraviolet behaviour for auxiliary fields.

1. INTRODUCTION

For many years one of the central problems of supersymmetric field theories has
been that of auxiliary fields. Generally, supersymmetry transformations that leave
invariant a given action will close to form the usual supersymmetry algebra only when
the field equations are used. This is called "on-shell supersymmetry". If field equa-
tions are not needed to close the algebra then the supersymmetry is "off-shell". For
this to happen we must have equal numbers of boson and fermion field components as
well as equal numbers of boson and fermion propagating modes (i.e. states). Since
fermions always have more components than they propagate modes, a balance in the
number of boson and fermion states will usually mean an imbalance in the number of
boson and fermion field components. Hence the need for boson "auxiliary" i.e. non-
propagating, fields to balance the number of boson and fermion field components off-
shell while not disturbing the balance of states. Of course equality of the numbers
of bosons and fermions is only a necessary condition for off-shell supersymmetry, not
a sufficient one. In general, a solution to an auxiliary field problem will require
fermion as well as boson auxiliary fields.

There are several reasons why we should want auxiliary fields. The most obvious
one is that if the algebra of transformations includes field equations then these
transformations are tied to the particular action that yields these equations. The
introduction of auxiliary fields frees the transformation rule of reference to a
particular action. This allows, inter alia, the addition of invariant actions to
produce new invariant actions. Without auxiliary fields this involves a laborious
procedure in which terms are added order by order to the action and transformation
rules to obtain a new invariant action with new transformation rules.

k second, and more important, motivation for auxiliary fields is that they
allow us to consider superfield perturbation theory in which component field Feynman
graph calculations can be done together, and with more ease, as supergraph calculations.
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This formalism allows us to deduce immediately, just from the form of the Feynman rules,
many "non-renormalization theorems" which have remarkable consequences for the ultra-
violet behaviour of the N-extended supersymmetric fheories.

Many of the authors that have contributed to our understanding of auxiliary fields
have advanced as one of their motivations a better understanding of ultraviolet
behaviour while, at the same time, most of the real progress in this field has been
technical. Given some recent advances the time now seems ripe for a survey of what we
can expect auxiliary fields to say about the quantum theory, and vice versa.

2. RUXILIARY FIELDS

Consider the simplest example of an on-shell supersymmetric theory, the Wess-
Zumino mode]l,
2 2 <
L= -LEN - LGB - LR (2.1)
with scalar A, pseudoscalar B and spinor \d . One easily establishes that the algebra
of supersymmetry transformation rules that leaves I = SZ d4x invariant, closes to give
the usual supersymmetry algebra only if the X field equation, #)\ =0, is used. To
extend (2.1) to an off-shell supersymmetric model we require auxiliary fields, and a
count of components shows that two auxiliary scalar bosons would be the simplest
solution. To find these auxiliary fields we can investigate the various irreducible
representations of supersymmetry on fields for N = 1, which can be found by, e.qg.
superfield methods. One easily finds a representation with maximum spin 1/2 with the
fields (A, B,A, F, G), corresponding to an N = 1 chiral superfield). F and G are
obviously the wanted dimension two auxiliary fields and they will occur in the action
as F2 + GZ. The new, F and G dependent, transformation rules will close off-shell, i.e.
without the use of field equations.
What makes this example so simple is the fact that the highest propagated spin,
i.e. 1/2, is also the highest spin of the off-shell multiplet of fields. In general,
for massless theories the maximum (propagating) spin, s, is bounded from below by

s (propagating)l} N (2.2)
4

where N is the number of supersymmetries. For massive on~shell multiplets,or off-shell
multiplets of fields, the bound is

s (off-she1l) > L (2.3)
2

>
which is more stringent. If s (propagating) > N/2 we can always find an off-shell
nultiplet of fields with maximum spin s, and this will give a set of auxiliary fields.
For those models for which N/4 & s(propagating) < N/2 the auxiliary field problem
is much harder, and probably without a solution for most cases. At any rate, it is
clear that in such cases the off-shell multiplet of fields must contain spins higher
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than the maximum propagated spin. This can happen in two ways.

(1) We may have unconventional field representations with spin "discontinuities"
in the massless limit. The simplest case is the gauge antisymmetric tensor A,“)
which is spin 1 off-shell but which propagates a massless spin-zero mode (if the
kinetic term is the usual Jghp W one).

(i1) We may have high spin (i.e. higher than the physical propagated spin), non-
gauge auxiliary fields.

For those cases for which s(propagating) 2 N/2 there is a systematic way to
w2, The
best known example is the N = 1 spin 2 conformal supercurrent multiplet, containing

construct the relevant off-shell representations by means of “supercurrents

the (traceless) energy momentum tensor, T,w » the supersymmetry current S/,~ and the
axial current '},f . For the model of (2.1), for example, these currents are bilinears
in the fields A, B, A and they are conserved as a consequence of the A, B, N field
eguations. The currents themselves (T,,.,; , S/‘ . j,_s ) are not subject to field
equations, however, and therefore form an off-shell multiplet. The corresponding
"contragredient" multiplet of fie]ds{k,ﬂ, s Wr , Ar} is also an off-shell
representation with gauge transformations determined by the conservation conditions
on the currents via the Noether coupling I(int)= g\\-T . That is, §h is whatever
leaves I(int) invariant. The multiplet { hr,, , L\)r , Ar} is that of N = 1 conformal
supergravity.

Given a maximum desired spin, s, e.g. 2 in the above case, the supercurrent
construction yields an off-shell multiplet with this spin provided there is a"matter"
multiplet of maximum spins /2 that can be used to form it. Since this maximum spin
is bounded by (2.2) we again arrive at the bound s > N/2 for the off-shell multiplet
of currents, or fields. Thus we can say that the really difficult auxiliary field
problems start when there is no lTower spin "matter" to which the given off-shell model
could couple. Precisely, systematic methods, such as supercurrents , yield auxiliary
fields for :

(i) matter theories (spin  1/2) for N =1 only

(i1) gauge theories (spin € 1) for N 2

(ii1) conformal supergravity (sping?2) for N <4
The restriction to conformal supergravity in (iii) is because the supercurrent method
yields an irreducible multiplet which is what is needed for conformal supergravity.
The Poincaré supergravity theories are based on reducible (partially lacally reducible)
multiplets because such theories couple to a tracefull energy momentum tensor,-T’..”# 0.
To find the Poincaré supergravity theories we must add additional multiplets. For
N=1and N = 2 these additional multiplets have spin {2 and the passage from conformal
to Poincaré supergravity is relatively straightforward. For N2 3 there are no lower
spin multiplets. Any multiplet added to the spin 2 conformal multiplet would itself
have at least spin 2. This is a problem because these higher spin fields will generally
be gauge fields and so could not appear easily as auxiliary fields and even if they
could they would probably not allow consistent interactions. Because of this we can
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add to the 1ist of off-shell theories constructible by systematic methods, only

(iv) Poincaré supergravity (spin £ 2) for N 2.

There have been recently two additional successful constructions of off-shell
supersymmetric theories that fall outside the scope of the above mentioned methods.
They both are auxiliary field solutions with high spin (non gauge) auxiliaries. The
first is a set of auxiliary fields for linearized 10-dimensional supergravity3 which
implies, by dimensional reduction, a solution of the auxiliary field problem for
linearized N = 4 Poincaré supergravity coupled to 6 N = 4 super-Maxwell multiplets.
The maximum spin of the off-shell multiplet is 4. The construction makes essential
use of the 10-dimensional supercurrent obtained asa bilinear of on-shell 10-dimensional super-
Yang-Mills fiel ds4,‘ but the final set of fields is more than those of the supercurrent alone. The
second5 is a set of auxiliary fields for the N=2 matter theorywith spins 1/2 (sometimes called the
hypermultiplet). The problemwitha previous off-shdl versionof this mode]sis that it required one
of the spin zero states to be represented by a gauge antisymmetric tensor, or equiva-
lently a conserved vector. In interaction with Y-M fields this becomes a covariantly
conserved vector, which is a constraint that cannot be solved in a useful way. The
new solution has only conventional field assignments and can be consistently coupled
to N = 2 super Y-M theory. The maximum spin of the off-shell multiplet is 1.

Another approach to the auxiliary field problem is to allow off-shell central
charges7. Here one allows field equations to remain in the supersymmetry algebra if
they can be interpreted as new central charge transformations. For massless theories
these transformations must vanish on-shell, but need not off-shell. This approach is
less restrictive, allowing for example a set of auxiliary fields for the N = 4
Maxwell (i.e. non-interacting) theory, and general methods have been developed for
finding such auxiliary field sets’ * . But for superspace perturbation theory such
auxiliary field solutions are not useful because they cannot be used to develop an
unconstrained superfield formalism. The importance of this point is what concerns us
next.

3. ULTRAVIOLET FINITENESS

A set of auxiliary fields, without an off-shell central charge, is the first and
critical step towards an unconstrained superfield formulation. One proceeds first to
a constrained superfield formulation according to one of several well established
techniques. For example, each field, or field strength in the case of a gauge field,
can be considered as the B = 0 component of a superfield. The transformation rules
can then be used to determine the higher © -components of these superfields. Of
course only the Towest dimension field strength superfields constructed in this way
will be independent. The higher dimension field strengths will occur in the 8 -exp-
anision of the lower dimension field strength superfields. These superfields are subject
to various constraints, or rather identities if one arrives at them in the above
fashion, analogous to the constraint Br'F”° = 0 for the Maxwell field strength.
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If these constraints are solved, e.g. F,w = '3).bw :Da’\,. in the above illustration,
one obtains an unconstrained superfield formulation in terms of a "prepotential" (the
analogue of Ai‘ ). Thus, in the simplest well-known case of the N =1 (1, 1/2)
multiplet the Towest dimension covariant field is the spinor N« which becomes the
© = 0 component of the field strength superfield Wy (x 5, 8). These constraints on
W« are solved by Wy = by DuV , thereby introducing the unconstrained prepotential

These constraints can easily be solved for the free theory but with more difficul-
ty for the interacting theory, particularly for N>1. For N = 1 the solutions to both
the Yang-Mills and the supergravity constraints are known, but for N = 2 neither is
yet known in supersymmetric form. This is probably not a serious problem in principle.
One can obtain a solution to the constraints of the interacting theory as a perturbation
series about the known solution to the free theory constraints. By solving these
constraints either in closed form or perturbatively we arrive finally at an uncons-
trained superfield formulation of the interacting theory. This is the starting point
for the development of superfield perturbation theory.

There is one exception to the need for unconstrained superfields to do superfield
perturbation theory, and that is the N = 1 chiral field ¢ , satisfying Satﬁ =0
(two component spinor notation). The solution to this constraint, for the free field,
is ¢ = B*x , introducing a complex scalar prepotential X . The chirality constraint
is sufficiently simple that with a few modifications to the usual methods of extracting
Feynman rules one can deal directly with 95 without having to use X . Indeed the
introduction of the prepotential X 1illustrates a problem that can be avoided for
N =1 but is endemic‘to N>1 theoriesg. The prepotential X has a gauge transforma-
tion X - X & Dy A” ,» but the parameter 7\;‘ is only determined up to a transfor-
mation R;'—> R ox 3@ ‘§(('3 ) because this transformation leaves X invariant. Hence,
the ghosts associated with the gauge transformation of X , themselves have a gauge
transformation with parameter T\M': T\;‘9 . But the secondary ghosts associated with
this gauge transformation will again have an even Tlarger invariance, with a symmetric
tri-spinor parameter, and so on ad infinitum. This is analogous to the series of
ghosts associated with gauge antisymmetric tensors. In that case, however, the series
involves an increasing or decreasing number of antisymmetrized vector indices and so
terminates.

An infinite series of ghosts, apparently unavoidable for N >1, presents a problem
because the effective action from which Feynman rules are read off cannot be written
down in closed form. However, one can arrange for all but a finite number of ghosts
to decouple, or, in a background field approach, for all but a finite number to couple

only to the background fie]dlo

. In this case the infinite series of ghosts can only
contribute at one loop. This makes one loop a special case that must be dealt with
separately in the background field method. It can then be shown, with the exception

of one loop and on the assumption that an N-extended unconstrained superfield formalism
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exists, that all counterterms in N-extended superfield form must be such that
(i) they are full superspace integrals I = Sdpx A“’NG i (counterterm)

(i1) Z (counterterm) is a local product of superfields

(ii1) Only "covariant"superfields occur in L and in such a way that L is back-
ground gauge invariant.
The first two criteriall follow directly from the Feynman rules and the usual properties
of counterterms. The third criterionlo is more subtle and depends on the deployment
of the background field method. The precise formulation of this method is what deter-
mines the meaning of "covariant". It means pre-gauge invariant, which means that the

superspace dimension 1/2 potential R.; for super-Yang-Mills theories, or the vielbein
EMA and supelr‘-connections.Q.m“B for supergravity, may appear in gauge covariant
quantities, but not the unconstrained prepotentials.
If we choose the Y-M action in D dimensions to be 3 gdx (F;w» such that
dim l\r) =1 then d1m(ﬁ Y = 4 - D (in units of mass). The counterterm at £ Tloops
has the form
- \J N
(97)*" (dx 470 X -
and the same result holds for both super-matter (spins £ 1/2) and conformal super-
gravities if the coupling constant is again chosen to appear as a 3_2 factor multi-
plying a g-independent f . For Poincaré supergravity at { loops we have a coun-
terterm of the form
(x?) L= %o\bx A.wé L
(3.2)
where W is the gravitational constant of dimension (1 - D/2). The minimum dimension
for L in (3.1) is 2 for super Y-M theories, corresponding to the choice 1= R >\d
2 for super-matter, corresponding to 1 = (physical sca]alr‘)2 3 zero for conformal
supergravity, corresponding to 1= = Bw(EM“. Similarly, the minimum dimension
for 4. in (3.2) is zero.
Since counterterms have dimension zero, (after account is taken of the integra-
tion measure and factors of coupling constants), the minimal dimensions of Z imply
the absence of allowed counterterms at € loops in D dimensions if

D4+ %Zl for super-Y-M and super-matter (3.3a)
D2+ (ZN{‘—_ZI for Poincaré supergravity (3.3b)
D4+ ZN{' 4 for conformal supergravity (3.3c)

N is the number of supersymmetries and { the loop order. This is meant to hold beyond

10 that both N = 2 and N = 4 super Y-M theories in

one loop. These results would imply
12,13

= 4 are finite beyond one loop, which appears to be the case up to three Toops
The N = 4 theory happens to be also one loop finite, while the N = 2 theory is not.



246

For Poincaré supergravity (3.3b) would imp]ylo finiteness through 6 loops in

D = 4. For conformal supergravity (3.3c) would imp]y14

finiteness of the N» 3 theories
in D = 4 beyond one loop (and it appears that the N = 4 theory is finite also at one
100p15. In fact, we can do somewhat better for conformal supergravity because the
counterterm available for N = 2 is N‘*x A‘(—) £  which van’ishesls, so the N = 2
conformal supergravity should also be finite beyond one loop.

Al11 these restrictions on counterterms assume that an N-extended unconstrained
superfield formalism exists. This critical assumption is very probably true for the
conformal supergravity theories because their auxiliary fields are all known17, but
appears to be fa]se18’19, apart from a few exceptions, for the N>2 super Y-M and
(Poincaré) supergravity theories. In this case, we may make a weaker assumption :

(A) There exists an unconstrained M-extended superfield formalism (and hence M-
extended auxiliary fields) for N-extended super Y-M or Poincaré supergravity, with
M¢N to be determined.

With this assumption the formulae (3.3) are replaced, in the relevant cases, by

DL 4 + ZM{- 2 for N-extended super Y-M (3.4a)
D2+ ml' 2) for N-extended Poincaré supergravity (3.4b)

But what is the correct value of M ? For super-matter and conformal supergravity we
have, or expect, M = N, and the same is true for N = 2 Y-M theory. Given the restric-
tions on auxiliary fields found in refs.{18, 19\and given the recent progress in the
auxiliary field search of refs.(3, 5)it would appear that we already have auxiliary
fields for almost all those cases for which they can be found, and that M is restricted
by

1l

M £ N2 forN
N

4 Y-M, N = 4 pure Poincaré supergravity

1]

8 Poincaré supergravity (3.5)

(By “"pure" supergravity I mean with no matter multiplets). I say "almost" because in
order to have an M = 4 formulation of N = 8 Poincaré supergravity one needs an off-
shell version of the N = 4 "spin 3/2 multiplet" which is not yet known. But let us be
optimistic and assume that the bound of (3.5) is saturated. Then we arrive at the
conclusion that, for 4 > 1 there is no allowed counterterm in D dimensions at £ loops
if

D< 4+

=
[

4 Y-M theory (3.6a)

DL 2+ N

8 Poincaré supergravity (3.6b)

,@.lm hlm

We observe that (3.6a) is still sufficient to ensure finitenesss. It is interesting
to compare (3.6) with similar results obtained from the superstring approach20 by
extrapolation from one loop :
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D<A+

=
"

4T 4 Y- theory (3.7a)
5

DL 2+ N

1 8 Poincaré supergravity (3.7b)

The results (3.6b) and (3.7b) agree. They also agree with the result of yet another
approach21 and imply that an ultraviolet divergence can be expected to appear at
three loops. The relevant three loop counterterm is also knownzz, so a calculation
for supergravity at three loops remains the critical test of whether we can expect
further "miraculous" cancellations in these theories.

There is a discrepancy between (3.6a) and (3.7a). This is not necessarily a
contradiction because (3.6a) is valid only beyond one loop while (3.7a) 1is known to
be valid only at one loop. If (3.7a) is valid beyond one loop also then it would appear
that divergence cancellations are slightlybetter than one has a right to expect from
superspace perturbation theory. I remark that if M = 3 were possible for the N = 4
Y-M theory, then (3.4a) would yield a formula in agreement with (3.7a), but this possi-
bility is ruled out according to ref. 19.

In all of the above discussion some kind of supersymmetric regularization has
been assumed. But is this reasonable ? The scheme used successfully in practice is
dimensional regularization by dimensional reduction but its internal consistency is
questionab]e23. For general arguments (if not explicit calculations) it is preferable
to avoid it. There is an alternative scheme ; higher derivative regularization. For
gauge theories this fails at one loop but Slavnov has shown24 how a two stage regular-
ization method can be devised in which one loop is regulated separately and supersym-
metrically. When this method is applicable its consistency is not in question, but the
trouble is that it is not applicable unless we have auxiliary fields. The reason is
that the higher derivative terms used to regulate the theory propagate additional
massive ghost modes (whose mass goes to infinity as the regulator is switched off),
and these modes will be in supermultiplets only if auxiliary fields were initially
present. This may seem to crush hopes of applying this method toc N = 4 Y-M and N = 8
supergravity theories, but fortunately auxiliary fields for M = N/2 is just sufficient
to allow the method to work. The point is that in this case the ghost modes of the
regulated theory will be in N-supersymmetric multiplets with a central charge equal
to the mass, and so the N-extended supersymmetry will not be broken by the regulator.
It has been checked that the ghost modes for the N = 4 theory with M = 2 do indeed

form N = 4 multiplets with a central charges.
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Consistency of Coupling in Supergravity with

Propagating Lorentz Connexion

Hitoshi Nishino

Institute of Physics
University of Tokyo, Komaba 3-8-1
Meguro-ku, Tokyo 153, Japan

§1. Introduction

Gauge principle is nowadays the most elegant and successful scheme
in grand unifications of three kinds of interactions other than the grav-
itational interaction. The recent hierarchy problem of grand unification
theories motivates us to consider their supersymmetric extensions (super-
unifications). Once supersymmetry is introduced into the description of
nature, there is no theory other than supergravity [1], which is consist-
ent with the gravitational interaction.

On the other hand, there has been another approach to the gravita-
tional interaction, i.e. Poincaré gauge theory [2,3]. This theory is a
kind of gauge theory of Poincaré group (Pm,Jrs), where the generators
Pm and J.g are treated as equally as possible. In particular, the Lo-
rentz connexion gauge field wurs
field.

With these developments in mind, we have tried in our previous pa-

is treated as an independent propagating

pers [476] to unify these two approaches, i.e. supergravity theory and
Poincaré gauge theory. In other words, we attempted to present "a super
Poincaré gauge theory”, or "a supergravity theory with propagating Lo-
rentz connexion" [476].

This kind of theory is relevant to the problem of hidden symmetry in
extended supergravity theories. Consider for example the recent result
of N=8 extended supergravity showing the appearance of the hidden local
SU(8) symmetry from the original local Lorentz group $0(1,10) in the 11-
dimensional space-time before thé dimensional reduction [7}. The study
of the propagation mechanism of SO(1,10) Lorentz connexion may be hence

as important as that of SU(8) gauge fields.
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Our supergravity theory with propagating Lorentz connexion is based
on the nonminimal and reducible multiplet of Breitenlohner (126 Breiten-
lohner potentials) [8]. It consists of two multipléts: the supergravity
multiplet (SG) and the Lorentz connexion multiplet (LC). In our previous
papers [4n6], we have presented the Lagrangians for these multiplets:
GZiSGa and‘lf LCa* The former is a supersymmetric extension of the
"massless case" of Poincaré gauge theory [3] and the latter contains the
kinetic terms of LC.

The simplest example of °Z2LCa was already proposed by Breitenlohner

r

, which contains the YM-type kinetic term of wu S, i.e. -(l/4)eR S (w)x

TRV
TRV . . .
R rs(w)[8]. We named this Lagrangian C Lcal in our papers [4n6] .

As was noticed in our paper [4], theories with the Lagrangian of the
"massless case" in Poincaré gauge theory may generally have the problem
of inconsistent couplings of wurs to spinor fields. 1In our theory, the

coupling of wurs to its spinor partner X tu is shown to be consistent to

all orders in the total Lagrangian er °ZfSGa 4-ch LCal in spite of the

"masslessness" of the Lagrangian We regard this as an important

SGa’
result of supersymmetry of our theory.
The Lagrangian<lf LCal’ however, has the problem of negative energy
ghosts reflecting noncompactness of the Lorentz group. To circumvent
this difficulty we have presented two new Lagrangians named =Z?LCa2 and

Z LCa3’ which are written in local forms in superspace as [4]

Z ’]'_,Ca_3(z) = 116V(Z) (R(Z))zr (1.1)
= 2
(z) = - v(z) (R(2))" ,
ozf LCa3 (1.2)

with ﬁ(z)s(1/24)emrsv’“”(z)v“‘)(z)Rwrs(z) in the notation of Ref. [9].

c : . (0 .
By examining the free Lagrangians LCa2)(x) and.OZf Lca3 %x) in component
fields, we have shown the absence of negative energy ghosts. The physi~
cal helicity states of these Lagrangians are (8uv (0 ), y 3 Apc(tl/2),
DpG(O )) and (3 a¥ (07), Y 9 ch’(+l/2) Dpc’(o ), respectlvely, where

A4 (au) is the vector (ax1al Vector) component of wupc’ and kpc,(ﬁpc,) is
rs tu
=X
n o
couplings, however, is very difficult, since interaction terms in K
LCa2
and Z LCa3 are far complicated than those in Z Lcal {4,6]1.

In order to obtain at least trilinear couplings in

the dual component of XpG(DpG)[A 6]. The consistency check of w

we
have set up a local tensor calculus for the Breitenlohner pg€2§éials. It
consists of a multiplication rule of two scalar multiplets, a D-type Lag-
rangian and a correspondence rule between a scalar curvature superfield

R(z) and a scalar multiplet. These rules are established up to the first

correction terms (required by local supersymmetry) to the global rules
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[5]. By using these results, we derived the interaction terms necessary
rs tu
=X

o

for consistency check of wu trilinear couplings in aZiLCa2 [5].

The consistency check of trilinear couplings of wur to its spinor
partner Autu is to show that there is a nontrivial solution satisfying

the simultaneous equations: T[uv](k) = 0 and the free field equation of
y IS
o

antisymmetric part of the Einstein tensor in the "massless case" in Poin-

[4,6]. IntuitiVely the former originates from the absence of the

caré gauge theory. In the next section we perform this consistency check

by using the explicit form of T[uv](k) from trilinear terms in aZfLCa2’

§2, Consistency of Couplings

rs

Our check of coupling consistency of wu to A tu

a
istence of nontrivial and propagating solutions of the simultaneous equa-

tions: T[uv](l) = 0 and the free field equation gy 9 AP9 =0 [6]. The

[uv] . . L m_ fsf tu .
form of T () is obtained from trilinear eu Au AB terms lnaZjLCa2

is to show the ex-

In order to simplify the caluculation, we decompose Aupo into the fol-

lowing three components:

poc _ , po .1 , p.o _ 0,0 i, _po
Ao =0 MR LA AR PR i 2 v

o (2.1)
P - op _ 1 p = _i po
" = Yd)\ Y ¢, ¢ = lopo‘)\ ' (2.2)
p - po _
(,Yp(lj ' Yp¢ ).
The field equation of Aupc then takes the form
POy Ppl =
P d A% = 72 0" + §80) =0, (2.3)
which is invariant under the following gauge transformation with the pa-
ramater apoz
PG _ PO _ _pO po
§h = 8¢ =g (Yp€ zZ0). (2.4)

This implies that the ¢po component of AP9 s unphysical and can be al-
vvays gauged away. We then obtain

L

T 0y = 1 gk Brgo Va0 60 - 349)

+ (terms containing ¢p0 or vanishing by the use of
the free field equation zypagxp“ =0)] - (ue>v). (2.5)
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The simultaneous equations for our consistency check are now

MY p_ 1L =
) K(Bp¢ 779) 0 (2.6)
#0% + 3F0) = 0
(2.7)
We can find nontrivial solutions of (2.6) and (2.7) satisfying
-
Kap¢ 0 (2.8)
o =0
(2.9)
Since these equations give nontrivial propagating solutions, we conclude
rs tu

that the trilinear W, —Aa couplings in our theory are indeed consist-

ent couplings [6].

§3. Physical Helicity States and Global Supersymmetry

We show here that the 3u¢u component (but not ¢) of Aapo describes
the physical helicity states J=+1/2 by studying global supersymmetric co-
variances.

Under global supersymmetry, the left hand side of zau¢“ =0 (2.8) is
transformed into

1

1
6(83,07) = 3e@e v® + 3(r50, Je)0P 59T

1, v, - 1T

g
Vo T I€ 08)3 atﬁuw

(3.1)
The first line contains the left sides of the free field equations of vH
and 500, while the second line contains the terms removed by appropriate
gauge conditions [6]. In a similar way, the left sides of the free field
¥ and ﬁpo are transformed into that of A po [6]. These

facts imply that 3 ¢ descrlbes the physical helicity states J=+1/2, that
5P

equations of v

are transformed 1nto 3 V (0 ) and (07) under global supersymmetry.

§4, Concluding Remarks

We summarize here our main conclusions:
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(1) There is no negative energy ghost in Z LCa2 and Z LCa3"*

(2) Although OZfSGa is a supersymmetric extension of the "massless
rs_x tn

u o

are consistent up to the trilinear interaction order.

case" Lagrangian of Poincaré gauge theory, the w couplings

As far as we know, no other theory of supergravity with propagating Lo-

rentz connexion possesses both of these two properties (1) and (2).

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]

[91]

Future studies include

(1) Checking coupling consistency of other interactions and to high-
er orders.

(2) Quantizing fields and discussing renormalizability.

(3) Making our theory more realistic.
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COSMOLOGICAL PHASE TRANSITION IN MICROCANONICAL GRAVITY
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Phase transitions in cosmology whether first or second order, spontaneous or
dynamic were first studied by methods which ignore or exclude gravitational effects
(Linde, 1974). The basis for the exclusion was the assumption that the effects are
local, and that since the relevant times are much later than Planck times quantum
gravity is unimportant and thus gravity enters only as a background metric which can
be removed by studying resuits in a local inertial frame. Gradually various gravi-
tational effects have been added: the effect of curvature in addition or instead of
the Higgs mass for symmetry breaking (Grib, Mostepanenko andFrolov, 1977), topo-
logical effects (Avis and Isham, 1978), gravitational effects in growth rate of
bubbles (Coleman and De Luccia, 1980).

In the present work we introduce a completely new element: reasonably realistic
models in which there exists a nonquantum gravitational contribution to the entropy
based on a microcanonical (MCE) rather than grandcanonical treatment of the statis-
tical mechanics. The Hawking thermal states of de Sitter cosmology (Gibbons and
Hawking, 1977) 1is an example -of such gravitational entropy, but the latter is not a
relevant model for phase transitions. Horwitz and Weil (1982) have developed a
self-consistent generalization of such thermal states for a closed FRW universe with
a positive cosmological constant A which has both scalar "radiation" and gravita-
tional entropy. The dynamics is that of the usual classical models except that A
and the invariant temperature are not independent parameters. In the present work
we apply this method to a hyperbolic universe with A < 0 and a conformally coupled
scalar field with a ¢* self interaction. Such systems have been found to have a
ground state with broken symmetry due to negative curvature even without mass.

The basis of our approach is the use of a Gibbsian definition for a thermo-
dynamic equilibrium (TDE) MCE, generalized to apply to appropriate cosmological
mocels and extended to include gravity. The standard Gibbs entropy is based on
equal weight sums over states in a shell of (nearly) fixed constants of motion (COM)
including energy, angular momentum, etc. For cosmological models, the energy which
is not conserved can be replaced by the so-called dilatation operator D. Projecting
the stress energy tensor Tuv on the conformal time-1ike Killing vector EE character-
izing FRW universes, a conserved quantity is obtained giving the COM D. This also
requires a vanishing trace, hence invariance to Weyl transformations of the action.
Thus instead of the standard definition for static systems, we have (units: ¢ =+ =

6=1) exp S/k = Tré(D-D,) )

where - — H eV
D—LdZuGTvEC (2)

0
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with I, a space-like hypersurface, T v the functional derivative of the action with

respect to the metric, the conformal time-like Killing vector satisfying

gcp;v + gcv;u = f guv where in appropriate coordinates f depends only on time.

D is then a COM provided the action I(¢,w,gpv) is invariant to Weyl transformations

by an arbitrary local scale function Q(x”):¢ - ¢/Q Y > Y/Q, guv + Q2 guv' For the

purposes of our model, we have included two scalar bosons, in addition to the metric.
For a FRW universe, with gravity appearing only as a background metric, and

considering two alternative coordinate systems: one involving cosmic time ds? =

dt? - a®do? and the other conformal time: ds? = a2(dn? - do?), where do? is a given

time-independent element depending only on a parameter k which is +1 for closed, -1

for open and 0 for spatially flat spaces. Applying our erntropy definition (1) we

readily find the Tolman-Ehrenfest result for entropy:

S = 8ﬂ/3aST3(n) = 8ﬂ/3aST3(t)a3(t) (3)
their condition for TDE being
T(t)a(t) = const. = T(n) . (4)

We wish to stress the interpretation of this situation as a state of global and not
only Tocal (in time) equilibrium. This is a maximum entropy, collisions preserving
the state which is homogeneous and isotropic, but temperatures and various densities
as functions of proper (cosmic) time vary with the expansion; the fixed entropy is
stretched over growing proper volume elements in a self similar fashion. The truly
new element of our analysis which goes beyond the above rederivation and reinterpre-
tation of known results involves the inclusion of gravitational contributions with
the use of a MCE and not based on quantum gravity.

Thus in the above mentioned work of Horwitz and Weil (1982) for a k = +1 and
A > O FRW universe with conformally coupled massless bosons or in the presently dis-
cussed k = -1, A < O FRW universe with massless conformally coupled bosons having a
¢* self interaction, the microcanonical TDE state found includes gravitational con-
tributions. In both cases, these are self-consistent analogues of the TDE states of
a BH in a radiation cavity (Hawking, 1976; Gibbons and Perry, 1978). Thermal fluctu-
ations of the quantum radiation field couple to the classical fields of gravity
through the microcanonical constraint, Teaving an overall gravitational contribution
to the entropy unrelated to quantum gravity or Planck times. In order to define such
a TDE state which includes gravity one requires a Weyl invariant gravitational theory
defined with an extra scalar field ¢ in which the gravitational action

Ie = (8ﬂ)'1fd“ xv=g [$R~A] + surf. terms (5)
is replaced by

Ig = -3(8n)'1[d‘* x(-g)%[g”"lp,uww- ERYZ + 3 AT . (6)

This leads to an expression for an action including the scalar, massive bosons con-
formally coupled with self interaction. The action is Weyl invariant even with the
mass, but we shall treat here only m? = 0.
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I = %fd“x(—g)‘/z{[g““q:,ﬂ,v- UL RN A I O Rl CL NS éRw2+§w“]}
(7)

where the line element for k = -1 FRW is

ds? = a%(n)[dn? - dx? - sinh?x(d6? +sin?6 dé?)] . (8)

"1 yeduces I to the standard form (5)

The standard choice of conformal gauge Q =
with the mass term -m?¢%. Instead, after 1imiting our discussion to the case where
guv retains the form (8) with arbitrary a(n), we now choose our conformal gauge with
2 = a(n), which then reduces the background metric to a static one - that in (8)
with the a(n) deleted. In the quantized version of this theory, this means we shall
neglect spin-2 excitations (gravitons), although the method can readily be extended
to include them. (It is a peculiar situation that presently to carry out classical
SM for gravity one must introduce quantum gravity.) We subsequently interpret the
transformed ¢ to be the dynamic factor of the cosmic scale function, in our quasi-
classical theory. Hotice, in such a static background metric, there are no con-
formal trace anomalies although mass generation can be retained with a m?¢%y? term.
This choice also leads to a static energy operator, and the result that the Hamil-
tonian defined by (2) is equivalent to the canonical definition.

We now outline our calculation using (1), (2) and (7), choosing D = 0 cor-
responding to Einstein's equations when ¢ is identified as the scale function, and

taking a Fourier-Laplace transform of the delta function (1) becomes

exp S/k = TrJdB/Zﬂiexp - 8D (9)
- J[dqﬂj[dw]jds/zm exp - I (10)

where the Euc]ideaniged action IE ;
I = %Vfdu[&:z +¢ 5921 - ¢ +A¢*]- 3/8m vfdu[ﬁ,z -2+ Yt /RE] (1)

0 0

with the boundary conditions ¢(0) = ¢(B) = ¢,5 ¥(0) = ¥(8) = b, and ¥V is the (in-
finite) spatial 3-surface of the hyperbolic universe, and we have assumed that y
depends only on the (imaginary) time. Since we seek only extremal values of ¥,
which remain homogeneous and isotropic of course, significant fluctuations depend on
x1, but we ignore them for the present. We have written our cosmological constant
A= -3/Rand R/6 = -1 for the static hyperbolic universe of scale length unity.

This kind of model is known to lead to a ground state with broken symmetry even
without a Higgs mass. The extremal solution of the ¢ and y satisfy the equations

- 3 =
¢c1 * ¢c1 2 M)cl 0 (12)
o 2.3 =
ey ¥ - 2R YT = 0 (13)
respectively. The functional integrals for fixed boundary values of ¢, and ¢, are
expanded about these classical solutions. The quadratic quantum fluctuations of the

YP's are dropped as we seek only classical gravity contributions. The quadratic ex-
pansion of the ¢'s is the one-loop term for the scalar conformal bosons, and we will
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take here the crudest high temperature approximation, that its contribution to the
entropy is A/8° where A = w%/45. Properly one should calculate it self-consistently,
but we are here only looking for the qualitative modification of standard treatment
by our gravitational inclusive MCE formalism. There remain the integrals over y,, ¢,
and 6B8: where we also require a quadratic expansion around the extremum of 8. The
first integrals of (12) and (13) yield

1062 + 02 - 29" 1= 2[4 + V] = (14)
2%+ 92 - p/R?] =3[P+ V] = e (15)
The self-consistent solution if obtained by solving
3A/8% = w - 3/41e = /A - 3RZ/8WE (16)
B = 4Jy'dy[5 Sy yt]E 4K(t*)/y, (17)
B =2 ox[E-xt X1 < 2K(s2)/x, (18)

[
where the K are complete elliptic integrals of the first kind and & = y2 +y? - y*
Wwith y = 2%; and & = X2 +x2 - x* with x = §/R,. Furthermore, x2 = 3[1% (1 - 45J*]and
v2 = 301£(1 - 43)7]. i
B We then find two kinds of solutions which are shown to be local entropy maxima
for appropriate values of ,R . One preserves the symmetry for the interacting
bosons (Fig. la and Fig. 1b).

Vi Vo ‘

Hf—
m|

Figure 1

&S represents a solution which preserves symmetry and &a = 1/4 the
broken symmetry solution. The & solution is similar for both cases.

Y is positive since it represents the scale function. The other is the broken sym-
metry solution shown in Fig. la. The entropy for the two solutions are respectively,
(E, elliptic integral of second kind)

Squn/V = ~3R2/8n[3 x, JIK(s?)] + Yy, /3[K(t?) - E(t?)] (19)

sym

S /v

asyn!7 = /8% - [RZ/87] x,[K(t?) - E(t2)] . (20)
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There is no second-order phase transition possible since the temperature g=! is
a constant, for given (A,R,). Both symmetric and broken symmetry solutions can be
locally stable in certain cases for equal values of A and R;. The symmetric solution
is generally of lower entropy than the broken symmetry solution, so that it would
appear that a first-order phase transition is possible, although the details of the
thermodynamic analysis have yet to be carried out.

The éosmo]ogica] solution is found by analytic continuation to real time

a(t) = 27R (1 - cos? 2t/R ) (21)
with Y = /T-4¢ (22)
range x. = a/R; < X,
period 0 <t <mn/2 R,

Thus we have evaluated the MCE entropy of this model and found its dynamical
solution, finding a possible first-order phase transition. This method is capable
of wide generalization and the study of its consequences is being pursued.
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DIMENSIONAL REDUCTION

Peter G. 0. Freund
The Enrico Fermi Institute and the Department of Physics

The University of Chicago, Chicago, Illinois 60637

Higher dimensional unified theories (i.e., generalized Kaluza-Klein fheories)l have
been considered for quite some time now. What is a simple gravity (or supergravityz)
theory in a N+4-dimensional space-time becomes a theory involving gravity, and lower
spin Bose (and Fermi) fields in four dimensions, upon the compactification of N space-
like dimensions. Besides the number N of these extra dimensions, 4-dimensional Physics
depends on the nature of the compact (and very small) N-dimensional manifold My- De-
pending on My we can envisage the low energy gauge group GLE =SU(3)ColorX(SU(2%X
U(l)electroweak a; t?e isometry group GKK of MN. Then the simplest possibility”™ is .
N=7 with MN=CP2XS XS”. In this case there is no grand unification of the usual kind
whatsoever, GKK = GLE' Grand unification can be included by choosing a manifold MN

with isometry group GKK larger than GLE’ e.g., G, = SU(5), or by acquiring in the pro-

cess of dimensional reduction gauge symmetries bggond those corresponding to GKK (this
happens when reducing 11-dimensional supergravity5 to 4-dimensions when an additional
Cremmer-Julia gauged SU(8) symmetry is nonlinearly realized by the scalar fields)-6 1f
the 4-dimensional theory possesses more gauged symmetry than GLE’ the question is?t what
scale this symmetry is restored. Standa¥g ren?rmalization gro?g rea?oning claims’ this
qur © 107 GeV or tguc 10" Gev™ in the minimal
supersymmetric ease. These scales being very far from present-day 'physical" scales,

to occur at a length scale of £

the question can be asked as to whether at such scales 4-dimensional Physics is still

applicable.

To answer this question we have to estimate the size of the small dimensions.l Requir-
ing the Yang-Mills piece of the reduced 4-dimensional lagrangian to have the correct
normalization relative to the Einstein piece and to hawe the proper minimal coupling
say to charged scalar fields determines the size of the small dimension

1/2

o = an 6/ 2 (g274m) /2 (1)

where G is Newton's gravitational constant and g the Yang-Mills coupling constant.

-17 -1

Equation (1) yields & ~ 10 " 'GeV ~, very close to % It thus appears that in gen-

eralized Kaluza-Klein theories by the time the graniuiiification scale is reached
(4+N)-rather than 4-dimensional Physics applies.8 In particular, dimensionality is
increased even before quantum gravity effects become large. This has prompted me9 and
also Ramondlo to consider cosmologies in which the "effective" space-dimensionality is

time dependent. Earlier work on such cosmologies is due to Chodos and Detweiler.ll
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Specifically we start from 11-dimensional supergravity5 in which case supersymmetry
requires an antisymmetric tensor Bose-matter field Auvp which is known12 to produce
preferential compactification of either 7 or 4 space-like dimensions. The first case
is of course interesting and we generalize the Ansatz of reference 12) to include a
cosmological time-dependence. The splitting of space-time into a 4-dimensional physi-

cal space-time and a 7-dimensional manifold M7 is then automatic. A solution in which

the cosmological scale of ordinary (3-dimensional) space increases linearly with cosmo-

1/7

logical time t, whereas the scale of M is found. The 4-dimen-

13

7 increases only as t

sional gravitational constant turns out to decrease at 1/t as propesed by Dirac.

An alternative solution has M7 a sphere of small time-independent radius, and 4-dimen-
sional space time, an anti-de-Sitter universe with cosmological factor R(t)=R(0)cosat
where o is determined by the 11-dimensional gravitational constant and by the, here

time-independent, scale of the antisymmetric tensor field.

These solutions do not involve the Fermi-matter fields and as such should not be valid
in the matter dominated era. They also break down at too early times where quantum
gravity matters, but they can reasonably be expected to be relevant in some time inter-
val around the dimensional transition where the 1l1-dimensional manifold splits: into

M4 X M7. Other cosmological solutions along similar lines have been discussed in ref-
erences 9)-11). New scales are introduced in these solutions: the time ts at which
all d-dimensions have comparable sizes, the actual size l(ts) of the dimensions at
time tg and the strength of gravity at that time. Depending on the detfigs of_ghe evo-
lution, these scales can considerably exceed the present day Planck (10 GeV ") and
Kaluza-Klein (10~ ’ GeV—l) scales. The cosmology of the very early universe is thus
seriously affected.

The preferential compactification of 7 space dimensions has been achieved here at the
classical level as in reference 12). The alternative could be entertained that the
choice of 4 large dimensions occurs at the quantum level, by somehow summing over all
possible dimensionalities and for dynamical reasons ending up with four large physical
dimensions in some approximation. Such a possibility was considered by others as

well.14

This work was supported in part by the U. S. National Science Foundation.
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KALUZA-KLEIN TYPE THEORY

H. Sugawara

KEK, Tsukuba, Japan

I would like to discuss two problems related to the recently proposed unified

(1) L@

theory of Kaluza-Klein type by T. Kaneko and mysel One is Mach's principle
and the other is a classical solution to Einstein's equation which has a [G(X)]2
singularity.

Let us start with Mach's principle. Mach stated this principle rather vaguely
implying that the inertial mass may be determined by the distant matter or by the
entire matter in the universe. I would like to show in this talk that this situa-
tion can be realized in a very simple model. I am aware of the existence of the
long history of discussions on Mach's principle, mostly within the framework of

©)

Einstein theory I ask this learned audience to forget about these discussions
for the time being and listen to may naive approach.

Suppose that our universe is composed of only two particles. How can we write
down an action which incorporates Mach's principle in this simplified case? The

conventional classical action which describes two particle system is;

\
3
)2+ 2 (x,)

L = [L(t)dt - [[—;-ml(_;(l L&) - VxR, X)de 1)

Here the masses my and m, are free parameters and there is no way to relate
these parameters to the motion of the particles. Let us consider, therefore, the

following action which might look weird to most of you.
¥ 1
L= Ll(q19 q19 qz)dt x JLz(q29 q19 qz)dt 'y (2)

where the form of L1 and L2 will be fixed later. Here we restrict ourselves to
one space dimension for simplicity. We also assume that there exists a natural
mass unit which we take to be 1. We get the following set of Euler's equations

from equation (2):

oL oL 5L
1 2 3 M-
=—L,+7—L -=(=9L,=0 |, (3a)
5q; 2 T 3q 1T RE, 0
1
and
oL oL oL
2 — 1 - —
T by L, - D T =0, (3b)

where
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- ]
L = ILl(ql, q4p, 9,)dt (4a)
and
—_— 1
L, = JLz(qz’ 4> qy)dt . (4b)
Let us now write down an explicit form of L1 and L2:
12
Ly =5ap = Vlgg-g) (5a)
and
112
L, =34y = V(gy-qy) - (5b)

Then equations (3a) and (3b) reduce to the following forms respectively:

" av

- 1

qul =7 aql s (6a)
and o BVZ

M % "5, (6b)
where

V=V, = @)V )]

The meaning of equations (6a) and (6b) is clear: The mass of particle 1 is equal

to fé and the mass of particle 2 is equal to fi implying that the mass of a particle
is determined by the motion of the other particle which is interacting with it.

By adding equation (6a) to equation (6b) and taking equation (7) into account we

obtain

= constant s (8)

which is nothing but momentum conservation. Equations (6a) and (6b) reduce to the

following equation in terms of the relative coordinate q = 9 ~ 4,¢
" av
mqg = - f«l s (9)
q
where
T T N2
m = L1L2/(L1+L2) s (10)
and
V(@) =V =V, GED
We obtain from equation (9) the following energy integral:
1 t
E‘qu +V(g) = E . (12)

From equation (12) and the definition of L1 we get
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Ly

L, = %—(__ — q)2 - V(qQ
L+,
1 1
= (DE- A +Dvw . 13)
L, L,
we have, therefore,
L = 1%% [[kE - v —22 (14a)
and 2(E-V)
L, = -—11/[[E - V] =S4, (14b)
with 2(E-V)
k=1,/L, . (15)

k=1 . (16)
Let us now consider the special case when

1
v = . 17
(@ |q|_a a7
Two particles start separating from each other after the 'big bang' at t = 0
(q(t=0) = 0) and reach the largest separation distance at t = « (q(t=*) = a). From
equation (l4a) and (14b) we obtain

I _l_

a
m, =T, = [ {::gﬁ q . (18)
1 2 1 2 /—z;—a—
We, therefore, conclude that the mass of a particle is directly related to the
size of the universe. To show that the form given in equation (2) is not too
peculiar I will prove that the ordinary Maxwell's theory with an unspecified value
of the electric charge can be written in this form. We take scalar electrodynamics

as an example:

1 |.4 I
L= [—;Jd X F F'V] x J[(D » ') - vlehia’x (19)
uv u
z LA-L¢ R
with DU = Bu - iAu where Au is the usual vector potential multiplied by the charge

e. ¢ is a complex scalar field.
The equation of motion we get for Au is:
L
s+ A %) =0 (20)
u L¢
where

(x) = i(¢+DV¢ - (DV¢)+¢) . 21)
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The equation for scalar field is conventional. Multiplying AV(X) to equation (20)

and integrating over the whole 4-dimensional space, we obtain

2, = - JJ\) A, ax . (22)

The equation (20), therefore, can be rewritten as

2L
3 PV - A4J"=0 . (23)
u J\)A\)dx

This equation shows that we have

-2L
e? = A . (24)
3’ A d'x
v

We can easily check that the value of e2 is completely arbitrary just like the
boundary values to equation (23). We conclude that the action (19) is equivalent
to scalar electrodynamics at least at the classical level with an arbitrary value
for the fine structure constant. We do not discuss the quantum version in this talk.

(2)

The action we considered in our paper is the same kind of action as in equation
(2) or in equation (19). It is the product of Kaluza's action and the action for the
minimal 4-dimensional surface in the n-dimensional Riemannian space. For the detail
see paper (2).

Let me now turn to the next topic which is the solution to Einstein's equation
with a [6(X)]2 singularity. Although our task is to obtain a solution to the
Kaluza-Klein equation(z) I will show in this talk that the usual 4-dimensional
Einstein equation with a single particle as the source has a solution with a
[6(x)]2 singularity.

Einstein's equation in this case reads

RHY _ % g"R + 8reT™’ = 0 , (25)
with
ax” dx”
™ = mjd164(x—x(r)) dr dr 1 L , (26)
[- ax" dxv ]—2_ a
Buvdr dt
where g = dEt(guv)' For X° = f(t) and Xi = 0 we have
T°° = m63(x)v L 1 L , (27)
e 12 VB
[-8,,12
and
T1J =10 = 0. We now make the ansatz
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-a(t) 9
T )9 : (28)
3

to solve equation (25). We then have

and

3

°° = n/{a(0b(0)’) (29)
1

/g = Ta(0b (0176 (%)) 8 (x,) 6 Gxy) (30)

After some calculations we can rewrite equation (25) in the following form with the

ansatz (28):

and

Sy raddy -2+ Dy 4 b

= o, (31)

81Gm

( o+ 3( e ) - 5= =57 - (32)
/5

where we have added the cosmological term X for the sake of completeness. We can

easily see that a = aot4 and b = bot4 give a solution to equations (31) and (32)

when A = 0 if the following condition is satisfied:

For

3
4mea0/b% =6 (33)
this solution we have
ITOO@ d3X = ln_!‘_z_
/; .

The physical meaning of this solution in the above 4~dimensional case is not

very clear but it is rather straight forward in the Kaluza-Klein case as has been

extensively discussed by T. Kaneko and myself in reference (2).

(references)

Th, Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math.-Phys. K1, 966(1921)
T. Kaneko & H. Sugawara, to be published in Prog. Theor. Phys.
See, for example, paper by N. Rosen in "To Fulfill a Vision', Jerusalem Einstein

Centennial Symposium, Edited by Y. Ne'eman and published by Addison-Wesley, Inc.,
(1981)



PREGEOMETRY

K. Akama
Department of Physics, Saitama Medical College

Moroyama, Saitama, 350-04, Japan

All the existing experimental evidences, though not so many, clearly support
the general relativity of Einstein as a theory of gravitation. So far, extended
investigations have been made, based on the premise of general relativity. Even
the theories of induced gravity,! or pregeometry, where the Einstein action is
derived from a more fundamental stage, are not free of this premise. However, if
the principle of general relativity is true, it should be a manifestation of some
underlying dynamics, just like the Kepler's law for the Newtonian gravity, or like
the law of definite proportion in chemical reactions for atoms, etc. So we would
like to ask here why the physical laws are generally relative, instead we premise
it. The purpose of this talk is to propose a model to give a possible answer to
the question. By general relativity, we mean the general covariance of physical
laws in the curved spacetime. Our solution, in short, is that it is because our
four-spacetime is a four-dimensional vortex-like object in a higher-dimensional
flat spacetime, where only the special relativity is assumed. To be specific, we
adopt the dynamics of the Nielsen-Olesen vortex? in a six-dimensional flat space-
time, and show that general relativity actually holds in the four-spacetime.
Furthermore we will show that the Einstein equation in the four-spacetime is
effectively induced through vacuum fluctuations, just as in Sakharov's pregeo-
metry. 1

We start with the Higgs Lagrangian in a six-dimensional flat spacetime

L:'%_'FMNFMN+ DH¢+DM¢‘+ a|¢[l—b|¢\++ c e8]
where Foun = 84An~3nAn and Dﬂd: Out te Aq

This has the 'vortex' solution?

N inb
Auz €gazmn ANX /Y G=pine ™ @)
( e (Xg)l" ()(6)1 ) , where A(r) and ®(r) are the solutions of the

differential equations,

-1 3 d . [i + 2 + * =0
EE(rEe) s (FreAV-a 2b9*] 9
4 4 (3)
L = 2 (o eny ..
L F rA) + 9 (A =g
The 'vortex' is localized within the region of ()(€) (&= 1! /fé._) in two of
the space dimensions (X‘;, )(6) . leaving a four-dimensional subspacetime

(XD—X3) inside it. For large @ , the curved 'vortices' with curvature R< &4
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° o

become approximate solutions,® which we denote by A,,, and ¢ . Let the center
) ~ ) s

of the 'vortex' be X = Y (&Y) (pu= 0- 3) , and take the. curvilinear

coordinate x™ such that, near the 'vortex',
v M
XY= YTt e mfl x™ (m=0-3,56, p=0-3, m=5,6) &)
where XM is the Cartesian coordinate, and ’n::; are the normal vectors of the

'vortex'. (Hereafter Greek suffices stand for 0-3, small Latin, 5, 6, and

capital, 0-3, 5, 6). Then, the solution is
ALz €orami A 2 8%= ptne'™? (F= xmx™), )
The S-matrix element between the states \L’,; and \IJ{: is given by
- + . 14 ¥ “
Sn-f;g AAudp dg* emp [1 L d'X] T T TL6 (A" ©

We assume that the path-integration is dominated by the field configurations of the
approximate solutions (5) and small quantum fluctuations around it. To estimate it,

we first extract the collective coordinate by inserting
M L ~
(= [T dy st 6 (v gt - Cier) (7
Xy

where CM( M) is the center of the distribution of l&\i ((5: ¢ -/ a/ab )
in the normal plane N'( ) of the 'vortex' at xM = gn,

M ] 2 42 2 42
Cosro = [ xMigrdix [ Blrdix ®
Nty 5 jM(‘SF)
By TXL , we mean the product over the four parameters €H"  with the invariant
measure. Then, we transform them into the representation in the curvilinear

MM

coordinate x , and we change the path-integration variables A, and ¢

to their quantum fluctuations Byr= Az ’A‘;T and G = ¢- ¢° , retaining

the terms up to quadratic in them.

o= [T AY" T, dbcdodol 6(F5 75 [ 6CCT

WF[Z'ICL,,*L;;)FE déxj Ll):kpg ®

with

L,=[ (¢=¢°, Au=Au") (1)
L, =-49"7 Byv,8" « BeBT Mol
+ (DL DIT) — 40e VT By gm (o702 3°) ()

+alol® —b [ 419 |* + 2 Re(oTe)?] |
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C™ =[x g dzy/ [ | §12 dasolxt a2
;7‘0 [xmliot+2Re (@0 {1 - = [Re(§°0" d2”dx‘}] dx%dzf 13)

and 5":0 , where the barred suffices stand for the local Lorentz frame
indices, V™, the vielbein, gLH, the metric tensor, Vi, the covariant
differentiation, Di=Vu+iehAl , and anflﬁ"l"o‘x’dlé . The
Lagrangian LL indicates that, outside the 'vortex', any low energy fields are
suppressed because of the high barrier of [¢%1* . 1Inside the 'vortex', Imu
=Q(rR/2) «< 1 , Gmm =~ Emn + ©(R/) and B-» reduces to the
four-vector B/TL and the two scalers 8s . Thus, the spacetime looks like
four-dimensional and curved to observers with large scale. It is easily checked
that the action is invariant under the general coordinate transformation of the
curved four-spacetime, i.e. the physical laws are generally relative!

Now we see that the Einstein action is induced through vacuum polarizations.

‘The effective action S‘eﬁ for it is given by
SH__; lanL dBydodots (FEVVB”);T §(C"eep(tffg L d5%]). a4
. X 2
Exponentiating the argument of the 5 -functions by 6(1) .—:J-dh eikz’ , we get

S i [ dunn dBgdodotdven (1f(28 + 3TAG)E] 1)
A

with @'=(B7 ot o) (16)
= = \/:5 (an s meméld/jo P memﬁyj" ) an
Taa (297" + €147 tebge! -1eD; ¢°
AN=]g| -veDs¢’ TOD 2191w bV 5T, | (1g)
re D& q>01 —b (@ s 67 w,, éDfDDL+%—llel+6::Wm

where &7  is the nonlocal operator in 5-6 plane,

m o mpp L [ E0D vt &0 19
é(x,x)-_,mx 6(x x)+ﬂ°,(x +L )[$“{l;([4§ ¢x ] (19)
Performing the path-integration in Bg , o, a"T, and Y , we get (with
e B ’_"l )
=0~ “lyu=0
. - —1 MN 1 At
SH-LiTitm A+ LiTem[oB (AN FEO) -+ 2] A2 di o)

. . - - . N
Se# in (20) is estimated perturbatively in k' = gml— sz/

(,Lnﬂz dmg ( !, —l} -1, -1, =1, - )) and W . The propagator is given by the
inverse of Alh"“=0 wep = Ao . [\, can be separated into two parts

s . .
ADP and ' AF  which operates on four-space variables x® , and the extra
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space variables X™ , respectively. Furthermore, these A ,'s are block-
. < .
diagonalized into two parts AOV and A, , which operate on the four-vector
)~ (3> A 5 né 1 -
B and the coupled scalars ( & )Q’-)S‘ )5‘( )=(B ,8¢ o0y , res
pectively. They are given by

v, s [} ,sp | v,ex_ | 2 2
o270, ASF=ga, ASTs-7 3+ et

7
] 3 ( clz. ieD°¢°f —ieD"¢)"
(—I 99 + e ¢ )7mn n n
! Q 2 (1)
3 2
AS - ~veDS¢’ - 5 DO+ — 26141 -b{(9°)
. / a 0
veDs ¢ -T2 ~LDpps+ o -2blett
where o= ﬂwaﬁay . Then, the propagators for each class are given by
(AY 71 =" E (grmH ™ Vi am v ™
k ’ (22)
~1 b - @
P T 0+ m2)"' S T Sl
where Vi , ,{:)’ m,:' and m;" are the solutions and the

eigenvalues of the differential equations in the extraspace.

AS Vi=my, @)

taichy o ¢ ’ wy
Aso’ex )SA - mkz Sh

The argument of the logarithms in (20) is expanded as follows

A= D G+ AJDit) (24)

9,3 A )" Fae, = 1+ AT 9, (A7) A, (25)

where A int and [X;nt are the interaction parts including h"Y  and
w  , and

/0" = ZE m;(!jw‘mh‘)"\/h(x"') \/kcx”")_ (26)

We expand the logarithms in (20), and get series of one-loop diagrams with external
h"‘y and w lines attached. These diagrams diverge quartically in the ultra-
violet region. We introduce the momentum cutoff /| much larger than Ja&a , and
calculate the divergent contributions. The diagrams with vertices which involve

extra-space operators are less divergent.
After this, the same argument as in the pregeometry! leads to the Einstein
action in the four-dimensional curved space. Namely, the divergent contributions

are
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5"”=]/~i§ (Mo oty + Moot 2 A® +(Ne By NI + ) ATR ] X o

plus less divergent terms, where N and NI are the numbers of the scalar and
the vector bound-states in (23), respectively, and Xp, o, Bo, B, are calculable
constants of (O)(1) . The values are found in literatures,l+* though we should
be careful, since they depend on the cutoff-method and even on the gauge.

. and /3. are the contributions from the continuum states in (23). Now,

together with the contributions from [ , , we finally get the Einstein action

S:f./ig()\+—'—R)d4yc (28)

IngG
where
A= [Ldzdxbr (Nstes Nt H N (29)
/ 2
= (M8, +MiR; 18 .
oG (M By +NiB; + BN

In conclusion, in this model:

1) The principle of general relativity is induced, instead it is premised.

2) The Einstein equation is induced just as in Sakharov's pregeometry.

3) Two kinds of internal symmetries are induced, those of the transformation and
the excitation in the extra-space. The former is somewhat like isospin, while
the latter, generation. This suggests a new mechanism for unification of the
interactions.

4) When the gravitational field is quantized, the ultraviolet divergences should be
cut off at the inverse of the size of the 'vortex', which may be much smaller
than the Planck mass. If this is the case, we can by-pass the problems of re-
normalizability of gravity.

5) Particles with sufficiently high energy can penetrate into the extra dimensions.

5

6) At very high temperatures,> or high densities, the 'vortex' is spread out over

the extra-space revealing the higher dimensional spacetime.
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SCALE INVARIANT SCALAR-TENSOR THEORY AND THE ORiGIN
OF GRAVITATIONAL CONSTANT AND PARTICLE MASSES

Yasunori Fujii
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Meguro-ku, Tokyo 153

Scalar-tensor theory seems to offer a natural alternative to the
standard theory of gravitation, especially when one tries to unify the
theory of gravitation and the theory of elementary particles. It also
seems inevitable that any scalar-tensor theory results in a variable-G
theory. This is, however, not always true. We present a simple viable
scalar-tensor theory the result of which is not a variable-G theory in
the usual sense. We suggest that the next simplest model will give a
true variable-G theory.

We consider the fundamental Lagrangianl
1 ,~2,2 v
Z=\/~_——}('53‘ #R—%egk 3,.¢3v¢+LM+LI)? (1)

where ¢ is the scalar gravitational field; €=x1 depending on whether‘#is
a normal or ghost field, Ly and LI being the matter and interaction
Lagrangians, respectively. The coupling constant f2 is dimensionless,
expected to be of the order of unity. (We use the unit with cfi=1.) For
LM we assume the Lagrangian of massless matter fields with dimensionless

coupling constants, as in any of gauge theories. We also choose

L= —cp'— 3 Fuwé+ --- , (2)

where ¥ is a typical spinorial matter field. The Lagrangian (1) is
characterized by the absence of dimensional constants, and is invariant
under global scale transformation.

We assume a decomposition
2
P )= ur)+ s, (3)

where 6(x) is a usual spacetime-dependent field, while u(t), called the
cosmological background value (BGV), may depend only on the cosmic time
t. The BGV u(t) may change so slowly that it may be viewed as a constant

in most physical phenomena except those that take place on a cosmological
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time scale. We then find from the first term of (1) that the effective

time-dependent gravitational constant G(t) is given by
Cw= (£/em) 1" o). (4)
The second term of (2) gives the effective mass
mt) = 3u'/zUr)- (5)
From (4) and (5) we obtain the relation
G () ')n;z('_t) = const. (6)

This is a crucial consequence of this simplest model in which there is
only one scalar field that plays a dual role ("single-scalar model").
We derive the field equations as given by

Gp=FTw= ¢ [To— (5.0~ %) ¢7], (72)

%R +eOé+ ols/3¢=0, (7b)

together with other matter field equations, where TF” is the symmetric

energy-momentum tensor of the matter as well as ¢. We must impose
v
v I =0, (8)

in order to be consistent with LHS of (7a). The scalar field equation

(7b) can he put into a simpler form
-1 2
Z O¢ =0, (9)

with Z—t=e+6f—2, where we have used the trace of (7a) and the matter
field equations. On RHS of (9) we have the trace of the matter energy-
momentum tensor which vanishes due to the scale invariance. The scalar
field has now no direct matter source. No scalar long-range force occur
in the limit of weak gravitational field, thus leaving the experimental
tests of general relativity unaffected. In this sense the theory is
completely viable for any value of fz.2) This is in sharp contrast with

Brans-Dicke theory;s) in order to meet observational constraints, their
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coupling constant @ (= ef2/4) is severely bounded almost to the extent
that the theory does not make much sense. (kﬂl»GO.)

The factor Z—' would vanish if one chooses a conformal coupling, f2
=6, €=-1, as in conformally invariant theories. Then, however, we have
no field equation of ¢22 The scalar field no longer has a dynamical
degree of freedom, and thus making the theory viable again. This is the
way Dirac and other authors formulated their variable-G theories. This
approach is not satisfactory, however, because the theory has no built-
in principle to determine the scalar field, and eventually G(t). One
has to appeal to some outside principle, like Dirac's Large Numbers Hypo-
thesis. We insist that any physical quantity which develops with time
must be dynamical. From this point of view we avoid the conformal cou-

pling and assume Z_1#O. We hence obtain
2
O¢ =o, (10)

We reiterate that requiring scale invariance and conformal noninvariance
is an almost unique choice if we want a viable scalar-tensor theory
maintaining a dynamical degree of freedom of the scalar field.

We now assume the spatially flat Robertson-Walker metric with the
pressureless matter. In accordance with the decomposition in (3), the
BGV parts of (7a), (8) and (10) are calculated to be

3H? = T, = :f-’“u_(iz €Tt covt— 3fH +J°> ) (11a)

Jpo— SHUL (e I Sty —12— FH R + f)_ = 0, (11b)
d .

- (@a)=o, (11c)

respectively, where H=a/a with a(t) the scale factor of the universe,

u=v?, and P the density of the matter and 6(x). We solve (1lc) to obtain

L1
at)=Ku (). (12)

Substituting this into (11a) and (11b), and eliminating P, we obtain

Y .2 -2 3
wu 3 uuw o2 et M o2 fE (3)
o 2 a2 2 16 w 2

A solution u(t) of this third-order nonlinear differential equation will



275

determine simultaneously G(t), m(t) and a(t) through (4), (5) and (12),
respectively, being in conformity with Mach's principle.

In solving (13) we must give integration constants in the form of
initial or boundary conditions. In this way we derive dimensional quan-
tities in nature starting from the Lagrangian that has no dimensional
constants. The same situation is typical in any spontaneous symmetry
breaking.

Ignoring RHS of (13), for the moment, we solve (13) in a systematic
way. Among the solutions, we find "asymptotically standard solutions" in
which u(t) approaches a finite constant as t-®. This implies that G(t)
and m(t) also approach constant values and a(t) tends to the standard
Einstein-de Sitter solution t’Js. We may propose an interesting conjec-
ture that the standard theory gives an accurate description of the pre-
sent or recent universe just because we are already in the asymptotic re-
gion of t.

On the other hand, we may not be in the asymptotic epoch, or one of
other solutions may be a true solution. Corresponding to Dirac's atomic
gauge, we then apply a conformal transformation which brings ¢(x) into a

constant v, so that the particle mass my=gvy is also a constant. In

this "micgzscopic unit system'" in which the time is measured by using
atomic clocks, the gravitational constant G* is also a true constant due
to (6). For this reason our theory is not a variable-G theory in the
usual sense.

In spite of a truly constant G* our theory is certainly different
from the standard theory because the scalar field is still present, show-
ing itself through a time-dependent cosmological term. We find that the

Lagrangian after thée conformal transformation is given by

s 1 1 5
L= /-3 <1‘7CG* Ry — X’T\'G*A + Loy + L*I—’m*lktl&)’ (14a)

where the stars indicate the quantities in the microscopic unit system,

and the effective cosmological term A is found to be

7 608 5, (e £ $) B0 0

~ (D)~ 2. (14b)

A@) ~ |2

The relation (6) from which Gy= const follows may be avoided to give
a true variable-G theory, if we include another scalar field ("two-sca-
lar model"). As still another consequence of this next simplest model of

a viable scalar-tensor theory, one of the scalar fields may acquire a
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non-zero mass p, giving a finite-range Yukawa potential which is added
to the Newtonian potential:z)
GM —pur

\/CY')=—r—(1+o(e,“ ) (15)

R . 2 2, 2 . . .
A plausibility argument gives ;Lau(Gm )m, where m is a typical particle
mass. For a choice m~1 GeV, we find the force-range pfuvlofcm = 1 km.
Experimental searches for any deviation from the purely Newtonian behav-

6

iors in this distance range are now under way.
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I. I think it is quite fitting for Professor Utiyama to have organ-
ized this symposium on gauge theory and gravitation, for he is one of
the pioneers who recognized in gauge theory a principle that could
conceptually unify the various forces in nature, including gravity and
electromagnetism.

The idea of the unification of forces of course dates back to
earlier times. Following Einstein's theory of gravitation (1915),
people like Weyl (1918) and Kaluza (1921) made an attempt to combine
electromagnetic and gravitational forces in a geometrical principle,
and supplied many of the key concepts that are being used by the
physicists today. Einstein also devoted all his scientific efforts
in his‘later years to the search for a correct unified theory. All
these noble efforts, however, failed. Because of theoretical diffi-
culties or lack of experimental support, the unification of forces
remained the theorists' dream while the progress in particle physics
uncovered more and more new particles and new phenomena. Thus, Nature
seemed to be moving away farther and farther from the simple and
elegant ideals of unification*.

This, I think, had been the state of affairs prevailing until the

1960's. Faced with the unexpected new structures of matter, physicists

*) There is an interesting article by Y. Fujii in Kagaku 7, 431
(1982). He relates that Professor Utiyama, who regarded himself a
particle physicist, had to study gravity in secrecy. Actually,
Utiyama developed a general gauge principle independently of Yang and
Mills.
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were kept busy trying to find a semblance of order in a chaos, building
more or less ad hoc models in order to account for what they saw.

What the physicists learned during this period is that Nature is much
richer and more complex than had been thought previously. But they
were also able to accumulate more knowledge, both experimental and
theoretical, which eventually gave them confidence to try a renewed
attack on the goals of unification.

One of the important theoretical concepts acquired in this period
is that of non-Abelian gauge fields. When Yang and Mills discovered
in 1954 the generalization of Maxwell's electromagnetic theory to a
non-Abelian (SU(2)) variety, it was not seriously thought to be
relevant to physics, because perfect non-Abelian internal symmetries
or conserved quantum numbers did not exist. The only candidate for
strictly conserved quantity other than energy-momentum and electric
charge was baryon number, but there did not seem to be an associated
baryon number gauge field, as was pointed out by Lee and Yang (1955).
Indeed, our current belief is: no gauge field, no symmetry; hence
baryon number should not be conserved in spite of the extremely high
stability of matter. The gauge principle has become a pervasive dogma.

Professor Utiyama's contribution in 1956 was to recognize the
value of Yang and Mills' ideas as a potential guiding principle in
physics and to show that Einstein's gravity was also subject to a
similar interpretation. He called the interactions that naturally
follow from the gauge principle "the interactions of the first class",
as opposed to "the interactions of the second class" like the Yukawa
type interactions which do not follow from such a principle. Clearly
the implication was that the latter was more arbitrary and less
desirable, and should be gotten rid of if .possible. The same attitude
prevails now. It is true that we have replaced the Yukawa theory of
strong interactions with the more fundamental gauge theory of color,

but we have not succeeded in eliminating the second class interactions
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from the weak interactions. They are with us in the form of Higgs
fields and couplings. Personally, I share with some of the theorists
the view or expectation that the Higgs fields will eventually go the
way of Yukawa's meson.

The persistence of the second class interactions, however, is
because they are there. Even if they may not be the primary source
of dynamics among truly elementary particles, they appear as secondary
effects among composite systems. In principle they should be derivable
from the former, but at the phenomenological level they are the ones
responsible for the complexity of the real world. It is thus obvious
that the gauge principle alone cannot explain everything. The world
would look too simple and too symmetric if the gauge principle had to

manifest itself in a straightforward manner.

II. This brings me to a brief discussion of some other theoretical
ingredients out of which our current theoretical system of particle
physics is made. Since this is not a detailed survey, I will pick
only the ones directly relevant to the question raised above: How can
the gauge principle be made to work in the real world? I would say
there are two basic elements. One is renormalization, and the other
is spontaneous symmetry breaking.

The renormalization theory removed the difficulties inherent in
quantum field theory, and turned quantum electrodynamics into one of
the most successful theories in physics. I suspect, however, that
there are many physicists, especially of the older generation like
myself, who regard renormalization theory as an imperfect and
temporary measure. Although this may be so, I cannot help but be
impressed by the extent of its successes. The discovery of the
asymptotic freedom, or the antiscreening property in non-Abelian gauge

theories is another milestone in this regard. It made the gauge
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principle really relevant to strong interactions. It demonstrated how
guantized non-Abelian gauge fields behave very differently from the
naive classical picture. I have no doubt about the basic correctness
of the color gauge theory of strong interactions.

Turning now to the weak interactions, a different mechanism was
necessary to make the gauge theory work in this realm, too. Such a
mechanism has been found to be the spontaneous breakdown of symmetries,
a phenomenon already familiar in condensed matter physics but not
recognized as such until particle physicists started to use them. In
any case, this gave us for the first time at least a theoretical
possibility that Nature does not exhibit all the symmetries built into
its fundamental laws. The Weinberg-Salam theory is a concrete
realization of these ideas, and its validity has already been confirmed
overwhelmingly, if not completely. However, Utiyama's second class
interactions are still there, as I have mentioned before.

Weak interactions are the ones that cause the most trouble for
us. They do not seem to rigorously observe any symmetry at all. Why
do they look so irregular and arbitrary? Probably spontaneous
breakdown alone is not enough to explain or derive everything.
Specifically, I have in mind, for example, the problems of mass
spectrum, CP violation, etc. In fact there exist already a few other
mechanisms of symmetry breaking built into gquantum field theory. The
appearance of a renormalization mass scale and running coupling
constants, the chiral anomaly, and the instanton and monopole effects
belong to this category. The first of these gave physicists a real
hope for a unification of forces, thereby starting the modern revival
of unified theories. However, the other effects are yet to be fully
exploited.

I am gradually turning my eyes toward the future. Most theorists
are already busily working on the GUTS (grand unified theories). The

SU(5) theory is their prototype which has a great deal of theoretical
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appeal and a few pieces of supporting evidence. Hopefully within the
next few years, decisive events wil; take place which will confirm the
basic tenets of the GUTS. One such event might be the proton decay,
and another might be the detection of monopoles (or a confirmation of
Cabrera's results). If either one should happen, physicists can
peacefully sleep at night (at least for a day or two). But the GUTS
are still leaving a lot of questions unanswered. Prominent among them
are the problem of hierarchy and that of generation. The hierarchy
problem is a product of the very successes of renormalization theory.
Becauses of its logarithmic scale dependence, we have been able to
extrapolate renormalization theory to enormous energies where true
unification of forces is realized. At the same time, however, this
created the problem of explaining why several vastly different mass
scales exist. As for the existence of generations, most of the GUTS
remain silent about it. We are not sure whether it is a manifestation

of another broken symmetry or something else.

II. All these unanswered questions seem like minor ones in comparison
to the grandeur and beauty of a unified theory. After all the GUTS
have brought us to within a shouting distance from the Planck scale,
the scale where the final unification of forces would take place.
This connection of renormalization theory to gravity was anticipated
by Landau in the 1950's but we now have its as a real possibility.
We must be cautious, though, because such a rosy prospect is also
fraught with dangers and pitfalls. Physicists should always keep one
foot on the ground even when they are daydreaming.

At any rate, we are right now witnessing quite a bit of theoreti-
cal activity in GUTS and beyond. The basic principle underlying the
gauge theories is a geometrical view of dynamics. The Maxwell-Yang-

Mills type gauge theories embodying internal symmetries have been so
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interpreted in an abstract geometrical sense. It may be natural,
however, to try to interpret these abstract geometries as something
more concrete and akin to the real space-time, like in the attempts

of Kaluza and Klein and their more recent followers. On the other
hand, perhaps we need not try to carry the similarities too far. Only
broad analogies may suffice.

Actually, the real problem we are facing at the moment is that
the paradigms of the current particle physics, including among others
the gauge principle, have worked, but not well enough to answer all
important guestions, nor badly enough to expose glaring contraditions.
I am tempted to compare the situation with that of the early 1930's
when particle physics was just being born. At that time the nature
of nuclear forces was unknown and the validity of relativistic guantum
theory uncertain. Some physicists like Heisenberg speculated that
quantum mechanics would break down at nuclear scales. As it turned
out, however, real progress was made by saving guantum theory through
renormalization, but at the same time taking the radical step of
postulating new particles. This strategy has worked so well that we
are still following it today.

But now we are beginning to see the old problem again.
Heisenberg's fundamental lenght is replaced by the Planck length.
There is a slight difference of attitude, though, in that we are more
preoccupied with the glorious outlook on this side of the limit than
with the uncertainties on the other side. Will our strategy continue
to carry us beyond the 1limit? Or will we have to squarely face up to
the problem this time? Whatever the outcome, we certainly need new
ideas. The supersymmetry and supergravity may very well play such
rb6les as those played by the renormalization theory before. The
current frustrations we are having with regard to supersymmetry may
be because we have not found the right way to use it.

To elaborate a little further, supersymmetry is subject to an
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abstract geometrical interpretation, and thus fits into the general
spirit of unifying geometry and dynamics. It offers the possibility
of unifying for the first time both fermions and bosons, or the
conventional matter and the conventional forces. It also renders the
self-energy divergences less severe, and may eventually help in
solving such problems as hierarchy and quantum gravity. On the other
hand, we do not know what supersymmetry means in simple physical terms
We do not have familiar examples to guide us. In this respect,
however, I have a little observation to make.

Recently it has been pointed out by several people that monopoles
can catalyze proton decay. This amounts to a violation of baryon
number without recourse to the conventional mechanisms in the GUTS.
Its enormous implications are of course obvious, but that is not the
point here. The reason for such an effect is that fermions can form
zero-energy bound states (binding energy edquals the mass) with a
monopole. So the distinction between particles and holes becomes
obscured, and all fermions of different masses become equal in such
an environment. Since fermions can be added to a monopole without
changing total energy, a kind of supersymmetry is thus created.

Such a phenomenon seems to happen generally in topological
excitations, as was first found by Jackiw and others. Occurrence of
zero energy bound states are somehow related to spontaneous breaking,
because their guantum numbers are similar to those of the Goldstone
modes. The Abrikosov flux tube in a superconductor admits such
(almost) zero energy states, The empirical supersymmetry in nuclear
physics observed by Iachello may also have a similar origin. Although
I have not emphasized it before, topology is one of the most interest-

ing aspects of the geometrical principle.
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1 Introduction

It is now generally believed that the N =oo QCD is equivalent
to some string model (see e.g. [1,2] )« This equivalence is under=-
stood in the sense of the string asatz for the Wilson loop average:

4 -

WICls gtz Pesp-§4br- 2 €7 Chuy) ©
However the main question about the type of this string is still
open., But suppose we have golved the Makeenko-Migdal equation and
thus know the string action j:?uh (which can be an effective one
obtained after integrating out somé internal string variables).Then
the natural problem is how to calculate mesons Green's functions
(and thus their spectrum and scattering amplitudes), One may naively
think that the old "dual string" approach (see e.g. [3] ) may be
useful: start with the known string action and define the amplitudes
trying to mimig the dual string definitions. However, we will show
that the knowledge Of'l;fuhis not sufficient - one must first calcu-
late W[C] as a functional and then sum over closed paths with
appropriate measure. The point is that the QCD string is not a free
one but has quarks at the ends (let us stress that only open stringa
naturally app®ar from the QCD field formalism if the string ansatz
(1) is assumed). In sect. 4 we work out the definition of the mesons
gcattering amplitudes starting with the QCD path integral and assum-
ing (1). We illustrate our definition on the example of the 2-dimen=
siongl QCD.

Lacking the final form for the string snsatz in (1) one can try
to study the properties of various possible string models in attempt
to establish their common featuﬁgssﬁswto find sowme distinguished one,
This is the topic of sect. 2 where,that the Brink-Di Vecchia-Howe-
Polyakov (BDHP) model [5,6 ] geems to be the most simple and tract-
able one among other known bose string ansatze. Sect.3 is devoted
to the formal BDHP stiring theory: we temporarily forget about QCD
applications and explicitly calculate the free BDHP string scatter-
ing amplitudes, defining them in analogy with the dual string case.
The resulis seem not to support the conjecture that substituting the
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Nambu action by the BDHP one we get tachyons free string theory in
d=4., A realistic QCD motivated string theory should be the result

of the proper account of the quark end point terms as stressed in

Sect, 4.

2., String ensatze

Let us 1list the following three bose string models which wmay be
considered in connection with QCD agccording to (1):

Nambu wmodel [7] : QC R*2 /,‘ = 2 /" 9‘ oA l ﬂé//
L=w*JVh %, -.:;r.a’W[cJ f[exje

(2)
X/ =C

-1
Eguchi model [8, 9] I /‘7”/4 v‘/z o2 k{y)g(,%)f"l_
W [c) = fa'a e f[-@x] QX/&( k(V)I) Q= fﬂ”z
2
BDHP or gravitational"model [5, 6]
I = M/j/"xa,/. Wf[:-?g@x]e‘
¥ = (3)
Cx)
The study of these models gave the following results [HO] : (1) They
are equivalent not only at the classical level (minimal surfaces
W~ exr(— M’;q ECJ) ) but also in the semiclassical approxima-
tion near a mlnimal surface and thus predict the aame long~range 22
potential -Vs;m‘cea“ MR - /R + const b’- . ":2‘2
for C= (R_-”o)x T +o) 3 (2) They are equlvalent in the leading
jﬁd approxlmatlon for the static potential (cf.[9_]) Vo) =
=M R(l RE/R )'/" 7/’4/12/‘1" ; (3) these models are
not equivalent as exact functional integrals (e.g. beyond the semi~
claggical approximation) being different quantum analogs of the same
classical theory; (4) the BDHP model is the most simple and tract-
able at the quantum level, The main fact is that in order to preser-
ve the O((/) (Lorentz) symmetry of W c¢] one is to use 0(09—
invariant and thus incomplete gauges on X. (or Z,po ). Then
additional Weyl symmetry of the BDHP action and its polinomiality
in X, are essential simplifications. For example, if we congider
(instead of W ) the formel BDHP string partition function
(with 9, X/z-’o boundary conditions) then it is easy to obtain
the effective action, integrating the conformal anomnaly [6]
(5) However, one cannot establish th- analogous local repregsentatim
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for WECJ due to the nontrivial boundary condition X/ =C :
in the gauge 9’4{ e 1€ Y we get W fd; exp C IG [g‘(J)

- o _ J. = non-local functlonal of
I tz &J 4, tz &J & end C‘/‘ .

= —p p& € _ _ <, R
{A/‘" v ’ ’ A‘ “6 f B (ch * A) fq ) Thus no

(2('«1) -coefflcient arize. As for the formgl pertition function,
it can be evaluated through the anomaly also for locally supersymmet-
ric fermi string models, as was shown for the spinor string in f11_]
and for the string with spin and charge in [12] o In the latter ca-
se one has X

Zc _/[.a ,3,4 .a;q, »Zﬂqd]e Lo /a’;’/,l dx e S

I =M fder{a; AP e LI Tt A Y

(4)
+ (2 ¥* +wa)z‘,¢r ‘P64 + cc. }
To= &L f4u/46e) - 460 +: T34 ],

where (7?. =)§..+t'j/, s Y/{.) form (/ compley matter multiplets,
interacting with N = 2 two-dimensional superg)r_.‘avity fields ( fqg ’
/'t; . Aa ) and we used the gauges },‘ = @ J = 2‘3;,) ,
Al = a €ag dg & - Three terms in (4) are due to the conformal,
axial and superconformal anomalies respectively. As was stressed in
[12_] and ﬁO] the Liouville non-linearities (~ e‘ ) do not ari-
ze in supersymmetrical cases due to the absence of quadratic ([2)
divergences. (Even for the bose BDHP case one can formally neglect
(% ~terms or put the renormalized value of the cosmological cons=-
tant A to zero)., However, it is instructive to shew how the
/\ -term can be introduced in the fermi siring theory on the example
of quantization of the N=1 2-dimensional supergravity. This is a
non-trivial theory with the compact spsces partition functinn given

byZ i Z / [oaja‘ 09); ,9/4_] e "I(”:/“) )

)
( fo,aa(og des) (::;:é}})

“F L O i AL ETI A,
Y 4 2 2 < 5 £
A Iy -£47% +/«j:/z[;4/;£"g{/—//)r{j’,

I
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where A is the auxiliary scalar field (cf. [13]) and 2=

= L JR/7d% is the Euler number while the M -term is the ana-
log of the A -term (cf. [14] ). Only taking in account the gauge
measure (in the gauge g“=ez‘j‘c, ,2; =¢ila2’\ ) we get the cor-

rect countingof degrees of freedom an —f
z= e [ aed194 € ,
A (Fxed x) 4 y 42 26 (6)
T=72 [t ft(e) +cddd-FA%e f+

— (3 ¢
rprJdefTae"-A¢€ f .
Integration over A gives the super-Liouville theory vlvfi.1:h/l=/¢‘1

(which probably leads to some space-time foam picture as the corres-
poinding 2~-dim gravity model [15] ).

3. Free BDHP gtring amplitudes

Here we forget about the connection with QCD and study the for-
mal BDHP string theory assuming the Neumgnn boundary condition
In X, [“):O in the path integral. Tpis theory has recently attrac-
ted much attention due to g hope that the proper account of the
anomalous degree of freedom 6’ (with the action f= f"/ fﬂ/:’_r
.Z'L (36)1 7"/‘ le zg] + boundary terms, 9”§/3'a 7 exp&?; ) may
help to avoid tachyons and d=26 restriction in loops. 48 a simplest
test of this hope one can put /‘7—0 and study the corresponding
scattering amplitudes., Still the main problem is the absence of a
natural definition of the BDHP stirings amplitudes. Thus we are to
follow the old dual string definition or try to invent some new
one., The realization of this program gave the following results
[10] :

I Open strings ( o) = C+ , ad =R ), on-shell defini~-
tion a la ref. [4] : —d'm?

Viprt) = S 122l 23]
pie-m® 2. €22, J’,’=Z_ﬁ/'<fu)(3‘i-)

cstl ,h
. 2 = “ / ."
ZL1e<eqpC Mo F)>, o o Prow =1

where is the Kgba-Nielsen
’ //'k” o
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megsure and the averaging is made with the help of the LBDHPE string
d=2¢  iZ_= “tihs

path integral. We get: < [z -2; / /i.e. the

Venezianszam‘?lltude d< 26 Z n/z / J:'j‘ 2 /‘f/ -3¢

xX=3 L °m, /(.z‘—/)and the poles ate given’ by

e((o)=-..,(9,..,:+ =4 = o /My* = 15.6 or -0.94. Thus there is

the non=~tachyonic ground state solution; the amplitude is dual only

for d = 26. Analogous results follow [10] if we start with

the heuristic off-shell deflnltion [6, 16]

C(pp) = < [1 [y aie 5 5en @

Here for d « 26 we get the phydical trajectory e p'=73h-47
(along with the tachyonic one). However, (8) does not lead to the
Veneziano amplitude for d=26 and thus is probably consistent only
for clogsed string case.

IT Cjosed strings ("2)= <)

4
Starting with (8) we get for d=26: [ has poles at iﬁ: o

i@ describes only the ground state tachyon scattering in the Shapiro-—
Virasoro model [17] . PFord < 26: [~ fﬂt/g /7/2 2/",‘/’: ]
x‘a 26 d ‘;‘r‘)(l- = P;) and thus the spectrum con’!talns the old
tachyon 4. " =0 along with a new physical state 71— % ﬂ =

- 26 d)/ . It remains to be seen if the inclusion of
the Liouville term may eliminate tachyons and give unitary and facto-
rizable loop diagrams. However it should be understood that a priori
they will have no relation to QCD, where the expression for scatter-
ing amplitudes turns to be different from (7) or (8) even if the
BDHP ansatz in assumed in (1).

4. N>09 QCD string scattering smplitudes

Trying to derive the string amplitudes from QCD we are to start
with the field theoretic definition for meson Green's functions

(X,,,..,X,.) = <(7-i)*' (77Ah >¢oun¢d7(.4 = (9)
v Rl 8 by Zlm]
Fonen)... FoNr) ) oyem

Zlm] ~ [ 949798 exp(- ZLo1])
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where I[MJ: //,’; /yzé ﬁ:* L'Z‘Gé‘f'wlk))Z) .

With the help of the proper time representation for the quark deter-
minant and taking the large N limit (cf.]2] ) we finally get

Glx,.. x,,) A j” $ 96.C2) Jre] Wikl (o)

C(o)= C(T)

/7 of‘{"’ f()[x -e(z)]

is given by (1) and J'['C] f,ay' Zz Pe,v/’/ f/i‘
[7I‘ (x +a') m]}

“*is the quark end point factor.
Using the momentum representation and "covariantizing" the closed
path integral we have

G(ﬁ, B) = /ze(z)fac/f)ﬁ//zf et)e &*cfi))
. Jlce] Wle,e)

where e‘l

where

gauge € =0

is a one-dimegnsional metric on C (in the proper time
(1) 1is valid for

e
jedt= jod‘c )e Suppose now that the string ensatz
‘W » which can be conviniently written as

Wle,e] = f D ae _/ JX(2) ex/:(-][;’*]) (12)
(% [, - €0) (¥ =cx) »

@ z(
where é’r“ fqg /z° 2

Zf FZ7  and ] is some effective action (e.g.
the BDHP one).[

It is interesting to note that the final result (11),
(12) prompts the open-string analog of the off-shell-closed atring
anplitude definltlen (8) for the free BDHP string:

L, . b)) = </7fa’z e)e A , where <..>=

- Je f’aj S[g“/ e]f-@xﬂ?/m‘o] It is this ( Z. -

reparametrization invariant) definition that should probably be used
in the future studies of the BDHP string

] « a5 for J, 1t can be
expressed as follows (cf. [18] ) :
I,/‘L‘c,e] - f.a7r (&) [2¢(r) ¥ (¥ ex//-:'o/;/z‘ .
‘ Zf/ ti ¥ —e(t‘}%( T-m)¥ ]
or J-[(‘Q_J'c CX}’II‘ [“/{[-‘e X "‘/”ze] if we neglect the

spins of quarks. The important consequence of (11) and (12) is that

(13)
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we cannot explicitly integrate over Xan(?) because of the non-
trivial end point factor J' (or J' ). Really, if this factor was
absent, we could rewrite two integrals f,&c f.@x over the
"boundary and interiaur™ as one integral over the whole domgin and
then assume the Neumann boundary conditions on {, s providing the
possibility to obtain the explicit expression for the amplitude
analogous to those of sect,3 (with L; playing the role of Kobg~Niel=-
sen variables). The conclusion is that contrary to the free string
case (sect,3) here we first need to find WC[CJ ag a functional
then integrate over C, end € . However, the expression for W is
difficult to obtain even for the simplest BDHP string case (see
gect. 2), In this situation some approximations are needed, for

example, the semiclassical one for W ( W~ exp (-m .)9,.,,,, re3))
or the gemiclassical approximation for the total (strlng + "ends")

action. The second approach was already initiated in a number of
papers [19, 20] where it was shown that "ends" are essential to ob=-
tain a reasonable spectrum of hadrons., However, these attempts are
to be improved (if trying to go beyond the semiclassical approxima=-
tion) by changing the Nambu action, e.g., by the BDHP (or some fermi
string) one and also by using the proper quark end point term (13)
instead of the"phenomenological" Bars-Hanson's one (used also in
[20] ), which actually not follows from Q C )

I=‘(T¢{t(1€'- d, 9% MS‘PF) (14)

(note that (13) and (14) may agalq/considered as providing different
quantum extensions of the same classical theory).

Finally let us illustrate our result for the amplitude (11) on
the example of the JZ ~dimensional QCD, where the expression for

18 explicitly known for the simple curve C [1,21] : (D=3%)

W[(.J exP( A S dt £ CuC ,,) Uging the proper time gauge
in (11) and assuming that quarks are spinless and have equal masses,
we get the following expression for the ii ~ mesons off shell
scattering amplitude

Y% "f L7 [y $c) -
yex/p[ fdt(i ” C‘/)ch/’/J\ ,«(t)]

Calculating the path integral we are 1eft with i

) " “’(Z/;) Jee T

Schs
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n [

n gdf,j exr{ y; Z@:‘Ibe’“ A () -

I Sin § K, €

(16)
L Pl BB 1
3-.”’/1' t, = T /T, W= S-O (f‘-l‘e)’
A,%: Cos w“ - B (fx'te) + C"S"&e‘ 9/2(6’ _tn) )
Bq = Sth Lége - 9{‘(‘1&) ~ Sin ‘6€L 'ﬁ/l‘(‘t‘> .

This amplitude resembles the dual-like ones with "cos" and "sin"
instead of "log'a". The spectrum of mesons is given by the poles of
the propagator (c.f. with the approach of ref.[22] )

G, p) = S+ f;? c(p) ' s
Gp = [l e (2 ([ [#)
XeX/’A{?S;—[CleS(i-wa'z)—-Sl‘hb’?]}af 4,

nzo Pt M
I{ can probably be connected with the longitudinal spectrum of the
string with masses at the ends [ 23] or the t'Hooft spectrun [ 1].

’

REFERENCES

. G, 't Hooft, Nucl. Phys. B72 (1974) 461.

%. Yu.M.Makeenko and A.A.Migdal, Nucl, Phys. B188 (1981) 269;
A.A.Migdal, Nucl. Phys. B189 (1981) 253,

3. C.Rebbi, Phys. Rep. 12C (1974)1; S.Mandelstam, Phys. Rep.
13C (1974) 261,

4, C.S.HSie, B.Sakita gnd M,A.Virasoro, Phys. Rev. D2 (1970)
28573 J.L.Gervais and B,Sakita, Phys. Rev. D4 (1971) 22913
Phys. Rev. Lett, 30 (1973) 706,

5 LeBrink, P.Di Vecchia and P.S.Howe, Phys. Lett. 65B (1976) 471.

6. A.M.Polyakov, Phys. Lett. 103 B(1981) 211.

7. Y.Nambu, in: Symmetries and Quark Models, ed. by R.Ghgnd
(Gordon and Breach, N.Y., 1960); T.Goto, Progr. Theor. Phys.
46 (1971) 1560.

8. T.Eguchi, Phys. Rev. Lett. 44 (1980) 126.

9. O.Alvarez, Phys. Rev. D24 (1981) 440,

10. E.S.Pradkin and A,A, Tseytlin, Lebedev Inst. preprint N 30(1982),
Ann, of Phys. (N.Y.) (to appear).

11« A.M.Polyakov, Phys. Lett., 103B (1981) 207.

12. E.S.Fradkin and A.A.Tseytlin, Phys. Lett. 106B (1981) 63.

13+ P.S.Howe, J.Phys. A12 (1979) 393.

14, P.Di Vecchia, B.Durhuus, P,0lesen and J.L.Petersen, N.Bohr Inst,

greprint NBI-HE~8279.

+G.Rajeev, Phys. Lett. 113B (1982) 146.

16. B.Durhuus, H.N.Nielsen, P.Olesen and J.L.Petersen, Nucl. FPhys.
B. 196 (1982) 498,

17+ R.I.Nepomechie, Phys. Rev. D25 (1982) 2706.



18.

19.
20,

21.
22.
23.

292

M.B.Halpern, A.Jevicki and P.Senjanovic, Phys. Rev. D16(1977)
2476; R.,A.Brandt, F.Neri and D.Zwanziger, Phys. Rev. D19(1979)
1153.

I.Bars and A.Hanson, Phys. Rev., D13 (1976) 1744.

K.Kikkawa and M.Sato, Phys. Rev. Lett. 38 (1977) 1309;
K.Kikkawa, T.Kotani, M.Sato and M.Kenmoku, Phys. Rev, D18(1978)
2606; D19 (1979) 1011.

V.A.Kazakov and I.K.Kostov, Nucl., Phys. B176 (1980) 199.
A.Strominger, Phys. Lett. B101 (1981) 271.

W.A.Bardeen, I.Bars, A.J.Hanson and R,D.,Peccei, Phys. Rev.

D13 (1976) 2364.



ONE~-LOOP DIVERGENCES AND 8-FUNCTIONS IN SUPERGRAVITY THEORIES

E,S.Pradkin and A.A.Tseytlin,
Department of Theoretical Physics,
P,N.Lebedev Physical Institute,
Leninsky Pr. 53, Moscow 117924, USSR
Unfortunately the authors were unable to attend the Symposium
1 Introduction

Supergravity (SG ) was invented with a hope to solve the probl-
em of infinities in the Einstein theory. Now came the time of expli~
cite calculations (of counter-terms, S-functions, off shell and
asymptotic behaviour) which are to reveal the structure and the sta-
tus of quantum SG., Several new results on this way are the topic of
this report.

Let us first remind a number of knewn facts about the infinities
in ungauged O(N) SG's (for refs. see[1] ): (1) ¥ = 1,,..,8 SG's
are on-shell finite in I=1,2-order (L is the number of loops):

L=1 -~ diagram calculations of infinities of the S-matrix elements;
L=1,2 - general argument of the absence of an on-shell non-vgnishing
superinvariant; (2) L > 3: there exist superinvariants - candidates
for on~shell divergences; (3) N-extended SG's are (off shell) finite
(in d-dimensions) for L <& (W-1)/(#-2), e.g. the N=B, d=4 theory
is infinite for L > 7 (some plausable argument based on supergraph
power counting rules [2] ); (4) N = 8 SG is divergent for L = 3
(implicite argument treating N=8 SG as a & ' — 0, d=10 — 4 limit
of the superstring theory [ 3] ). Thus different approaches seem

to leave the only possibility for finiteness if the actual coeffi=-
cient of an admissable superinvariant in the (e.g. L=3) infinities
is zero. Two examples of such kind of "zeroes" were sglready found

in SG at I=1 order: the absence of topological and gauge field ac~-
tion counter-terms for N > 3 and ¥ > 5 respectively (cf. [1] Yo A
new one =~ the abmence of the off shell L=1 Weyl tensor squared iype
infinities in the N=8 gnd N=1, d=10 —» 4 theories - will be re=-
ported in sect.2, where we discuss the L=1 off shell infinities in
gauged O(N) supergravities [4] . Here we make a conjecture that

the N=8 5G may be L=1 off-shell finite (cf. [2]) which, if true, may
imply an improvement of higher loop behaviour.

Suppose, hbwever, that N=8 SG fails to be finite at 3-~loop or=-
der, At least two possible modifications of the approach can then be
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suggested: (i) consider the N=B SG to be only a low energy manifes-
tation of some fundamental ultraviolet finite superstring theory in
d=10 space~time (with six compact dimensions) [3] ; (ii) change the
S@ lagrangian by adding super~extensions of the curvature squared
invariants in order to get a power counting renormalizable theory
(just like it can be done already the Einstein theory, see e.g. [ 5]).
It is the second secnnd possibility that we propose here (see sectda
Sn3idevoted to the discussion of the one-loop B-function [6] (Sect.
3) in conformal supergrevities, i.e. the superextensions of

the Weyl tensor squared invariant.

2. Off ghell one-loop divergences in gauged O(N) supergravities [4]

In order to get a realistic theory one should consider the
gauged version of the O(N)-Poincare supergravity (end also try to
invent some viable mechanism for a spontaneous supersymmetry break-
ing). Por example, the simplest gauged SG-theory-the 0(2)-one=-has
the following lagrangian [7] (A=-3m* m-= 2 /k )

/

L=-w(R-an)+ @ by + 2 6""/’5‘« L&t o
¢ ¢ 4 7 *‘a . R

where +m¢/“ 6;“ v -:‘_zlﬂ ’é/‘ F v}é ’

F¥- 5‘.:,: VEL=E, /;/;: , ¢ =1,2end 2 is di-

mensionless gauge coup{:l.ng). Thia theory is one~loop on=-shell renor-
malizable and one can ask about the value of the B-function for j—
I, the first calculation [8] done in the background gravitational
sector f(}) was implicitly obtained by establishing the A -term
renormalization and then using the relation A «’= —12} » The

resulj\s ' 2 3 & 5 'y # &

B ~£36. -§ 4 O O o O
were then rederived by a "heuristic" calculation in the background
gauge field sectorff|The reasoning of [9] contained a number of un-
justified assumptions like the validity of the formula ﬁo (s) =
=-§/(/—3- - S"‘)(-j)uq (for the cnntribution of spin § field
in the gauge field B-function) for the gravitino ( S= 3, ) and
the possibility to obtain the total result by simple summation of
contrzg€mtions of all spins of the SG multiplet.

To provide understanding of the agreement of these two calcula-
tions of [8(9) one should study the off shell divergences in the
combined gravitetional-gauge field background sector of the effective

(2)
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action ( 9, # J s A.#0 s Y =20 ). The one-loop

divergences for various ields can be evaluated using the formuls

by 4t a),_= G 4 G(EZV‘f‘f[l";éfﬁa), 3

L —+ o ,
where =—.3 +X o»/ .
49, £=p R+ LA+ f"f?/v ’esd‘;z,

¢ = fRR+FW+3FR+f< /aA+ng »
+{36-2)R+31¥2r,7},+éx T *1*( ,)
+F° F/‘"’: W= R/‘ k',/w A v,\ Yg'

The central point is establishing the gravitino contribution (in the
standart background gauge b’ ¥ = /’ ‘)

@/el‘A ) (‘/f“/) , =39k amd”
=@l e

"Squaring" the A -operator we get
gdditional F =~infinities due to mixing of the "mas/s" and the non-
minimal coupling terms. We found that it is this mixing that is es~
sential for the correctness of the f, (s) =-formula for s= %2
used in[9J o The results for different spins contributions in the
gravitational and gauge infinities are the following (we also uti-
lize the old off-ghell results for the Einstein-Maxwell system [10] )’

S VBl Po| B | & | P el 2| A
- | £2 1 £ 3 | -6 ~121 -2
2 | wlio |7 | 3|20 5| 7| %9
3 | g |-of-2 x| 2| 2|4
Z 3| #0| 60| 3 9| 9 |60| 6 |3
4 | _ 3 1 _L]l -2
1|1 2| 3|75 5 ol o|0 |-m|l"F|o
4 - -2 £ | L 7 L
i L 212 L [z [-2
0 1 6lisoléo |2y | 2|9 |3 |a 3
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The important fact is the negative "sign" of the gravitino contribu-
tion ( ﬁl ) in the "Weyl" infinities, which can be contrasted to the
positive ones for S = 0,1/2, 1 fields. It should be siressed that
the statement (cf. [ 10] ) about F1> 0 for any spin" is not actually
applicable for § = 2 and 3/2 (in the background gauges). One
should take into account that here ﬁa is gauge dependent {cf.[11]
for § = 2 case and note that the "one~loop" graviiino l8grangian is
superinvariant only if the background space is the Ejnstein space).

The final expression for the one-loop off shell infinities in
the gauged O(N) supergravity can be written in the form

=0, <R RFLA+RL

2
é pRR e (R-£RY) + 4 /e+/f‘a/e+ (5)
ae@f/-‘)+«z,aok_+o/ae ,+¢;/ 7
L=-hRan)+ g B, R,= AR A;,— , R=R-1A,
j e » Where the coeff clents are given

in the table

v]iol1|l 2 |3 | ¥ | s |6 | 8 |5*
Bo | — |- |-%¥ | -5 |[-2 o o o -
Bs | 7% |Mhs| "y | © o | o o | o |o
Pr |2 |- %|-%|-%A| -3|-2 |- |O |O
Bs |2 || Y | ~W|-t| -4| O 1 A
Be s | -H | ~ | - -Uus| - | | 2% Ry
Gl-1-1 %1% | % |"a|% |'% |-
% | - | w | 6y | 88 | /1 [ 196 | 190 | (78 | —
|- |- 172 | ~%A |- |-7% | -6 | -5 |-3
B %"= -8 | -9 | -0 | -” |-& | -7 [ %
A=W -7 o o [0 [[o o |o
Yo -~ - o o [2) [@) o o -

Several conclusions follow from these results:
(1) we explicitly demonstrate that gauged SG's are on-shell (L=1)
renormalizableAtopological infinity (i.e. after the use of

Ry A G~ 553 Tw=9 , R=14-0, 3, £,=0);
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2
(2) the on shell renormalizations of/l and j are given by the game

coefficient [, , explaining the agreement of the results of refa.[B]
and [9) 3

(3) there is no on-shell quadratic divergences in gll theories with
N >3;

(4) N = 8 SG and the theory, obtained by a reduction of the N=1,d=10
SG (the last column of the table)are.off shell finite in the gravita-
tional 2*-gector (have B, = 0). Thus the N=8 SG is distinguished by
having a maximal degree of the off shell finiteness:f,=f4; =/, =0 .
One may even conjecture that it is completely off shell finite (for
L=1) when treated in a suitable background supergauge where a/,=q{,.=0
(it way turn out that also ﬁ: = 3’; =0 in this gauge if the N=8
superextension of Rz' does not exist).

3. One-loop B-function in pure conformal supergravities [6]

Conformal supergravities are U(”) (W= Tyoeey, 4 ) super-~
conformal extensions of the Weyl invariant W= Ri— :SL Rz .
The lagrangian has the following structure [12] r

Y= (W)= W= G LA £

: w
VPG I ¢ + ¢
vy e B h R E ]
1yY - 4 9 V) QD 7= 9+ A+V5,
were @B = $07(Q, ¥ ~Q bt 2 Curpe H o), A
while 4 and .l; are U(1) andSU (W) gauge fields and ¢; is
"conformal gravitino". Why these theories are interesting: (1) they
are gauge theories with the maximal known group =-superconformal
group, including the ordinary ané conformal supersymmetries, scale
and chiral U(/V) transformations; 2) they are power counting re-
normglizable due to higher derivatives in the kinetic terms,
M inear = hao*h+ ¢¥2°%Y + AGA +.. (Note that for the cor-
rect counting of degrees of freedom one should properly account for
the "averaging over gauges" operators, e.g. for the N = 1 theory we
have ))ﬂt=(€)£ + (—-8)* +(.2)A =0 ) 5 3) N = 1,2,3-theories
are asymptotically free)while the N=4 theory is finite (in one-loop).
More explicitly, one can obtain the following results for the B-func-
tion for the dimensionless coupling o :

V=1 : fr=/99+/f,+ﬁ=j2_7 , m

(6)
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where '93 = 22 is the value for the pure Weyl theory [5]

P*——W‘ﬁ 30 is the conformal gravitino F~infinities
n the grav1tat10nal sector established in [ 6] with the use of the

algorithms for the divergences of the 4-th and 3-~d order differential

operators and /g = 1/5 is the axial vector field contribution.

Ne2: fp = g '+ 26, *fa + fr ( Sls-gauge field v T4

+ ,2(2 apinors /" ) + £ (1 antisymmetric tensor field Z"‘/
&b ~To T ) = 13

Ne3: B = fy +38, +fn * /,, (54) # (S4%) *
/g (3 compl_exdiilars)g_ /gr (3 7) +/§; (1 spinor A ,

et ht B tACW "/x (<00 %) + fe (WE,)
+/9 (6 T) + /A (7./1) +f( (1(;,,,,,/,&).r sk €, 8~

~C*0*C)
(where we assumed an appropriate gravitational coupling of the scalar
C). Interpreting — o % as the U(/(W) gauge coupling, we

get the following sequence (cf. with the O(N) Poincare SG Bequence
(2))

N ' 1 L 3 4
ST B o) (8)

However, the conformal supergravities lack a low energy correspon~
dence with the Einstein theory. Tyat is why in order to get a viable
theory one should add also the ordinary (linear in curvature) super-
gravity term in the lagrangian.

4, Renormglizable supergraviiy models

Let us consider the following lagrangian

Le-ECR) ¢ L(W), - L(kY, @

where the brackets denote the corresponding superextensions. This
theory is renormalizable, possesses the correct Einstein limit but
l.cks perturbative unitarity due to the presence of ghosts.However,
ghoste here fill a supermultiplet and thus may decouple in some
non-perturbative way. The physical spectrum contains gauge fields
of Poincare SG, while [J(#) gauge fields of conformal SG are in
fact auxiliaries for Pyincare SG. Some generalization of (9)
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probably exists for N=4, ..., 8 with higher spin fields being auxi-
liary (propagating) in Pgyincare (conformel) SG-paris.

One can prove that the inclusion of the (Rﬁ;.)-term in the
conformal SG lagrangian increases the value of the Weyl coupling
ﬁéﬂ)-function. Thus we get the asymptotically free behaviour for of
also for N=4 theory and may hope for /E(e()._- O for some N > 4.

In turn, the addition of conformal SG term to the Pyincare one (1)
changes the renormalization of the physical gauge field coupling 9:
all negative gravitino and matter fields conributions in /94;) are
suppressed due to higher derivative terms in the conformal S@ part.
Tyerefore the value of /?ng is the same as for the free O(N) gauge
field in the flat space-time, i.e. corresponds to the asymptotic
freedom in contrast to the non-asymptotically free results in pure
Poincare SG case (2), Now let us mention a possibility that a su-
perextension of the Rz-term may not exist for some N > 2, Then the
superconformal theory

L-(-HRE15pdrip EW,

is an attractive candidate for a fundamental theory if it has/?ﬁx)=(7
(no superconformal anomalies and possible solution of the problem
of ghosts). The presence of conformal supergravity term may also
help to provide a spontaneous supersymmetry breaking. The important
fact is that one can add some matter multiplets to (9) or (10) wi-
thout destroing renormalizability. Obtaining in this way a suffi-
cient spectrum of particles (or taking in account that additional
particles may appear as monopoles after a spontaneous supersymmetry
breaking) we get a power counting renormalizable asymptotically
free (or finite) unified theory.

In conclusion we want to point out that the renormalizable
supergravity (9) can be considered as an "induced supergravity" the~
orye Suppose we start with the lagrangian

s £
Lt bw i $3F) * (W), |

containing massless gauge and spinor matter fields interacting with
the external conformal supergravity fields and also the pure confor=
mal SG part. Assuming that the regularization breaks the conformal
symmetry but preserves the general covariance and local supersym-
metry, we get (according to the ideas of "induced gravity" approach
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53] ) the following effective lagrangian

1 - B 2
=7 /5:4 (R 2/1"“"’):; 36,4 (R )“+ (12)
{
+ ;ZE:h()aals + ... ,

where K., JAdhd and G:ud are finite calculable constants, One
can probably induce the Pgincare SG term in (12) even without matter
terms in (11) (i.e. starting only with conformal SG term). Thus the
conformal supergravity itself may be a true theory on some fundamen-
tal level.
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A Geometrical Foundation of a Unified Field Theory

Nathan Rosen
Technion, Israel Ingtitute of Technology, Haifa
and

Gerald E. Tauber
Tel Aviv University, Tel Aviv
Unfortunately the authors were unable to attend the Symposium
I. Introduction

In g geries of two not well known papers Einstein and Mayer 1) proposed a
formalism by which they were able to obtain a theory of gravitation and electro-
magnetism similar to that of Kaluza and Klein. 2) Instead of assuming, as these
authors did, the existence of g five-dimensional continuum they essumed that at
each point of gpace-time, regarded as a Riemannian space, there exists a five-
dimensional vector space. The purpose of this work is to generalize the approach
of Einstein and Mayer to N~dimensions, and to lay the geometrical foundation of a
possible unified fisld theory of gravitation with other fiolds. 3)

Accordingly, we assume the existence of a four-dimensional Riemannian
base space, characterized by coordinates xi (i =1,..4) and metric gi,.]" At each
point {of the base space) there is g linear vector space of N dimensions (N 3),
vectors in which would have components By s b (4 & 1,2..8)e Quantities in the
two spaces are comnected a mixed tensor or projector hp.k so that

ak - hp.k at (1.1)
For a given a* (1.1) determines ak uniqﬁely, but the reverse is not the case.
In particular, for a wvector Ak = O we can write

A - hpk .o (1.2)
which will have n # N-4 independent solutions, if the matrix (h gk) is of rank 4.

Labelling thege solutions with an index P (P » 1,2,..n) we can define a metric gpq

b A - '1'3)
A" Au = Brg (
In general, gPQ will be functions of coordinates y® (m = 1,2,..N~4) in this sub-
4)

space, but for the present discussion”’ we shall sssume that gPQ are constants,

which we can take aB

gPQ - 6PQ {1.4)
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However, to keep the notation more uniform we shall replace the A's by guantities
suéh as hp_P, hp.P’ .hP’P etc. In the N-dimensional space we define a metric tensor

fp.v related to 83 through

. fonY ij  gvpipgd 1.5
€13 fp.vhlhj o g L Y (1.9)

and by raising (or lowering) indices

E S N |

A simple calculation using (1.2) and (1.6) gives

enhind Ppa .
£, By B gy b BE gp (1.m)

which can be considered to be the inverse of the relation given by (1.5).
II. Curvature tensor
Let us now consider covarient differentiation, which involves the ordinary
Christoffel gymbols in base space, but a number of comnections or three-index
symbols in vector-space. For exemple, the covariant derivative of Sl"‘k ig
Fews i LSRR A Lo (2.1)
Thus, in particular k. ok
2y e a gy {2.2)
whore a semi-colon denctes a Riemannian covariant derivative. Furthermore,
Bisnk = Bigge = O (2.3)
a8 usual, and we shall also assume
favak = 0 (2.4)

In order to determine the form of the three-index symbol r}\pk congider

o
a gimpler guantity 1‘)‘“‘k involved in covariant derivatives dencted by a single

bar | and defined such that
. _nd
Bt =By 7 0 (2.5)

One finds then from {2.5)

3 whA pd A P A p,m ] A Q.
P =Byl o Wpn Ty e Wy n® Ll We n y Ge6)
where I’PQk is still undetemined.5) If we now write
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it follows from (2.4) thet

Vovk * vvplk =0 (2.8)
Consequently,.we can take vp.vk in the form
enindw ., + mFPnd-nFpl Ppe .
v“Nk YRR P { w by v hp ) Fij + hp h uPQk (2.9)

where
Vige = " Wyge amd Upy = ~Topy

and the functions appearing in €2.9) are to be detcrmined.
The curveture tensor in the base-space is just the Riemann-Christoffel

i
tengor R jkn* In the vector space we can define the curvsture tensor

A A e a
- = T - .
P)\w‘k r)\pd KT Py T juk T}\ok r pd (2.10)
From P)‘p.jk one can form tensors of lower order
A k - 3
P =P h PaP  nht .
i " g e " (z.11)

being the analogues of the Ricci temsor and inveriant curvature.

From the usual anti-commitation relations we obtain
- L E .n k - PR
L W Bk hp. Peng P}J.j hp R

Multiplication by W% then gives

P - R = htd .
xpj {2.12)

The right hand side can be evaluated by meking use of {2.5), (2.7) and

i igye
hp’"k=-ha v

ik
where V"p'k ig given by (2.9). Carrying out the indicated calculations we find
P = Jk Pjk .
R+t Mo * T8 Fpg (2.13)

IIX. Field equations

To obtpin the field equations it is convenient to meke use of a variational
frinciple. Since for constant gPQ = 5PQ the only scalar at our disposal in vector
spece is P given by (2.13) we shall take the variational functional as

o1« [P t-g)t o = 0 (3.1)
where g = detlgijl e Varying (3.1) with respsct to g, We then obtain
ReP - 1 geb R a - 2(;Qa3 Fij - % 2P FQPq yqu)

(3.2)
-3 t_,rﬁrp Wb - l. ab TPq y
( rp " e& W Vrpq)
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Varying {3.1) with respect to wijk and F X gives Wijk - ypjk = 0, as ¢an be seen

Pj
from (2.13). In order to avoid this, let us express these functions as potentialse
Let us first assume 6)
Frik = " Tmey 2™ Tpge = Frypx ™ ey 5 (2.3)
Varying now the potentials FPJ we obtain the field equations
Sk .p ik - k 3.4
Assume also -
W3 3k "ik$

so that now wijk is completely antisymmetric upon interchange of any two indices.
Two possibilities now suggest themselvess

)r

where ®; jkm is the completely antisymmetric Levi-Civita symbol. Varying now @
in (3.1) results in the wave equation
g 25y = 0 (3.6)

b) Alternstely,

i - - . '
Wijk Wikt ik, * ki, with i L (3.5*)

If we now vary with respect to w;j we find from (3.1)
wijk;k -0 (3.6*)
It should also be noted that no equations have been obtained for UPQk'
IVe Gauge flelds
%0 far we have considered the vectors hp'P satisfying (1.2) and {1.3) as
having permanent identities. However, we can get a further genera lisation by taking
into account the possibility of replacing them by linear combinations. If under

the transformation

P P* _ 2P 1 Q
h h - h 4.1
w2 B SR, @.1)
where SPQ - (S-I)QP ig an orthogonal m&tri"‘, the vector T}L ig invariant
. - P Y P'
‘I'P' ¥ hp. « ¥y hp, t4.2)
then
2.* «389% or, in metrix notation, ¥' =38 ¥ (4.3)
P Q ~ ~

If we now define the covariant derivative

T - -] -
21y 7 3,3 7B;2 eothat 20, -82, (44)
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we obtain the transfermation law for 33

~838, 8 43 3 g-1 (4.5)

~j ~~] o~ ~y

Thus ’

B, B 4.6

ﬂjk ﬂJ ok ﬂk »d * [»'J ’ ~k] ( )
transforms according to the relstion

* - -1 4.7

Bk =523 2 (¢.7)

e see that we have here the gauge-field formslism. Writing out (4.4) in terms

of matrix elements gives

7 -9

bl 5 P,J—BP%‘PQ-‘P -y (4.8)

Py P§ Q
which shows that the matrix elements BPQJ are nothing else than the three-index

symbols TQPJ we met previously (cf. 2.6), and thus our formslism does contain the

seed of the gauge transformetion. In particulear, (4.6) written out is just the

tensor (apart from an overall sign)
F o - Poge - ﬁqk,“f.rn - P TR (6.9)
We also note that the three-~index symbol I‘ juk (2.6) is gauge~—invariant as it stands.
Morecover, the field equations for F‘ij are gauge-invarignt gs can be seen from
(3.4). Also, from (3.3) we obtain
Pose = Fsik = Frits = Frik = Fek,j - My Foy *+ Tpy Ty (4.10)
We, then, note thet varying (3.1) with respect to I‘ij would impose a restriction

on FQj- It is, therefore, suggestive to add to the legrangisn in (3.1) a term in

volving thege comnmections. Thus, we replace (3.1) by
&, . R
o [t + o B & &) (-g)? ax = 0 (¢.11)
Varying (4.11) with respect to g, adds to {3.2) a term on the r.h.s. of the form
P k b, oP kb b 3
- (B Q a Bka + B Q Bkaa - 3e? BPan BQPmn) (4.12)

while varying with respect to 'J.‘PQk gives
ij j - j - '
- 4BP 'k 412(EP k F‘Q] F‘Q k FPk) 0 (‘ 13)

1) A. Einstein and W. Mayer, Sitzber. Preuss. Aked. Wiss. 1981, p. 5813 1932, p.130
2) The Kaluza, Sitzber. Preuss. Akad. Wisse 1921, p. 966

3) Work along them lines is now in progress.

%) The general case will be prosented in a separats publication elsewhere.

5) These symbols Play the role of gauge fields (see section IV)

6) For P » 1 wo got the Maxwell fields considered by Zinstein and Mayer.
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