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PREFACE 

The history of gauge theory began with Weyl's pioneering attempt to 

unify the general theory of relativity and electromagnetic theory. 

After the establishment of quantum physics, however, the two theories 

proceeded along quite different routes. Whereas general relativity re- 

mained a classical theory and applied solely to phenomena of very large 

scales, electromagnetic theory brought a great triumph in quantum 

electrodynamics for microscopic phenomena. 

Though quantum electrodynamics was a prototype of quantum field 

theory, the gauge principle itself was regarded as a special artifice 

realizing renormalizability in the 195Os. The extension of the gauge 

principle to a non-Abelian symmetry was proposed by C.N. Yang and 

R.L. Mills in 1954 and also by R. Utiyama in 1956, but the non-Abelian 

gauge theory seemed to have no physical reality at that time. This 

situation changed drastically in the 197Os, when the concept of spon- 

taneous symmetry breakdown was incorporated into the theory. It is now 

firmly believed that both electroweak and strong interactions are de- 

scribed by non-Abelian theories. 

In contrast to the rapid progress of particle physics, the develop- 

ment of the theory of gravitation was rather modest, and remained iso- 

lated from the rest of physics. In recent years, however, it has become 

an increasingly accepted view that gravity should be included in quantum 

physics, and that the theory of gravitation is indispensable in explaining 

cosmic phenomena around black-hole spacetime and in the universe itself. 

Thus, it is widely believed that particle physics and the theory of gravi- 

tation must be unified from the standpoint of the gauge principle in a 

generalized sense. 

In Japan, research on theories of gravitation has long been supported 

by the General Relativity and Gravitation (GRG) Research Group, together 
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with a sub-group (relating relativistic astrophysics and cosmology) 

in the Nuclear Astrophysical Group. Because of the interest of particle 

physicists in gravity, the GRG group recently expanded to include such 

scientists, and a new GRG Research Group was organized in 1981. 

Professor Ryoyu Utiyama, President of Tezukayama University, is one 

of the most distinguished theoretical physicists in Japan. As early as 

1956, he made a pioneering contribution to gauge theory and gravitation 

by showing that the general theory of relativity and the non-Abelian 

gauge theory could be understood on the same footing. Since then, 

Professor Utiyama has done a lot of important work on the gauge- 

theoretical formulation of quantum field theory. He served as an organi- 

zer of the GRG group and was professor at Osaka University until 1980. 

The International Symposium on Gauge Theory and Gravitation was held 

at Tezukayama University, Nara, Japan, on 20-24 August 1982 to pay 

tribute to Professor Utiyama's brilliant research and to foster the 

development of gauge theory and gravitation. The symposium was supported 

by the Physical Society of Japan and the International Committee of the 

GRG, and sponsored by Tezukayama University, the Japan Society for the 

Promotion of Science, the Yamada Science Foundation, the Nishina Memorial 

Foundation, the JEC Fund and the Kinki Nippon Rail Line Company. The suc- 

cess of the symposium was made possible by the cordial cooperation of 

all participants and organizers. Many thanks are due to Mrs. Y. Tsuji 

and to the graduate students of Osaka University for their secretarial 

assistance. 

December 20, 1982 Editors Keiji Kikkawa 

Noboru Nakanishi 

Hidekazu Nariai 
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A MICRO-deSITTER SPACETIME WITH CONSTANT TORSION: 

A NEW VACUUM SOLUTION OF THE 

POINCAR~ GAUGE FIELD THEORY 

Peter Baekler and Friedrich W. Hehl 
Institute for Theoretical Physics 

University of Cologne 
D-5000 Cologne 41, West Germany 

ABSTRACT 

We study the Poincar~ gauge field theory with Lagrangians of the type 
(curvature scalar + torsion2~l 2 + curvature2/~5. Here 1 is the Planck 

length and ~ the coupling constant of the hypothetical Lorentz gauge 
bosons. We find a new vacuum solution with a deSitter metric and with 
constant microscopic torsion~4-~/ ~ and curvature -~ ~/ ~ . Its 
curvature displays double duality properties. 
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I. INTRODUCTION AND SUMMARY 

Soon after Yang and Mills /I/ developed the SU(2)-gauge concept in 

the context of the conserved isotopic spin current, Utiyama /2/ extended 

this idea to any semi-simple Lie-symmetry group and demonstrated further 

more that general relativity (GR) can be understood as a gauge theory re- 

lated in some sense to local Lorentz invariance. A most lucid presenta- 

tion of Utiyama's gauge theoretical ideas can be found in his more re- 

cent paper /3/. This approach to GR can be traced back to an earlier at- 

tempt of Weyl /4/. 

Subsequently Sciama /5/ and Kibble /6/ have shown that, in a gauge 

theoretical set-up, the ad-hoc assumption of a symmetric connection of 

spacetime, used by Utiyama, should be dropped. Thus one arrives at a 

gravitational theory ~ormulated in the framework of a Riemann-Cartan 

spacetime U 4. It is most natural to interpret the resulting theory as a 

gauge theory with local Poincar~ invariance, cf. Cartan /7/. We will call 



it a Poincar~ gauge field theory + (PG). The present article is based on 

our four Erice lectures on this subject /32/. 

Einstein "deduced" GR and its Riemannian spacetime V 4 by studying 

the motion of forcefree point-particles in non-inertial frames of refer- 

ence and by applying the equivalence principle. In a gauge theoretical 

approach one studies the Lagrangian of a fermionic field, typically of a 

Dirac field, in non-inertial frames of reference and applies again a 

principle of equivalence++: A Riemann-Cartan~spacetime U 4 is the outcome. 

It is the heuristic power of the Einsteinian type of procedure as 

applied to a fermionic field which lends support to the PG. For fermions 

a U 4 is a much more natural "habitat" than a V 4. The latter is naturally 

adapted to point-particles. - 

In Sect. 2 we will formulate the two field equations of the PG. In 

Sect. 3 the most general polynomial Lagrangian in torsion and curvature 

will be displayed yielding quasi-linear 2nd-order field equations. For 

a detailed motivation and derivation in the context of both of these 

sections see /32/. 

Subsequently we are are going to look for exact vacuum solutions of 

the field equations with non-vanishing torsion. Such solutions with 

spherical symmetry and reflection invariance were found earlier for 

specific Lagrangians of the PG by Neville /36/, Baekler /37/, Baekler, 

Hehl and Mielke /38/, by Benn, Dereli and Tucker /39,40/ and by Baek- 

+) 
Cf. also Hayashi and Shirafuji /8/ and Hayashi and Nakano /9/. There 

is a vast literature on this field. References can be found by starting, 
say, from the articles of Ne'eman /10/, Trautman /11/ and Hehl, Nitsch 
and Von der Heyde /12/ in the GRG-Einstein Centennial Volume (Held /13/). 
More recent work includes the articles of Hennig and Nitsch /14/, Mielke 
/15/, Ne'eman /16/, Nieh and Yau /17/, see also /18,19/, Schweizer /20/, 
Szczyrba /21,22/, Thirring /23/, Tseytlin /24/, Wallner /25,26/, Yasskin 
/27/, and, on the equations of motion, Audretsch /28/ and Rumpf /29,30/; 
cf. also Drechsler /31/. 
++) 

Cf. Von der Heyde /34/, Mack /35/, and Utiyama /3/. In the gravita- 
tional part of Utiyama's paper on D. 2218 ~8 = O (locallv) is Dostulated 
in order "to derive the Riemannian-~ from a gauge theoretical approach". 
If one put A9 = O (locally) instead, one would arrive at a Riemann-Car- 
tan spacetime. Utiyama writes in a letter to one of the authors further- 

O 1' m re: I know that the requlrement A~ = O, locally (D) is more general 
than the requirement V~ = O, locally (E). Einstein's eauivalence Drin- 
cip±e Should be replaced with the requirement (D) which-is applicable 
even to microscopic cases. The condition (D) fits the orthodox view of 
the general theory of gauge fields .... this requirement is a generalized 
principle of equivalence." We completely agree. 



ler /42/. J.D. McCrea /43/ found corresponding cylindrically symmetric 

solutioms andA~amowicz /44/ ~lane wave solutions, see also Chen and Chern 

/45/. Mielke /46/ developed a general method for the generation of exact 

solutions. 

In Sect. 4 we turn to spherical symmetry with reflection invariance. 

Earlier work on this subject, besides the articles cited in the last 

paragraph, has been done by Ramaswamy and Yasskin /47/, Baekler and Yass- 

kin /48/, Nieh and Rauch /49,50/, Rauch, Shaw and Nieh /51/ and Rauch 

/52/, see also Tsamparlis /53,54/. In the papers /49,50,51/ the assump- 

tion of reflection invariance has been relaxed. 

In Sect. 5 we specialize the tetrad such as to find a spatially 

homogeneous time-dependent solution. First, in Sect. 6, we execute this 

program for the purely quadratic model Lagrangian (6.1). For this pur- 

pose we use the two LISP-based algebraic manipulation schemes REDUCE 

/55/ and ORTOCARTAN /56,57/, cf. d'Inverno /58/. Our REDUCE-programs re- 

ly heavily on similar programs written by J.D. McCrea, cf. /43/. We pre- 

sent the new constant curvature and constant torsion solution in eqs. 

(6.13) and (6.14) and show that it is weakly double self dual. 

In Sect. 7 it is shown that our new micro-deSitter solution with con- 

stant torsion is, by a suitable adaption of the constants, see. eq. 

(6.14)', also a solution of the field equations of the general polyno- 

mial Lagrang~an (3.1), provided the fairly weak constraints (7.1) and 

(7.2) on the corresponding coupling constants are fulfilled. 

2. THE TWO FIELD EQUATIONS OF THE POINCAR~ GAUGE FIELD THEORY 

The independent gravitational potentials of the Riemann-Cartan 

spacetime of the Poincar~ gauge field theory (PG) are the tetrad coef- 

ficients ei ~ and the connection coefficients r ~  = - 

Here i,j ... = 0 ... 3 are holonomic (world) indices and ~ , ~ ... = O 

... 3 anholonomic (Lorentz) indices. The tetrads are chosen orthonormal, 

i.e. the local metric ~ coincides with the Minkowski metric diag. 

(-+++). The tetrad coefficients e. ~ can be interpreted as translational 
1 

and the connection coefficients ~ as Lorentz (or rotational) gauge 

potentials. The corresponding field strength tensors are torsion 

(2.1) 

and curvature 



respectively. The operator D i represents the covariant exterior deriva- 

tive. Let be given a matter field represented by a Poincar& spinor-ten- 

nor ~(~)and referred to a local tetrad; its indices are suppressed. 

The action function W of a matter field ~ that is interacting with the 

Poincar& gauge fields, can be put into the form 

. . . .  

Here L is the special relativistic matter Lagrangian of, say, a Dirac 

field minimally coupled to the geometry s ~= Dirac matrices, e: = 

det ei~ , and ~: = eL, whereas ~: = eV is the gauge field Lagrangian 

depending on some coupling constants ~ i,~. 2 ..., on the local metric, 

and on the anholonomic components of torsion and curvature, respectively 

Let be given the field momenta by 

• . %%] %%~ 

the momentum current of the gauge fields by 

and the spin current of the gauge fields by 

(2.6) % ~t ~" : - "~-c~,~] ~ , 

then the fie~d equations of the PG read 

i27} ~&~[ i{ _ % ~ _- ~ ~ , 

(2.8) %,~9<,t~- %~" =~m.~ 
The sources on the right hand sides are the canonical momentum current 

and the canonical spin current of the matter field. For simplicity we 

will concentrate in this article on vacuum solutions of the field equa- 

tions, i.e. we will put the material sources in (2.7,2.8) equal to zero 

later on. 

The field equations are supplemented by the two Bianchi identities 

for torsion and curvature, respectively: 

(2.9) ~t~ F ~  ~ F ~  % , 



3. THE MOST GENERAL LAGRANGIAN YIELDING QUASI-LINEAR 2ND ORDER FIELD 

EQUATIONS 

The guiding principle for the construction of the gauge field La- 

grangian V is that we allow at most second derivatives of the gauge po- 

tentials ei~ and __~ , and these second derivatives should appear in 

the field equations only linearly (hypothesis of quasi-linearity). If 

we further assume V to be polynomial in the'field strengths, we find 

(3.1) ~ A I + 

The U4-Ricci tensor is defined by F~, := F ~  %" , its contraction, the 

curvature scalar, by F:= F ~  ~" . The Planck length is denoted by I, 

I/~i 4 represents the cosmological~ constant, and~,~, fA and d A are di 

mensionless coupling constants. In (3.1) we hypothesized that, in addi- 

tion to the usual gravitational potential ei~ ("gravitons", weak Ein- 

stein gravity with coupling constant 12 ), a propagating Lorentz gauge 

potential ("tordions", strong Yang-Mills gravity with coupling constant 
+ 

~) does exist in nature. 

By using (2.4) we derive the corresponding gauge field momenta, 

which are linear in torsion and curvature, respectively: 

(3.2) "~ ~ e 
= k- * • , 

By s u b s t i t u t i n g  ( 3 . 1 ) , ( 3 . 2 )  a n d  ( 3 . 3 )  i n t o  ( 2 . 5 ) - ( 2 . 8 ) , w e  f i n d  t h e  two  

f i e l d  e q u a t i o n s  o f  t h e  PG i n  t h e i r  e x p l i c i t  f o r m :  

+) This was proposed by Hehl, Ne'eman, Nitsch and Von der Heyde /59/. 
For a corresponding ansatz in supergravity see Nishino /60/. 



(FIRST) 

= 9." T_= ~" 
J 

(SECOND) 

" ~  J= ~1"]" ~r.., F ~a r" ~. + -~ ,. ~"t i"  

For brevity we put~:= - ~-~QL " With this sign convention, and for 

O,we formally receive the same A as in GR. Observe that one of the 

constants f2,f4 or f5 can be eliminated by use of the Euler-Gauss-Bonnet 

theorem. For convenience we choose f5 = O. 

4. SPHERICAL SYMMETRY WITH REFLECTION INVARIANCE 

For spherical symmetry and in spherical coordinates, the metric 

turns out to be 

( 4 . 1 )  



with the unknown functions ~, k and r. Under the same conditions the 

torsion tensor has eight independent components, which can be further 

reduced by imposing spatial reflection invariance: then the only non- 

zero components of the torsion tensor F~9~ are 

, 

( )•will denote differentiation with respect to T and ( ) ' with respect 

to R. 

In the following we will calculate the anholonomic components of 

the various geometrical objects involved. For this purpose we specify 

a tetrad associated with the metric (4.~). We choose the coframe as 

follows : 

The corresponding tetrad coefficients ei~can be read off from ~0 ~= 

ei' a . 
The anholonomic connection is determined by 

(4•4) 

with the object of anholonomity 

For spherical symmetry (4.4) becomes 

~'^o.~ = X,/~" + %- : = X(.'v~,J , 

= .l ~-k 

The curvature tensor 

has the following non-vanishing components 



(4.8) ~,,^o,  _ _ E, , -~- [  ( , x ? ' ) ' - < ~ , ~ ) '  ] , = ~,(~,~-b , 

: = _ .-x ( . . ~ , r ) ~ _ X , , ~  . = - ~ ( . ' x J . ' )  , F~tzo Fa~o 

~,,.,.,~ . .  ~ .  ,, = ~-x  ( . ~ , y  _~ x ' {  : - H ( . " r , a )  
• i" I 

5. A SPECIFIC TIME-DEPENDENT ANSATZ FOR METRIC AND TORSION 

In order to find homogeneous time-dependent and not necessarily 

isotropic solutions of the field equations, we specialize the ansatz 

(4.3) to 

(5.~) ~ = &'T -'- 

y i e l d i n g  the metric 

For the torsion we assume 

c 5 . ~ )  - ~t '~, , - ' )  ~ - v.( .-T,~.)  = ,  ~(.~,~.'), 

Then the anholonomic connection reads 

• i~ ' 
4 

and for the anholonomic components of the U4.-curvature,F W~& we find 

) 

(5.5) 

-aV~ 2 

F,,,, = ~'q~ ~ * t~'l~'~-~"l~" - , -  ~'~l~ - ~" 

A further simplication can be achieved by the separation ansatz (cf. 

Fennelly and Pavelle /61/) 



(5.6) C ~ , l t " )  = 
It'- 

6. THE NEW SOLUTION FOR THE QUADRATIC MODEL LAGRANGIAN 

The field equations (FIRST) and (SECOND) of the IO-parameter Lagran- 

gian are much more complicated than the Einstein equations. Therefore, 

for computational ease, it is advisable to pick a simple model Lagrangian 

which should have all the characteristic features of the full 10-para- 

meter Lagrangian (3.1). A particular plausible choice is our purely 

quadratic Lagrangian /59/ 

( k¼ "/~. = ~, : e>, 

k ~  

On substituting the data of Sect. 5 into (FIRST) and (SECOND) and 

using the parameter set of (6.1), we find for the vacuum case 

FIRST ~0,0 ~ " -  ~ ¥ + ~. %'~1~ -~, %~';1~ - ~.~."~,'V~" - s'{Vp ,~,-~'~i/p ~ ~ '1~ 

(6.2). 

(6.3) 

FIRST(2,2> = FIRST~3,3~ - %-- ~I~ * ~%~'~I~ -~A~/e' + ~V~ 

- ~ i l ~  ~- ~ / ~  ~4~:Wp - ~ e ~ ' / f ,  ~4~ ~ %l.t -.4"~t6~e;.+'~',.,.It".~, 
FIRST (1 ,1 ) " %" - ~'%':{1~" * ~'%% ~N - ~'%~q ~" + r e "  ~,'V ~" • ~' I~-" - 

rSECO~D(O,O,~ - ( ,~ /~ ' )L~ '~Y ~ o ,  

SECOND(~,O, 1 " - - '~--"S~'~t+-~ '~ '~"l~"  *"~'/'; + '~ ~le -~]t ~ 

SECOND (2,0,2 

SECOND (2,2, I 

-SECONDC3,O, 3> = --%-~%%1~ + ~'~ ~'~l t ~ * ~ '  ~"l~" ,~.~3 

+'~'/~ +'(~/~'-'~'{1~-- ~-;~'l~ ~ ~'¢l~'-c~"~l; + ~ N  : %  

=SECOND(3 3,1~" ~'t~--~)- O. 
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Inspection of the antisymmetric part of (FIRST) reveals that 

The trace of (FIRST) yields 

(6.51 ~ *  ~ ; I ~  - ~ = o 

with the solution 

4 

where C I is an integration constant, 

Eqs. (6.5) and (6.6) fuIfill (SECOND) identically, i.e. the func- 

tion f(T) should be determined by the tracefree part of (FIRST). Substi- 

tution of (6.5) into (FIRST) yields an integro-differential equation for 

the unknown function f(T) 

with Z(T) given by (6.6). 

Eq. (6•7) admits at least one simple solution for f(T): Choose 

, 

which implies C 1 = 0 in (6•6), and 

(6•9) ~[~) = C @.~'~ , 

where C, ~, and ~ are constants• Then (SECOND) is fulfilled for arbitrary 

C and ~ with ~ given by 

(FIRST), however, restricts the Value of ~ to 

(6.11) ~ ~ % 

Accordingly, the metric is found to be 

(6.12) ~L = _ &~ ÷ ~ 

By a coordinate transformation, it can be put into an explicitly con- 

formally flat form• Collecting our results, we finally have the exact 

vacuum solution 

(6.13a) ~L = ~ ~w%%<% 2 



(6.13C) C 1 O a-*ta_,t 
with 

(6.14) ~- % ~ ~ =~-~/~ 

The antisymmetrie index pairs (O1,O2,O3,23,31,12) of the curvature ma- 

trix are numbered by (1,2...6) (cf. Misner, Thorne and Wheeler /62/ p. 

361). 

Consequently, for the purely quadratic Lagrangian solutions exist 

with constant (anholonomic) torsion and constant (anholonomic) U 4- 

curvature, but with an F~*~ which does not satisfy G~ (U 4) =~,~.. 

The U4-curvature (6.13c) with (6.14) can be split into a Riemannian 

V4-piece, caused by the deSitter metric (6.13a), and a purely torsion de- 

pendent piece according to 

I ) 
-A 

-A 
4 

4 6 

(6.15) 

This decomposition is irreducible under the local Lorentz group (cf. 

Debever /63,64/ and Lenzen /65/), the deSitter piece corresponds to the 

U4-eurvature scalar and the second piece to the tracefree symmetric 

tensor. The U4-Weyl curvature tensor C ~  vanishes. U4-Ricci 

As can be read off from (6.15), the U4-curvature of our new solu- 

tion is weakly double self dual 

(6.16) := i F. s ~g~ = 

for ~ = I/2, where 

(6.17) 

is the double dual of the curvature tensor ( ~ r  = totally anti- 

symmetric unit tensor). A double duality ansatz such as (6.16) can 

be used in the first place in order to find exact solutions (Baekler, 

Hehl and Mielke /38/, Benn, Dereli and Tucker /39/). + 

+) 
F. M~ller-Hoissen has informed us that he rederived our new solution 

by solving his Friedmann type equations in /66,67/ for the vacuum case, 
cf. also Minkevich /68/. 
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7. THE NEW SOLUTION FOR THE GENERAL CASE 

In this section we will show that the solution (6.13, 6.14) can be 

generalized for the 10-parameter Lagrangian (3.1). For this purpose we 

substitute (5.1), (5.3), (5.6), and (6.8) into (SECOND) and (FIRST). 

Then (SECOND), together with the double duality ansatz (6.16), yields 

the two constraints 

(7.1) ~ ~ ~-_~ ~ ~J = O 

and 

* ~%'S- = O 
(7.2) Z 

cf. Baekler /42/ ( ~ "- 4*I~4*&%* ~3 * {~ 

/42 /  

(7.3) 

2 

). (FIRST) leads to 

assumzng ~ q ~ ' ~ % ~  to be fulfilled, to or, 

(7.4) -~ ~%~+ ~ - ~-6 = o 

The conStraint (7.1) holds for the "viable set" of torsion-para- 

meters, which, for F~S = O, leads to the teleparallelism theory of 

gravity. + Eq. (7.4) classifies~ the solutions into two different groups: 

One with d 3 = 0 and a second one with d 3 ~ O. 

Let us consider at first d 3 = O. Then, as can be seen from (7.3), 

non-trivial solutions are only possible if we include a non,zero cosmo- 

logical constant into the Lagrangian (see Benn, Dereli and Tucker /39~. 

The perhaps more interesting case is, however, that with d 3 # O. Then 

(7.4) yields 

These solutions can carry, in the case of ~ = O, a "cosmological con- 

stant" without having a cosmological constant (see Baekler /37/, Baek- 

ler, Hehl and Mielke /38/). 

For the function f we find, respectively ++ , 

+)Recently interest in the teleparallelism theory increased greatly. 
The articles of Kopczy~ski /69/ and of MOller-HoisSen and Nitsch /70/ 
unify the formalism and give a critical evaluation of the viability of 
the theory. Recent work includes the articles of Cho /71/, Hayashi and 
Shirafuji /72/, Meyer /73/, Nitsch /74/, Nitseh and Hehl /75/, Schweizer 
and Straumann /76/, Schweizer, Straumann and WiDf /77/ and Smalley /78/. 
++) 

For vanishin~ torsion, the solution f = Cexp£~) was found by 
% 
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= ~k ~L--~-~-l 1 ~ 

(7.6) ~) [C ~(~') ) ~arbitrary const, i ~ ~ ~ O~ 

Accordingly, 

(6.14) ' F ~ arbitrary constant ~3 : O ~ , . ~ 3  2 = _ .~ ., 

together with (6.13), represent solutions for the 10-paramter Lagrangian, 

provided the two constraints (7.1) and (7.2) are fulfilled. 
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NEW GENERAL RELATIVITY 

- TRANSLATION GAUGE THEORY - 

Takeshi SHIRAFUJI 

Physics Department, Saitama University 
Urawa, Saitama 338, Japan 

1. Introduction 

In 1956 Utiyama proposed to introduce the gravitational field as the gauge field 

of the Lorentz group, l) He introduced 24 fields by generalizing 6 constant parame- 

ters ~ij (= - ~ji ) for homogeneous Lorentz transformations to arbitrary functions 

~ij(x). Later Kibble considered all the i0 parameters of the inhomogeneeus Lorentz 

group (Poincar~ group), and laid the basis for Poincar~ gauge theory with 40 indepen- 

dent field variables. 2) 

Hayashi and Nakano proposed to extend translations only, leaving the six parameters 

constant. 3) In this translation gauge theory, 16 field variables CkU are intro- 
~ij 
duced as the gauge field, by requiring that the action integral be invariant under the 

group of extended translations and global Lorentz transformations. This invariance 

group is the simplest one that includes the group of genera] coordinate transformations 

The underlying space-time of the translation gauge theory is the Weitzenb~ck space- 

time with absolute parallelism. The notion of absolute parallelism was first intro- 

duced into physics by Einstein, trying to unify gravitation and electromagnetism. 4) 

His attempt failed because there was no Schwarzschild solution in his field equation. 5) 

A purely gravitational theory based on the WeitzenbSck space-time was revived by 

M~ller, 6) and its Lagrangian formulation was given by Pellegrini and Plebanski. 7) 

The theory of gravitation based onthe Weitzenb6ck space-time was extensively stud- 

ied by Hayashi and Shirafuji, 8) and it was given the name, new general relativity, 

since E~nstein in 1928, after inventing general relativity, considered absolutepar~ 

~llelism for the first time, and since its main consequences were analogous to those 

of general relativity so far as macroscopic phenomena were concerned. 

2. Fundamental particles and translation gauge group 

We start from the action integral in special relativity for the fundamental parti- 

cles of spin 1/2, 



17 

S M = Id4x LM(q,~kq) , (2.1) 

which is invariant under Lorentz transformations, 

~xk = ck + ~kj xj ' (~kj = - ~jk ) ' (2.2a) 

~q = (i/2)~ijsiJ q , ~(3kq) = (i/2)~ijsiJ(~kq) + ~kJ(~jq) , (2.2b) 

where S ij are the Lorentz generators, and c k and ~ij are independent, constant I0 pa- 

rameters. Here q collectively denotes quarks and leptons, and the Minkowski metric 

~ij is given by diag(-l,+l,+l,+l). 

We now extend translations to extended translations (namely, to general coordinate 
k 

transformations) for w~ehthe parameters c are arbitrary functions of space-time 

points, and demand that the action integral should be invariant under general coordi- 

nate transformations and under global Lorentz transformations, 

= ~U(x) , 6q = (i/2)~ijSijq , 6x ~ (2.3) 

where ~(x) are arbitrary four functions and ~ij are constant 6 parameters as before. 

Since we are now treating general coordinate transformations, we use Greek letters for 

coordinate indices and distinguish them from Lorentz indices denoted by Latin letters. 

To meet with the invariance requirement, we must define those quantities Dkq which 

change under (2.3) in the same manner as ~k q of (2.2b). 9) We define Dkq by 

Dkq = (~ + Ck~)~ q , (i.4) 

then we get the following transformation rule for CkU; 

: + + + ~ ~ J Jc ~ ~k~ ~ ~ (2.5) ~Ck~ ~Ck~ k j j Wk " 

The field Ck~ is the gauge field associated with the translation gauge group. It 

transforms inhomogeneously under extended translations. The special relativistic limit 

is obtained by putting Ck~ = O: When CkU = O, Greek indices are equivalent to Latin 

ones, and the transformations (2.3) compatible with (2.5) are restricted by 

~j~k k 
+ ~j = 0 , (2.6) 

from which we get (2.2a). 

The transformation law of the translation gauge field given by (2.5) is rather com- 

plicated. The field bk~ defined by 

bkg = 6kg + Ck~ (2.7) 

obeys much simpler transformation law, 
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Jb p . (2.8) 6bkP = a~Pbk~  + k j 

Also, we define b k by 
P 

b k b ~ ~ ~ b k b. p : 6j k (2.9) 
pk : p ' p3 ' 

The invariant action integral is now given by 

S M : Ib d4x LM(q,Dkq) (2.10) 

with 

b : det(b k ) , (2.11) 
P 

because b changes like 6b = - b~p~ p, and bd4x gives invariant volume element. 

3- Gravitational field equation 

We shall construct a gravitational Lagrangian density in vacuum 

S G = Ib d4x L G (3.1) 

by the following basic postulates: (i) Invariance under the group of extended trans- 

lations and global Lorentz transformations, (2) L G be quadratic in the translation 

gauge field strength, 

Tij k : bjPbk~(~ bip - 3pbi~) , (3.2) 

and (3) L G be invariant under the parity operation. The most general gravitational 

Lagrangian density L G can then be represented as 

L G : ~(tijk tijk) + 6(vi vi) + Y(aiai) (3.3) 

with e, B and y three unknown parameters with dimension of (mass) 2, where tijk, v i 

and a i are the three irreducible parts of Tijk; 

tij k : (1/2)(Tij k + Tji k) + (1/6)(qkiV j + qkjVi) - (i/3)qijv k , (3.4a) 

: T k (3.4b) 
vi ki ' 

: (i/6)eijkm Tjkm (3.4c) 
a i 

Taking the variation of the totalaction integral, 

S = S G + S M , (3.5) 

with respect to bkp, we get the following gravitational field equation, 

2Dk~ij k + 2vk~i jk  ÷ 2g i j  - qijLG = Ti j  , (3 .6)  

where 
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m 

~ijk : u(tijk - tikj) + 8(nijVk - nikVj ) - (Y/3)eijkm a ' (3.7a) 

~ij = Tmni~mnj (i/2)Tjmn~i mn " 

Here T.. is the energy-momentum tensor defined by iJ 

Tij : (i/b)bj~[~(b~/~bi ] , 

(3.7b) 

(3.8) 

which reduces to the canonical energy-momentum tensor 

Tij : - [SLM/3(SJq)]3iq + nijL M (3.9) 

in the special relativistic limit, CkU:= 0. 

As a simple example, let us consider a spherically symmetric case where the field 

bkU takes a diagonal form, 

0 = A(r,t) ~ 0 0 b(0 ) , b(o ) : : b(a ) 

a B(r,t)~aa b(a ) : , (a, a : i, 2, 3) 
(3.10) 

with A and B two unknown functions of t and r = (x~x~) 1/2,~ where we have enclosed Latin 

indices by parentheses. In this case the gravitational field equation in vacuum 

(namely, Tij = 0) can be solved exactly: The functions A and B should be time-indepen- 

dent, and are given by 

GM -p/2 GM q/2 
A(r) : (1 - ~) (i + ~) , 

GM (p-2)/2 GM)-(q+2)/2 
B(r) = (i - ~) (i + qr- ' 

(3.11) 

where p and q are defined by 

p : Pl_~e{[(l-e)(l-4e)] I/2 - 2e} , 

with 

q : l_~e{[(l-e)(1-4e)] I/2 + 2e} (3.12) 

e : (a+8)l(a+48) . (3.13) 

Here GM is an integration constant: G is Newton's gravitational constant and M can be 

interpreted as the gravitational mass of the central gravitating body. We notice that 

when the parameter e is vanishing, this solution gives the Schwarzschild metric writ- 

ten in theisotropic coordinates with the metric tensor g~ defined from bk~ according 

to (4.1) below. 

4. Geometry of space-time structure 

The set of four vectors ~ = {bk~ } given by (2.7) defines a global set of orthonormal 

frame with respect to the metric ~ with the metric tensor g~ given by 
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gu~ = bku bk~ " (4.1) 

The spinor fields q of the fundamental particles of spin 1/2 are defined by referring 

to this orthonormal frame. The operator D k = bkU~ U of (2.4) is the covariant deriva- 

tive with respect to the absoluteparallelism which takes b as the parallel vector 

fields. This absolute parallelism defines the nonsymmetric affine connection ~, 

F k = bkk~ bk (4.2) 

The torsion tensor of this connection is given by 

T k : F k - F l = bkk(3 bk - 3ubk ) (4.3) 

and coincides with the translation gauge field strength of (3.2). 

Accsed~n~y, the translation gauge theory can be interpreted as a gravitational 

theory based on the Weitzenb~ck space-time with absolute parallelism. The translation 

gauge field defines the parallel vector fields by (2.7), and the translation gauge 

field strength represents the torsion tensor. In the Weitzenb~ck space-time, the 

curvature tensor defined by the connection (4.2) is identically vanishing, and the 

torsion tensor describes the non-Minkowskian structure of space-time. This situation 

can be contrastedwith that in the Riemann space-time characterized by the curvature 

tensor alone. 

The Riemann-Cartan space-time has the curvature tensor and the torsion tensor, and 

it is the underlying space-time of Poincar~ gauge theory. From this space-time follow 

two interesting space-time models: One is the Riemann space-time with the curvature 

tensor alone and the other is the Weitzenb~ck space-time with the torsion tensor alone. 

General relativity is a gravitational theory based on the Riemann space-time, while 

the translation gauge theory is based on the Weitzenb~ck space-time. Both theories 

can indeed be formulated as special limiting cases of Poincar~ gauge theory. 

The translation and the Lorentz gauge field strengths of Poincar~ gauge theory re- 

present the torsion and the curvature of the underlying Riemann-Cartan space-time, 

respectively. We assume that the gravitational Lagrangian density be linear and quad- 

ratic in the field strengths. The curvature tensor has one linear invariant and 6 

quadratic invariants, while the torsion tensor has 3 quadratic invariants. The most 

general gravitational Lagrangiandensity of Poincar~ gauge theory is then given by I0) 

L G = a(lenear invariant) + (a,8,y)(3 quadratic invariants of the torsion tensor) 

+ (al,...,a6)(6 quadratic inva~iants of the curvature tensor), 

where the four parameters, a, a, 8, and y, are of dimension (mass) 2, and the remaining 

six parameters, al,... , a6, are dimensionless. Ithas been shown that Poincar~ gauge 

theory reduces to general relativity and to new general relativity (namely, to the 

translation gauge theory) in the limits, (i) c~+% ~+% T +~, and (ii) ai+~ , respec~ 
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tively, ll) In the first limit (i), the torsion tensor is vanishing, and the above 

Lagrangian density reduces to the following quadratic Lagrangian density in general 

relativity, 

L G = aR({}) - bR({})R~({}) + cR({}) 2 (4.4) 

with two dimensionless constants b and c related linearly to a.'s. In the second 
l 

limit (ii), the curvature is vanishing, and the Lagrangian density reduces to (3.3)- 

5. Comparison with experiments 

(A) The equivalence principle 

The world line of the fundamental particles of spin i/2 and of light rays propa- 

gating in vacuum is the geodesics of the metric ~ of (4.1), as can be shown by taking 

the short wave-length limit of the Dirac equation and the Maxwell equation. A macro- 

scopic system such as a planet or a test particle can be described to a good approx- 

imation by the macroscopic energy-momentum tensor, which is obtained from the micro- 

scopic energy-momentum tensor by averaging in space and in time. When the spin di- 

rection of constituent particles is randomly distributed, the antisymmetric part of 

the microscopic energy-momentum tensor cancels out in the averaging process because 

of the Tetrode formula, 

T [ij] = (i/2b)~ (bS ij~) (5.1) 

with S ij~ the spin tensor. It can then be shown fromthe gravitational field equation 

(3.6) that the macroscopic, symmetric energy-momentum tensor obeys the conservation 

law, 

? T ~ : 0 , (5.2) 

where V is the covariant derivative with respect to the Christoffel symbol. The 

world line of macroscopic bodies such as planets and test bodies is then the geodes- 

ics of the metric ~. 

Thus, as far as the effects due to intrinsic spin are negligibly small, the equiv- 

alence principle is valid in new general relativity. Violation of the equivalence 

principle occurs only in the microscopic world: For example, the precession of spin 

in the torsion field. 

(B) Comparison with solar-system experiments 

We demand that the gravitational field equation reproduces the correct Newtonian 

limit: This gives the following condition of the parameters, 

~ + 4(B~) + 9(~)(B~) : 0 , (5.3) 

where ~ is Einstein's gravitational constant, ~ = 81rG. Notice that~ and ~ are 
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dimensionless, and by virtue of (3.13) and (5.3) they are expressed by 

~ : - 1/3(1 - e) , 8~ : 1/3(1 - 4e) . (5.4) 

From the exact solution (3.11) we see that Eddington-Robertson's post-Newtonian pa- 

rameters defined by 

ds 2 : (i - 2(~) + 2c(~) 2 + ...)dt 2 - (i + 2d(~) + . . . )dx~dx ~ (5.5) 

are given by 

c = 1 - e/2 , d = 1 - 2e . (5.6) 

(We notice that Eddington-Robertson's parameters c and d defined above are usually 

denoted by B and y, respectively.) 

According to the solar-system experiments, the parameter e should be severely re- 

stricted; 

e = - 0.004 + 0.004 , (5.7) 

and therefore, we have for e~ and 8~ the following experimental values, 

aK : - 1/3 + (0.001 ± 0.001) , BK : 1/3 + (- 0.005 Z 0.005) . (5.8) 

6. Model with ~+8--O 

As we ha~e seen in the previous section, the parameter e is severely restricted 

by solar-system experiments. In view of this, we shall now assume that the param- 

eter e is exactly vanishing. The parameters e and 8 are then given by 

: - i/3~ , 8 : i/3~ • (6.1) 

The gravitational Lagrangian density L G Of (3.3) becomes 

L G : -(l/3~)(tijk tijk - v.v i) + Y(ai ai) 
i (6~2) 

= (I/2~)R({}) + (9/4k)(ai ai) + (a total derivative) , 

where R({}) is the Riemann-Christoffel scalar curvature defined by the metric tensor 

of (4.1), and k= 9~/(4~ - 3). 

The gravitational field equation of the present case is still complicated compared 

with the Einstein equation of general relativity, and very little is known about its 

solutions. We briefly mention the results for spherically symmetric and axially 

symmetric solutions in vacuum. 

(i) Spherically symmetric solution in vacuum: 

Irrespectively of whether the source is time-independent or not, the axial-vector 
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of the torsion tensor a i should be vanishing, and bk~ obeys the Einstein equation part 

in vacuum. According to the Birkhoff theorem, the metric should then be given by the 

Schwarzschild solution. Therefore, the parallel vector fields bk~ are obtained from 

the special solution (3.10-i1) with E = 0 by a local Lorentz transformation which 

preserves the condition a. = O. 
1 

(2) Stationary, axially symmetric solutions in vacuum: 

Fukui and Hayashi derived a class of axially symmetric solutions in vacuum starting 

from axially symmetric solutions of the Einstein equation in vacuum (such as the Kerr 

solution or the Tomimatsu-Sato solutions). 12 In their solutions in vacuum, the axial- 

vector part of the torsion tensor, ai, is non-vanishing. 

The Lagrangian density of (6.2) is invariant under a restricted class of local 

Lorentz transformations, namely under those local Lorentz transformations which leave 

the axial-vector part of the torsion tensor a U invariant. The Dirac equation is also 

invariant under these local Lorentz trahsfQrmations. The gravitational field equation 

derived from (6.2), however, is not covariant under such local Lorentz transformations~ 

This fact casts some doubts on the internal consistentcy of the present model with 
13) a+~ = O. At present we have not definite answer to this problem. 

In the weak field situations with lekUl ~ i, we e~n expand the field equation into 

and cam keep only lowest erderterms. We need not distinguish power series of c k 

Greek indices from Latin indices, and can decompose the translation gauge field into 

symmetric and antisymmetric parts, 

cij : - (i/2)hij - Aij (6.3) 

with h.. : h.. and A.. = - A... Notice that the symmetric field h.. is just the weak 
zJ j z  zJ Jz . zJ i j 

field correction to the metric tensor: g~ = ~ + h with h = ~ ~ hij. In this 

approximation the gravitational field equation is decoupled into its symmetric and 

antisymmetric parts, 

[]hij - ~k(~ihjk + ~jhik) + ~ij~m~n hmn - (nijN - ~i~j)hk k : - 2~T(ij) , (6.4a) 

[]Aij - ~k(~Ajk - ~jAik) = - ~T[ij] . (6.4b) 

From (6.4a) and (6.4b) follow the conservation laws, 

.T (ij) = 0 , 8.T [ij] = 0 . (6.5) 
J J 

The symmetric part (6.4a) is just the linearized Einstein equation, and describes the 

massless graviton field of spin 2. The antisymmetric part, on the other hand, repre- 

sents a massless field of spin 0 interacting with the intrinsic spin of the fundamen- 

tal particles. If the parameter k is positive, the energy of this spinless field is 

positive-definite. So we shall assume k is positive. 
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The symmetric field h.. gives rise to theuniversal attraction (namely, gravita~ 
iJ 

tion) between the fundamental particles. The antisymmetrie field A.. induces a uni- 
IJ 14) 

versal spin-spin interaction which can be described by the interaction Hamiltonian, 

H 
spin-spin 

1 
: (k/8~)~A'[~×(~X~B)]~ (6.6) 

= (k/8~)[(8~/3)(~A.~B)~3(~) r-3{(~B ) - 3r-2(~)(~)}] , 

where ~A and ~B are the spin vectors of spin 1/2 particles A and B, respectively. 

This interaction is of the same form as that between two magnetic moments, and is ex- 

pected to contribute to the hyperfine splitting of energy levels in atoms and muon- 

iums. The theoretical values for the hyperfine splitting based on Q.E.D. are in very 

good agreement with the experimental values both for atoms and muoniums. So we get 

the following upper bound for the parameter k, 

k/4~ ~ 3xlO -4 (GeV) -2 . (6.7) 

7. Conclusion 

The translation gauge theory (or new general relativity) is a gravitational theory 

on the Weitzenb~ck space-time with absolute parallelism. The Weitzenb~ck space-time 

is a special case of the Riemann-Cartan space-time with a curvature and a torsion. 

Analogously to this, the translation gauge theory follows from Polncare gauge theory 

in the limit, a. ÷ ~. Roughly speaking, the parameters a. measure the inverse of the 
i i 

coupling strength of the Lorentz gauge field, so the limit a.÷oo is the "zero coupling" 
i 

limit of the Lorentz gauge field. 

The translation gauge theory passes all the experimental tests so far carried out 

if the parameters ~ and B are finely tuned so that 

[(~+B)/(~+4B) - el < 0.004 . (7.1) 

This suggests us to assume 

~+B:0 • 

The theoretical basis for this choice has not yet been fully understood, however. 

We shall compare the main consequences of the present theory with those of general 

relativity in the following Table I. 

Table I 

General relativity New general relativity 

Weitzenb~ck space-time 

Non-symmetric affine 
connection 

Space-time Riemann space-time 

Connection Levi-Civita connection 
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Basic structure 

Gravitation 

Transformation group 

The Birkhoff theorem 

Isotropic, 
gravitational field 

Newtonian approximation 

Weak field 
approximation 

(Table I continued) 

Metric tensor 

Riemann-Christoffel 
curvature tensor 

General coordinabe 
transformation group 

(Local Lorentz group) 

Yes 

The Schwarzschild 
solution 

Yes 

Symmetric f i e l d ;  
massless and spin 2 

Theory Macroscopic 

Equivalence principle Yes 

Parallel vector fields 

Torsion tensor 

General coordinate 
transformation group 

Global Lorentz group 

Yes 

The Schwarzschild 
solution 

Yes 

Symmetric field; 
massless and spin 2 

Antisymmetric field; 
massless and spin 0 

Microscopic 

Yes, for macroscopic 
phenomena 

No, for microscopic 
phenomena 
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The justification for the validity of a symmetry group should be es- 

tablished as firmly as possible in the physical conditions and the mode 

of its breaking in modifications of the latter. 

I proceed here in the opposite direction, letting myself be guided 

by the mathematical beauty of a symmetry group, I develop a formalism 

to derive the physics based on it. The physical theory is thus dictated 

by mathematics (not at all however by mathematicians). 

One can expect from such a procedure in spite of its mathematical 

rigour, a physical fairy tale of determined harmony in which things may 

happen that are strange to physical reality. Fairy tales have however 

often a significant content of truth and I think it worth while to under- 

stand the models as well as possible before dismissing it as unrelated 

to reality. 

In the beginning there was the group, a semisimple Lie group G with 

a semisimple Lie subgroup H, such that G/H, the factor space is home- 

omorphic to the unperturbed manifold of space-time. The group manifold 

G has a natural projection ~ : G + G/H so that P(G, G/H, ~ , H) form a 

principal fibre bundle with typical fibre H. I-4 Locally G is homeomorph- 

ic to G/H x H. for most cases considered this is globally true; P is 

trivial. 

G has a natural metric the Cartan-Killing metric y given in a local 

orthogonal frame in terms of the structure constants by: 

(I) YRS = CRUv CsVu 

5-9 
it's projection g = ~y is the space-time metric of the universe. G 

may for example be chosen as SO(4.1) or S0(3.2), the De Sitter groups 

and H as S0(3.1), the Lorentz group which yield the De Sitter or anti 

De Sitter universe as factor spaces. 
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It is postulated in general that physical quantities in the space- 

time manifold G/H are obtained as the projection of geometric quantities 

on G. 

The orbits of one dimensional subgroups of G, which are the geodes- 

ics of the space with the metric T, have as their projection on G/H all 

the geodesics of this space with metric g, but besides this other lines 

that have the form of trajectories of charged particles in electromagnet- 

ic fields. The projection from the higher dimensional space yields in 

general more than only the corresponding geometrical quantities on the 

base space - more things may occur in the fairy tale than what can be 

brought into accord with our (limited) experience - but these features 

could be the effect of inner degrees of freedom in a classical theory 

which should be brought in accord with reality by imposing quantum condi- 

tions. Especially the spiral motion analog to that of a charged particle 

in a magnetic field for the De Sitter groups, which unify momentum and 

angular momentum, may be the classical analog of spin motin. 

The metric of the group manifold can only describe a space without 

inhomogenous mass distribution. This metric for a r-parameter semisimple 

group fulfills the relation: 

(2) RU v - I¥ UV R + --r82 ¥UV = 0 

This can be interpreted as the homogenous Einstein equations in r dimen- 

sions with a cosmological member. (The radius of the De Sitter universe 

is of order unity so that here the cosmological term is of conventional 

magnitude) 

The generalisation to the case of inhomogenous local mass distribu- 

tions is made by introducing a source term to eq. (2) which generalizes 

the metric T in such a way that the global topology of the manifolds and 

their character of a principal fibre bundle with group and typical fibre 

H is not altered. We have arrived at peculiar versions of multidimen- 

sional Kaluza-Klein theories with non-Abelian, in general non compact 

gauge groups H. If one believes in the fundamental character of exact 

invariance groups, one should analyze this mathematically consistent 

scheme with all suitable semisimple groups for its physical content. 

There is no doubt that this scheme is closer adjusted to the in- 

variance group than that of any other theory, even if the latter is for- 

mulated on the group manifold. 

The effect of the metric in r dimensions with (r-k) Killing vectors, 

which must exist to meet the requirements of a principal fibre bundle, 

is equivalent to the effect of the metric projected on the k-dimensional 

base manifold together with (r-k) Yang-Mills fields. The latter are ob- 
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tained from the curvature two form ~ of a connection on the principal 

fibre bundle P. (The generalisation) from that on the group manifold) 

This connection can be given by a Lie algebra valued one form ~: 

(3) ~ = d~ + [~, ~] 

Horizontal vectors B are defined by ~(B) = 0. 

has only horizontal components; it can be expressed in a local 

natural coordinate system where P = B × H by (r-k) Yang Mills fields: 

(3a) FM = B M _ B M M BPB Q 
ik k,i i,k + CpQ i k (M, P, Q ... k+l ... r) 

(r-k) Yang-Mills potentials B M and the structure constants of H. 
1 

The Lagrangian for eq. (2) has then the following k-dimensional form: 

l_ikM_ 
(4) ~ = /-Y(R(r) + l) = /g(R(k)+ ~ ~ikM + l) 

it does not depend on the coordinates of H. (y metric on P, g metric on 

B) We require that the torsion two form vanishes. Horizontal and ver- 

tical vector spaces are perpendicular. 

The projection of geodesics on P on B fulfills in our coordinates: 

• " i i xj ~k _iM" k~ 
(5) x + {jk } = r k x u s 

where the generalized "charges" C M are given by the vertical components 

of an initial tangent vector of the geodesic. 

The solution of the homogenous field equations (2) which constitutes 

the group manifold G has a nonflat metric g as well as a nonvanishing 

curvature form ~ due to the cosmological member. There exist thus "cos- 

mological fields" F M even in this case which" can give rise to the non- 

geodesic motion. The Maurer-Cartan equations on the group manifold: 

R S T 
(6) dA R + CsTA A = 0 

(R,S,T = l---r) for the left invariant forms A R give: 

with 

M P Q _M _E.F 
(6a) F M = dA M + CpQA A = - UEF A A 

(E, F summed over l.-.k, P, Q over k+l...r) for the cosmological fields. 

Although these fields do not vanish, the total of their energy densities 

on the De Sitter universes vanishes. The energy of any one field F M can 
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thus be either positive or negative definite; this results from the non- 

compactness of the gauge group H. The cosmological fields are not felt 

except by a particle with suitable charge (~ initial condition) C M. The 

latter must be chosen so that no energy can be drawn from the fields. 

This property remains true along the world line. It is a generalisation 

of the restriction in relativity that a world line must be time like. 

In the De Sitter case it restricts the motion in a suitable frame to 

the analog of a spiral motion of a charge in a magnetic field. 

The fairy tale could be well brought in accord with reality by lett- 

ing the charges vanish or making them unobservably small; but this is 

not in the spirit of the present considerations. We have to see whether 

not some deep truth is in the fairy tale that properly applied may even 

give a better insight into reality. The classical equations of motion 

already in the De Sitter case are much more complicated. The Hamilton- 

Jacobi equation in a way has an oscillatory wave like character. The 

nature of the quantum of action in this context has first to be better 

understood to see whether the quantized equations of motion do not des- 

cribe also a spin motion in the De Sitter case. 

A heuristic considerations which contributed to this development 

was the following: The De Sitter groups for a large radius of the uni- 

verse may be regarded as a unification of momentum and angular momentun 

in a similar way as the group of rotations on a sphere unifies rotation 

and translations of ~2. 

A system of reference which rotates should thus be on an equal foot- 

ing with a uniformly translated system. Making a passive transformation 

to such a system we recognize that an observer there really sees the 

spiral motion described in our fairy tale - not just for one particle, 

but even for all the macroscopic bodies. From experience we know that 

he must pay for this by experiencing inertial forces - a result that can 

not adequately be derived from the general theory of relativity. The 

present formalism provides in addition to the metric g still the fields 

F M which should give a stronger account of Mach's principle if they are 

interpreted as a spin-spin interaction in the De Sitter cases; it is 

strongly felt that spin and orbital angular momentum cannot be fully sep- 

arated. To seek to account for this in the present theory one would have 

to describe the motion of orbiting bodies in detail including the gravi- 

tational fields generated by the fields causing the binding forces. 

The only example presented here was that of the De Sitter group. 

The formalism is applicable to higher dimensional groups G. The con- 

formal group S0(4.2) is 15-dimensional and has a 10-dimensional subgroup 

H. The metric base space B is thus five dimensional and can be inter- 

preted to unify gravity and electromagnetism in a Kaluza-Klein theory of 
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higher order by using the projective formalism of Veblen and Jordan. I0'II 

The present formalism is not extended to supersymmetry but a presen- 

tation by D. Ebner has shown that higher dimensional groups can take 

account of the antisymmetry of Fermions. Limiting oneself here to this 

case may provide a desirable criterium to restrict the growing number of 

possible theories. 
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In this short Note we will present a short introduction to the 

recent work by us 1),2) on the problem of solving self-dual gauge 

field equations for an arbitrary compact semisimple gauge group G. 

The discussion is mostly focused on the simple case of the static 

and axially symmetric configuration, in which the effective space- 

time dimension is reduced to two and we can apply some of the 

solution generation techniques of two dimensional soliton theories. 3) 

The central result is an algebraic method for the construction of 

solutions starting from one particular solution and solutions of the 

associated linear scattering problem. Here we see an interesting 

interplay of soliton theoretic techniques and group theoretic 

concepts. A main application is the construction of axially sym- 

metric monopole solutions in gauge theories with an arbitrary group 

G and a single Higgs field in the adjoint representation. 

Ansatz The ansatz for the static axially symmetric gauge potential 

is 

Az, Ape~, At, A¢e~ , (I) 

in which ~ is some maximal subalgebra of ~ and ~ is its compie- 

mentary subspace; ~ = ~+~, 

[)f,t~] i i,(, [~,93 i iju, [9),5m] i ±)Z • (2) 

The coefficient functions depend only on z and P. 

*) Report on work in collaboration with F. A. Bais. 
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Generalized Self-Duality Equations with static axial symmetry 

~yA~ - ~Ay - i[Ay,A~] + i[~y,~] : 0 , 

1 
~y~ i[Ay,~] + ~(MF~ + M~F) = 0 , 

I 3~¢y - i[A~,~y] + ~(My~ + M~¢y) : 0 , 

(3.a) 

(3.b) 

(3.c) 

in which we used the coordinates y e P + iz, y e P - iz and gauge 
½ = 1 

potentials Ay : (A 0 - iAz) , ~y -~(A~ + iAt) , etc. In order to 

enlarge the symmetry of the system we have introduced the additional 

variables My and M~ which obey 

M- : ~-M : -M M- (4) 
Y Y  Y Y  YY 

For the choice M : M- = i/2p, eq. (3) reduces to the ordinary 
Y Y 

static, axially symmetric self-duality equation. 

K-invariance The equation (3) as well as the ansatz (i) are 

invariant under the following gauge transformation, 

Av ÷ A S = ~Avn-i - i~v~ -I, @v ÷ @$ = ~¢v ~-l ' (5) 

in which v = y,y and ~ = ~(y,y)eK. This is a subgroup K of the 

original gauge group G which preserves the structure of the ansatz 

(1). 

Pure gause and Triangularity Two of the three equations (3) imply 

that the following combination of gauge potentials 

a v = A v + icy, v = y,~ , (6) 

is pure gauge, i.e., 

a v = -i(~vg)g -1, gsG*, ~ = ~ + i~ • (7) 

A t h e o r e m  o f  g r o u p  t h e o r y  ( Iwasawa d e c o m p o s i t i o n  4) )  s t a t e s  t h a t  G* 

factorizes into two parts, 

o = KT , (8) 
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in which the Lie algebra of T consists of abelian and nilpotent 

parts only. By an appropriate K-transformation one can always make 

a~ a s 

a v =-i(~vT)T -1 , T£T . 

This gauge will be called "triangular". 

(9) 

Z-invariance From a solution of (3) in the triangular gauge another 

solution in the triangular gauge is obtained in terms of the follow- 

ing discrete transformation 

R-l' CY = SCyS-I 1 Ay ÷ Ay = RAy ÷ Sy + Myn, My ÷ My , 

J ÷ ~ : SA s -i, ~ ÷ ~ = R~ R -I A~ Y ~ ~ Y ~ + M~, M~ ÷ M~ , 

(io) 

in which R, S and D are constant matrices. Their explicit forms are 

found by considering the isomorphisms of the extended Dynkin 

diagrams of each algebra~ , which also characterizes the Kac-Moody 

a l g e b r a  4)  . d 

F-invariance The generalized self-dual equations (3) are invariant 

under 

Av. = Av ' Cy, = yl/2¢y, ¢~, = y-I/2¢~, M'y = YMy, M-'y : y-IMp, (ii) 

in which a scalar function y should satisfy the following completely 

integrable Riccati equation 

dy = (y-l)(yMydy + Mydy) (12) 

The F, Z and K are three important symmetry transformations in terms 

of which new solutions are generated successively. 

Associated Linear Problem By combining two facts that for the 

solution of (3), a v (6) is pure gauge and that the F-transformation 

maps a solution to another, we get the following linear problem, 

~y~ = i(Ay + iyl/2¢y)~, ~ =  i(A~ + iy-1/2¢~)~. (13) 
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The integrability condition is (3) and (4). 

Triansularity Restoration. If a F-transformation is applied to a 

triangular solution, the result is not triangular any more. But 

the triangularity can be restored by a K-transformation in terms of 

~, which can be obtained from a solution~ of the linear problem 

(13) in terms of the lwasawa decomposition, 

m-iT, ~ * = CG , ~gK, TET . (14) 

Solution Generation By combining the Z, F and K-transformations 

we can generate a host of new solutions from a given one 
o 

(~v' ~v' ~v ) of eq. (3). A simple scheme is, for example, A 

(Tr.) (Tr.) (Non Tr.) (Tr.) (Tr.) 

in which Tr. stands for triangular. This procedure can be repeated 

an arbitrary number of times. New parameters are introduced through 

constants of integration for y and ~at each stage. 

Al~ebraic Construction The main point of our work is that we can 

construct a hierarchy of solutions A, A,.-., algebraically. The 

only analytical work needed is to solve the associated linear 

problem (12) and (13) for the initial solution A. We denote the 

solutions as 

A ; (~I' o , ( ~m ) ''- (16) YI ) ' " " " m' ' ' 

in which the suffix indicates a particular choice of constants of 

integration. The y-functions and the triangularity restoring 

functions at each stage can be constructed from (16) algebraically 

and step by step. For an explicit construction, a close relationship 

between the E-transformation and the associated linear problem must 

be revealed. We refer to our papers I)'2)'" for further details. 

Summary and Comments Applied to the simplest case, i.e., G = SU(2), 

the above procedure reproduces all the solution generation techniques 

of Neugebauer 5) for the Ernst equation 6) in general relativity, which 

describes the stationary axially symmetric vacuum gravitational field 
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The algebraic solution generation method makes use of some specific 

combinations of elements of an infinite dimensional group of 

symmetries for eq. (3). This group is a natural generalization of 

Geroch-Kinnersley-Chitre 7) " group for the Ernst equation. We believe 

that further investigation of the infinite dimensional group is very 

important for deeper understanding of gauge theories. 
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The axially symmetric and stationary soliton solution of 

Einstein's equations in a vacuum has been found by means of the 

inverse scattering problem technique. This solution has metric of 

the form 

ds 2 : gabdxadx b ÷ h(dp 2 + dz 2) , (1) 

where a,b = t,¢. For the N-soliton metric on a flat background for 

g~b = diag(-l'p2) and h ° = i, we obtain the following which 
• l) 

expresslons : 

N 
O 

gab = k~l]Uk/Pl(X(~=0;P'Z))acgcb 

N N 
o _ 

= k~ll~k/Pl{gab (F-l)k~NkaN~b} , 
k, ~=i 

N 
h = Co~-N2/2-N ' tk= l~  I k/ol)N-lk>* ~ ( U u - M [ ) - 2 d e t ( F k i ) ' ~  ~ ' 

Nkt = -i, Nk¢ = Ck~klp2 , 

( 2 )  

(3) 

Fk~ = (p2ckc ~ - Uk~)/(p 2 + UkU~) , 

where c o and c k are any constants. The matrix function X depends on 

a complex spectral parameter X, and has N poles at the points 

X = ~k(p,z) = w k - z + ~k{p 2 + (Wk-Z)2}i/2 , where w k are any con- 

stants and ~k = ±I. From the conditions of ~symptotic flatness and 

det(gab) < 0, we require that N is even and k~l~k = 0. Then, we 

subdivide all the ~k into pairs with opposite signs Sk' and rewrite 

the parameters w k and c k as follows, 

± ± 0 2 + By wy z + { + , Y = 1,2,...,N/2, = _ _ ( w ~ - z ) 2 }  1 / 2  

(4) 
± + 

wy = zy ~ m~cosXy , c~ = cot((~±~y)/2) 
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The N-soliton metric turns out to be a nonlinear superposition 

of N/2 Kerr-NUT metrics aligned along the common rotational axis 

(z-axis). Each soliton pair describes the Kerr-NUT metric with the 

Kerr and NUT rotation parameters ky, ey and the mass my located at 

the point z = Zy. This stationary configuration of several Kerr-NUT 

masses will be realized as a result of the presence of any singu- 

larities in the space-time or a dynamical balance between the gravi- 

tational attraction and the rotational repulsion. If there exists 

no singular structure, great interest from the physical point of view 

attaches to the N-soliton metric, because it can represent a dynami- 

cal equilibrium of many interacting black holes. In this paper we 

investigate the space-time structure of the multi-soliton metric, by 

taking the two Kerr-NUT case (N=4) as a typical example. 

The metric components can be derived from the Ernst potential 

~, which is given by 2) 
+ 

S~ S I 

N 

+ 
S~ S 2 

i i i i 

i w: wl 
(wi)2 (i)2 (w )2  w2 +'2 

+ 

+ -iBy p2 + )2}1/2 
= ( w ~ - z  S~ Ye { + 

! 
l 

! 
i 

! 
i 

I 
I 

+ s[ + S~ S I S 2 

i I i i 

+ + + + 
WlS 1 w2S 2 

(5) 

+ 

= + A (Y = 1,2) , B~ ~y y 

for the 4-soliton metric. We can set 

= >0 my > 0 , cOSAy > 0 , z I -z 2 e z ° . 

2 
If w~ = w~ (2z o = y~imyCOSAy), this metric reduces to the Kerr-NUT 

+ + 

metric. For a double coincidence of the poles, i.e., w~ : w~ 

(z o = 0) 2)'3), we obtain the ~ = 2 Tomimatsu-Sato and Kinnersley- 
± 

Chitre metrics. Therefore, we consider only the case that any Wy do 

not coincide. Then, we can classify the 4-soliton metric into two 

types; 2 

(I) separated type of two Kerr-NUT metrics, i.e. 2z > y~imycosly 
2 ' o = ' 

, ., < y~imycosly. (II) overlapped type i.e 2z ° = 

We construct diagrams (Fig. i) that represent clearly such different 

types. 4) We place on the horizontal axis (z-axis) four points 
± 

z = Wy. The axis is divided into five different regions (a,...,e). 

The vertical bars drawn from these points are directed up at the 
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I I '  ' I '  ' ' 

a b c d e a b c d e 

( I )  ( I I )  
Fig. i 

points z = Wy÷ and down at the points z = w~. An arrow along the 
+ 

axis means that one of the U~ at this region of the axis is of the 

order of 0(02). 

For the static field 4), i.e., ~T = ~T = 0, the metric coefficient 

h becomes of the order of 0(P 2(s-2)(s-3)) near each region of the 

axis (s is the number of arrows). Then, for the metric of type II, 

the invariant of the Riemann curvature tensor A e RUvxoR Uv~° 

(U,v,... = t,¢,p,z) becomes infinite at the middle region (c). 

For the rotational field, the invariant A does not increase 

without limit at the z-axis. In general, such a singularity appears 

at the point ~ = -i. In order to look for this point, we consider 

a simple case such as m I = m 2 e m, 11 = X2 e I (cosl e p), ~i = ~2 
+ + 

= 0 Then, we have c I = -c~ = c 2 = -c- e c c 2 • 2 ' = ( l + p ) / ( 1 - p )  > 1 .  

The relation ~ = -i means that Re(N+D) = Im(N+D) = 0. We see that 

Im(N+D) becomes an odd function of z, so the singular point will 

exist at the plane z = 0, where the metric has the form 

gtt = -B-l[(n+-n-)2(c2n+ h-+l)2 - c2(l-q~ n2)2]- ' 

gt~ = -pc (n+-n_)(z-n2n2_)(%n_B) -l 

(6) 

B ~ ( % - n _ ) 2 ( c 2 + % n _ )  2 - c 2 ( l - n ~ n 2 )  2 , 

-I + p-l[z ° n± e P U~(p,z=0) = $ mp ± {(ZoYmP) 2 + p2}i/2] 

All the metric components gab become infinite at the point B = 0, 

while the metric coefficient h vanishes at the same point (B ~ det 
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(rk~)). 
For the metric of type II, i.e., z ° < mp, ~+(p) is monotonously 

increasing, and 

(c2+n+ ~ ) ~ = ~-JcJ < 0 as p ÷ 0, 

(n+-~_) _ - Jc 1 (1-~ ~2) [2(c2-I) > 0 as P + 

It can be proved that the algebraic equation B = 0 has only one 

÷ mp we obtain Po ~ (mP-Zo)JtanlJ)" root Po (For example, when z o 

This means that the metric of type II includes one ring-slngularity 

around the region (c). On the other hand, for the metric of type I, 

h+(P) is monotonously decreasing. If the equation B = 0 holds, we 

have 

This relation turns out to be incompatible with the constraint 

JcJ > i. For any other choice of the parameters we expect that the 

presence of this kind of singularity is a crucial difference between 

the two types of the 4-soliton metric. 

Next, we examine some properties of the z-axis of the 4-soliton 

metric of type 1. 5),6) We rewrite the metric as follows, 

ds 2 = -f(dt-~d¢) 2 + f-l[p2d¢2 + e2U(dP 2 + dz2)] • (7) 

On the z-axis we f~nd that 8~/~z = 8W/Sz = 0 except at the points 

= w$,_ and f ~ ¥~l(Z-W~)(z-w~).__ We denote the constant values of 
i 

Z 

and B at each region of the axis by ~A and ~A (A = a,...,e). If 

the z-axis has a local Euclidean property of a line, for any in- 

finitesimal spacelike circle around the z-axis the ratio of circum- 

ference to radius should be 2w, i.e., g%¢/p2gpp ~ i as P ÷ 0. This 

requires that ~A = ~A = 0 and gives some restrictions to a choice 

of the parameters. By a suitable choice of the coordinates (t,¢) and 

c o (see Eq. (3)), we can always set ~ = B e = 0. Then, the 
e 

conditions ~a = ~a = 0 lead to 

2 
4Zo(mlv 1 + m2v 2) + 4mlm2zo(q2u 1 - qlu2) 

22 22 
- (mlP I - m2P2)(mlV I - m2v 2) = 0 , (8) 

ia iX 
where e Y E u¥ + ivy and e Y H py + iqy. 
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At the regions (b) and (d), we cannot find any choice of the 

parameters satisfying the conditions ~A = UA = 0 (A = b,d). Using 

the coordinate ey (y = i at the region (d) and Y = 2 at the region 

(b)) defined by z - zy = mypyCos~y (0 ~ ey ~ 7), we can prove that 

each region has the structure of a closed 2-sphere. Furthermore, 

there exists a Killing vector ~A)_ ~ ~A~Ct),, + ~@)~ which becomes 

7) Here ~t and ~ null on this closed surface Z A. , ) ) are the 

Killing vectors associated with the stationarity and axial symmetry 

respectively. We verify that ~ lies in Z~)since it is orthogonal 

~(A) = ~ ~\~ The vector to the vector ~v - ~(A)~;V~(A) which is normal to ZA" 

n~ A)" becomes null when ~A)_ does, so the regions (b) and (d) can be 

regarded as two horizons separated by the region (c). 

The structure of the middle region (c) between two black holes 

is important. If there is no artificial "support" between the 

masses, this region should have a regular structure of a line. 

Hence, the conditions ~c = ~c 0 seem to assure a dynamical 

balance between the gravitational attraction and the rotational 

repulsion. These conditions lead to 

cos(a I - ~2 ) = 0 , (9) 

(4z~ 2 2 + 2 2 
- mlP I m2P2)V I + 4m2Zo(q2ul + sin(~ I - ~2 )) = O . (i0) 

It is remarkable that due to Eqs. (8) ~ (I0) the distance between two 

masses, 2Zo, is fixed by the masses and angular momenta. If ~ # 0, 
c 

the metric has a pathological structure of causality violation (i.e., 

the existence of a closed timelike curve), since gee = -f~ < 0 near 

the region (c). We conclude that only the 4-soliton metric of type I 

with the parameters satisfying the conditions (8) ~ (I0) will avoid 

any singular structures in the space-time. 
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The symmetry between electric and magnetic charge which is inherent 

in Maxwell's equations does not seem to be realized in nature. Dirac 

pointed out, however, that quantum mechanics does not preclude the exis- 

tence of magnetic monopoles [i], and Schwinger proposed the dyon (a 

pole possessing both electric and magnetic charges) [2]. This dyon 

lies in the Abelian theory U(1). 

On the other hand, in non-Abelian theory, 't Hooft and Polyakov 

obtained spherically symmetric classical monopole solution of the S0(3) 

Yang-Mills theory coupled with a triplet Higgs field [3]. Shortly 

afterwards, Julia and Zee showed that the same theory also admitted 

dyon [4]. The magnetic monopoles and the dyons may play an important 

role in grand unified theories. 

A solution of the Einstein-Maxwell equation in the Kerr space-time 

was obtained by Newman et al. [5]. This solution represents a rotating 

mass and electric charge. Tomimatsu-Sato [6] discovered the series of 

solutions for the gravitational field of a rotating mass, following 

Ernst's formulation of axisymmetric stationary fields [7]. Furthermore 

Yamazaki obtained the charged Kerr-Tomimatsu-Sato family of solutions 

with arbitrary integer distortion parameter for gravitational fields of 

rotating masses [8]. 

We present an exact stationary rotating dyon solution in the 

Tomimatsu-Sato-Yamazaki space-time [9]. Our solution is characterized 

by five parameters (mass M, angular momentum J, electric charge Q, 

magnetic charge ~, and distortion parameter 8). Let us start with the 

following Lagrangian density, which describes the electromagnetic field 

induced by an Abelian dyon in curved space-time (~=c=l) 

1 6 •  R l~pYo~ L = /~ (- - ~ ~ =FQo) , (i) 

where F ~ = ~ A -~ A +*G ~ and *G is the Dirac string term. We can 

express the line element of stationary and axisymmetric space-time in 

the form 

ds 2 = f-l[e2~(dp2+dz2)+p2d~2]-f(dt-wd~) 2 , (2) 
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where f, ~ and y are functions of p and z only. 

Our exact dyon solution for (i) and (2) can be expressed as follows 

The metric functions are 

f =~61~6 , 

= 2GMq(I-y2)C6/~ , 
6z 

e 2Y =~/[p2~(x2_y2 ) ] 

(3) 

Next the electromagnetic potentials are 

4zGMa2~6A 0 = Q(o~+~)+~o< , AI=A2=0 , 

8~GMa2 

with the dyon solution ~ of the Ernst equation given by 

o-lc ~ _ r~ + iK p + v 
p - v ' 

~, n and K being real functions, D and v being complex functions of x, 

y, p and q, and taking 4~GM~ 0 = Q+i~. The presence of a Dirac string 

in our solution may be seen from A 3 in (5). In fact the monopole term 

in A 3 does not vanish on the negative semi-infinite line of the symmetry 

axis. Our dyon solution reduces to the magnetic monopole solution in 

the case Q = 0. 

On the other hand, the non-Abelian dyon solution can be obtained 

from the Abelian dyon solution and vice versa using the extended 

Arafune-Freund-Goebel singular gauge transformation [9],[10],[11]. 

= (4~G) I/2T0 . 

(5) 

(6) 

We shall follow the notation of Ref. [9]. 

It is worth while noting that y has the same form as in vacuum field. 

Here the relations among the Weyl coordinates (t,p,z,~), the Boyer- 

Lindquist coordinates (t,r,8,~), and the prolate spheroidal coordinates 

(t,x,y,~) are 

p K(x2-1)i/2(1-y2)i/2 = , z = Kxy , 

r = Kx + GM , cos8 = y , 

(GMpa)2 = (K6)2 = (GM) 2-a2 G _ ~ (Q2+~2) , (4) 

a = J/M = GMqO , 

p2+q2 = 1 , a2+ITl 2 = 1 , 
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Let us discuss the space-time structure of our dyon solution. The 

metric functions ~6 and ~ 6 in (3) are written in the form, using (6), 

[12] 

~6 = (~*+~*~)/2 , (7) 

6 = [(~+i)2~*+(O2-i) (~V*+~*~)+(O-I)2~*]/(2~)2 

The ergosurfaces are obtained by taking ~6 = 0. On the equatorial 

plane (y=0) the complex functions ~ and v in (6) become real ~and/~ . 

The metric functions ~6 and ~ 6 are then of the form 

~6 (y=0) =~(x,p)~(x,p) , 

6(Y=0) = [{ (o+l)~t(x,p)+(a-l)~(x,p) }/(2o) ]2 

V~(x,p) = (-i) $~(-x,p) 

The position of ergosurfaces on the equatorial plane is determined by 

4&6(y=0) = 0, and there exist ring singularities determined by ~6(y=0) 

=0, i.e., (o+l)~+(o-l)~ = 0, on the equatorial plane. The metric gll 

becomes infinity at x = ±i. We find that the number of ergosurfaces 

is 6 for x>l and also 6 for x<-l, and that the number of ring singula- 

rities is [6/2] for x>l and 6-[6/2] for x<-l. 

We obtain the proper area A of the surface x=l in the Tomimatsu- 

Sato-Yamazaki space-time for our dyon 

Therefore our dyon solution has an event horizon for arbitrary odd 

integer 6; there exists an event horizon at x=l, i.e., 

1 2 a 2 4~(Q2+#2)]I/2 r = GM + ~ [(GM) - - 

Thus, for arbitrary odd integer 6, our dyon solution represents a black 

hole with four hairs provided that 

(GM) 2 ~ a 2 + 4~(Q2+# 2) 

The special case 6=1 is the Kerr-Newman case of our dyon. Furthermore 

it can be easily seen that the series of Weyl solutions (a=q=0) has no 

event horizons except for the case 6=1, i.e. the Schwarzschild and 

Reissner-Nordstr~m solutions. 

We have presented an exact dyon solution for which the space-time 



44 

metric takes the Tomimatsu-Sato-Yamazaki form. Our solution has five 

parameters, i.e., the mass M of the dyon, the angular momentum J, the 

electric charge Q, the magnetic charge ¢, and the distortion parameter 

6, and reduces to the rotating monopole solution in the case Q=0. Using 

our extended Arafune-Freund-Goebel singular gauge transformation, the 

non-Abelian dyon solution may be obtained from the Abelian dyon solution, 

and vice versa. Therefore an observer at large distances cannot distin- 

guish between the Abelian dyon and the non-Abelian dyon. In the Abelian 

dyon we can treat Q and ¢ as independent. However, this is not the 

case for the non-Abelian dyon, and the finite energy Prasad-Sommerfield 

solution [13] in flat space-time is known. Finally there is the problem 

of naked ring singularities of the fields with 6 = 3,5,7,'''. This 

remains an open problem since Einstein's general relativity is not app- 

licable to the ring singularities. 
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I. INTRODUCTION 

Gauge theories in three dimensions provide interesting case 

studies of gauge invariant quantum field theoretic phenomena. Also 

they are physically relevant: a field theory on a 3-dimensional 

[Euclidean] space summarizes the high-temperature behavior of a theory 

in four-dimensional space-time. 

Recently it has been established that the special topological pro- 

perties of odd-dimensional space allow the construction of a gauge 
i 

invariant mass term in three dimensions. Moreover, for non-Abelian 

gauge groups, the configuration space of the quantum theory is not 

simply connected, and as a consequence the mass must be quantized, 

somewhat analogously to Dirac's monopole quantization condition. While 

all this appears to be a peculiar feature of 3-dimensional theories, it 

is an interesting phenomenon, whose certain aspects have 4-dimens±onal 

analogs. Also there may be a direct physical [high temperature] 

significance to the mass. For these reasons it is profitable to study 
2 

the subject, and I shall report here on this research. 

II. ABELIAN THEORY 

time. 

Consider the following Lagrange density in 3-dimensional space- 

_ i F]J~F + ~ e ~ F A 
~" = 4 pV ]JV 

F = ~ A v - 3 A ( 2. i ) 
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Dimensional arguments show ~ has dimension of mass. Although the 

Lagrange density is not gauge invariant, the equation of motion which 

follows from (2.1) is 

3 F By + ~*F v = 0 (2.2 

Here we have defined the dual field, which in three dimensions is a 

vector. 

,F ~ _ i EUe8 
2 Fa6 

F~B = a~U *F (2.3 

Note that the dual field is identically conserved. 

*F ~ = 0 (2.4 

This Bianchi identity is a consequence of the definitions of F pv and 

*FP; alternatively, it follows from the equation of motion (2.2), 

owing to the antisymmetry of F pv. Under a gauge transformation the 

Lagrange density changes by a total derivative. 

A ÷ A +2@ (2.5a) 

& + + 

This is why the equation of motion is gauge invariant. 

While it is clear that N has dimension of mass, it still remains to 

be established that it is indeed a mass term for the field. This is 

most easily done by writing the field equation (2.2) in terms of the 

dual tensor (2.3). Eq. (2.2) is equivalent to 

(ug ~a + E ~aB ~B)*Fa = 0 (2.6a) 
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Multiplying this with the differential operator (DgV~ _ ev~y~y) yields 

(m + p2) ,F v = 0 ( 2 . 6 b )  

which demonstrates clearly that the gauge field excitations are massive. 

An analysis of the kinematics shows that the massive vector meson 

carries non-vanishing spin ~/I~I = ±i. The existence of a single exci- 

tation with only one value of the spin -- as opposed to two, each 

differing in sign from the other -- signals reflection non-invariance. 

Of course, the lack of this symmetry is already evident from the 

Lagrangian, which contains the reflection non-invariant structure e ~6Y. 

One may regain a P and T conserving system by working with a doublet of 

models, one with mass ~, the other with -p, and defining parity and time 

inversion to include a field interchange. 

It is gratifying that W 2 occurs in (2.6b) with the correct sign for 

a propagating particle. Although we have no a priori control over this 

sign [~ is linear in ~], we may understand that it must emerge the way 

it does by considering the energy-momentum tensor 8 ~. When coupling 

our theory to an external metric, (p/4)/d3x ~V~FA is already a 

coordinate invariant world scalar, without additional metric factors. 

Hence the variation of action I = fd3x with respect to the metric 

[this variation defines the energy-momentum tensor] does not see the 

mass term. Consequently ~ has its conventional Maxwell form. 

= + i gPVF~6F 6 (2.7 @pv _FPaF~ a 

In particular the energy ~ is a positive definite quantity, 

1 jd2~ (~2 B2 = ~ + ) (2 .8a  

_ _k "" = ~×~ (2.8b = -~A ° ~, B = 2 ~J ~ij 

and the system's excitations cannot be tachyonic. Of course e ~ remains 

conserved in our theory, as a consequence of the field equation (2.2). 

The fact that the action associated with our mass term is a world 

scalar is evidence for its topological nature. This will have profound 

implication for the quantum theory of the non-Abelian generalization, 
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which we shall discuss later. Here I want to record another curious 

topological property. Consider the time component of the field equation 

(2.2), in the presence of an external charge density p. This is the 

analog of Gauss' law; in our theory it reads 

Upon integrating (2.9a) over all space, the first term vanishes, since 

the fields, being massive, decrease exponentially at large distances. 

One is left with 

-~ fd2~B = fd2~p : Q (2.9b) 

The magnetic flux passing out of our 2-dimensional space is proportional 

to the external charge Q. Correspondingly, the magnetic potential is 

long range, even though the magnetic field is sho~t range. 

tan -I y/x (2,10) 

This is similar to the electromagnetic configuration supported by 

vortices in the Higgs model. 

Let us note that apart from a total derivative,~ may be written 

in a gauge invariant form, which, however, is spatially non-local, and 

Lorentz non-invariant. This follows from the identity 

Such an explicitly gauge invariant formulation is not available for the 

non-Abelian generalization. 

An interesting interacting generalization involves coupling fermion~ 

to (2.1). Their gauge invariant Lagrange density is 

XF = i }y~(8 - ieA )~ - m}9 (2.11) 

In three space-time dimensions, the Dirac algebra may be realized by 

2x2 [Pauli] matrices, and the fermion field is a 2-component spinor, 
i m +I 

describing a particle [and an anti-particle] with spin ~ =  ,[ . 
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Correspondingly, the mass term violates P and T symmetries and belongs 

in a Lagrange density which contains the reflection non-invariant vector 

meson mass term. Indeed in a theory with only one mass term, the other 

will be induced by radiative corrections. [Reflection invariance is 

regained by supplementing (2.11) with a Lagrange density for another 

fermion field, with a mass term of opposite sign to (2.11). Reflection 

transformations are again defined to include field exchange, and the 

model becomes equivalent to a 4-component Dirac theory.] 

Feynman-Dyson perturbation theory is straight-forwardly carried 

out. It is both infrared and ultraviolet finite in the Landau gauge, 

where the free boson and fermion propagators read, respectively 

-i 

i S(p) = ~ (2.12b) 

Consequently, this is the only non-trivial field theory which is known 

to possess a perturbation expansion entirely free of divergences -- not 

even normal ordering need be performed, provided Lorentz and gauge 

invariance are maintained. 

III. NON-ABELIAN THEORY 

The 3-dimensional mass term can be generalized to a non-Abelian 

gauge theory. The gauge field Lagrange density is 

s~ %r( ~A A A ) I tr F~F F A a- 
_ 2g 2 2g 2 

We use a matrix notation 

(3.1) 

A = gTaA a 

a a A - 8 A + [A~,A ] F = gT F = ~ 

which employs the representation matrices of the group. 

(3.2) 
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[T a ,  T b]  f a b c T e  

The coupling constant is g, while ~/g2 is dimensionless. 

equations which follow from (3.1 are gauge eovariant, 

( 3 . 3  

The field 

D F ~v + ~ *F v = 0 (3.4a 

= a [ A ,  

a n d  f r o m  o u r  p r e v i o u s  c o n s i d e r a t i o n  o f  t h e  n o n - i n t e r a c t i n g  l i m i t  ( g = O ) ,  

we know t h a t  p i n d e e d  p r o v i d e s  a m a s s  f o r  t h e  f i e l d .  The d u a l  f i e l d  

,F D i e~B = ~ F ~  

satisfied the Bianchi identity 

(3 .5)  

~ = 0 (3.6) ~F ~ 

as a consequence of the definitions (3.2) and (3.5), or alternatively as 

a consequence of the field equation (3.4a). The dual of (3.4a) is 

2a *F8 -2B *F - p Fa~ = 0 (3.7a) 

and another covariant divergence converts this, with the help of (3.14) 

and the Ricci identity[J~a,J~B ]~.v., = [F~8, ] into 

(~ + 2) ,F~ = ~[,~ ,,FB] (3.7b) 

which is the non-Abelian analogue of (2.6b). 

~is not invariant against gauge transformations; rather it changes 
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by a total derivative. Consider a finite transformation 

A ÷ U-IA U + u-la u 
]J ]J IJ 

The response of the action to the gauge transformation (3.8a) is 

Sd3xL fd3x2+ fd3x B 
g 

tr [asUU-IA ] 

+ IJ /d3x EeBY tr (a uu "! 98uu-I ayUU -I) 
3g 2 

(3.8a) 

(3.8b) 

The second term on the right-hand side, which is manifestly a total 

divergence, is the analogue of the Abelian term (2.5b). We shall only 

consider gauge transformations which tend to the identity at temporal 

and spatial infinity. 

U(x) -~ -+I (3.9) 
X-)-Go 

This restriction is made to avoid convergence problems in (3.8). Also, 

it reflects our assumption of asymptotic space-time uniformity. With 

Eq. (3.9), we may conclude that the A-dependent surface integral in 

(3.8b) vanishes. The last term in (3.8b), which has no Abelian analog, 

can also be converted to a surface integral once the integrand is re- 

written as a total derivative. This can be made manifest by introducing 

an explicit parametrization for U. We choose the gauge group to be SU(2) 

[more generally, we consider a SU(2) subgroup of the gauge group] and 

make use of the exponential parametrization. 

U(x) : exp T a ea(x) 

T a = qa/2i 

e a = @ale I (3.1o) 

It follows that 

S 3x.t Id3xL÷ ÷ IJ g2 (3.11) 

where we have introduced the "winding number" of the gauge transformation 

U. 
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w(U) i Sd3x e~BY tr[8 a UU-i 88UU-i ~ UU-I] 
2~w ~ (3.12) 

-1 fd3x ~a6~ abe a [8 aa 6b a ~c x ( 'e l -s in  el)]  

This quantity, though given by a surface integral, is no~ in general zero. 

It vanishes only for homotopically trivial U's -- those continuously de- 

formable to I. However, as a consequence of the fact that 

HB(SU(2) = H3($3) = group of all integers (3.13) 

there are U's which are no~ continuously deformable to the identity. In- 

deed, the gauge functions U can be arranged into homotopically inequival- 

ent classes, labelled by the integers, and w(U) equals precisely that 

integer. 3 These considerations are, of course, familiar from the analysis 

of topological structure in 4-dimensional Yang-Mills theory. 3 That they 

should reappear in the 3-dimensional theory is not surprising, in view 

of the further mathematical/topological connections which we shall draw 

later. 

We conclude that the action is not gauge invariant, but changes by 

~(8w2/g 2) W(U) = ~(Sw2/g 2) x integer. While the action is of no particular con- 

sequence in classical mechanics, in quantum mechanics the exponential of the ac- 

tion, eXp i~d3x~,-- determines probability amplitudes and must be gauge invarfant 

(see also below). Hence a change in the action, can be tolerat@d only if 

it is an integral multiple of 2w. Consequently the requirement of gauge 

invariance gives a quantization condition on the dimensionless ratio 

4wp/g 2 . 

-~ = n n = 0, -+I .... (3.14) 

g 

A Euclidean formulation leads to the same conclusion. The functional 

integral requires exp - f d3xL to be gauge invariant, but the mass term's 

contribution to the action is purely imaginary; a factor of i appears when 

the continuation to imaginary time [Euclidean space] is performed. The 

winding number is a world scalar; hence it takes the same integer value 

regardless of the space's signature. The quantization condition (3.14) 

follows as before; it is entirely due to the internal group. 

The way that gauge transformations act on the mass term may also be 

appreciated once it is recognized that its action is a well-known mathe- 

matical entity -- the "Chern-Simons secondary class characteristic, ''4 
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This is defined in the following way. In even number of dimensions one 

can cons~ruc~ a gauge invariant quantity -- the "Pontryagin density" P2n 

-- whose integral over the even-dimensional space is an invariant that 

characterizes the topological class to which the gauge field belongs 

Examples in two and four dimensions are 

27 L7 u~ 

PL - i ~r *FUVF 
167~ u~ 

3.15a 

3.15b 

[The 2-dimensional Pontryagin density arises in 2-dimensional massless 

QED as the anomalous divergence of the axial vector current, and is 

responsible for mass generation in that model. The 4-dimensional Pon- 

tryagin density is associated with e-vacua in 4-dimensional Yang-Mills 

theories.] Since the integral is s topological invariant, this gauge 

invarian~ Pontryagin density can also be written as a total derivative 

of a gauge variant quantity. 

P2n 3u X2~n 3.16) 

The formulas corresponding to (3.15) are 

x~ = 1 
2---~ ~ A 

x~ ̧  = I s~aBy tr(FaBAy - }A A~Ay ) 
1672 

3.17a 

3.17b 

On odd-dimensional spaces Pontryagin classes do not exist. But one 

may construct another topological quantity, the Chern-Simons secondary 

characteristic class. This is gotten by integrating one component of 

X~n_ over the 2n - 1 dimensional space which does not include that c o m -  

p o n e n t .  The integral is gauge invariant against homotopically trivial 

gauge transformations; otherwise, it changes by the winding number Of the 

transformation. 

We recognize that our mass term action is proportional to the 3-dim- 

ensional Chern-Simons structure. 

This observation about the mass term in Yang-Mills theory has an 

immediate parallel in the construction of a topological mass for 3-dimen- 

sional gravity from the 4-dimensional *RR Hirzebruch-Pontryagin density. 

But this subject is outside the scope of my lectures, hence those interest- 

ed are referred to the literature. 5 
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Let us explore further the need for the mass quantization condition, 

and show that the theory is inconsistent without it. The functional 

integral for a 3-dimensional, massive gauge theory [in Euclidean space] 

is given by 

1 
Z = f~A~exp -{ f d3x (- ~ tr F~F )-iB8~ W(A)} 

g 

1 
W(A) = 

16~ 2 
fd3x c ~ tr (F A - ~A A Aa) 

(3.1s) 

As the functional integration ranges over all gauge potentials, for any 

given A ~ it also encounters its gauge copies A '~. 

A' = U-IA U + U-18 U (3.19) 

where the gauge functions U fall into homotopically distinct classes 

labelled by the integers n. Now the usual gauge fixing prescriptions, 

which are [implicitly] contained inCA ~, remove gauge copies arising 

from the homotopically trivial gauge transformations. [Recall that 

Faddeev-Popov procedures are formulated in infin~tesimR1 terms.] How- 

ever, there seems to be no way of removing gauge copies in (3.18) arising 

from non-trivial, large gauge transformations. Thus we may write Z as 

Z = [ Z n (3.20) 
n=_~ 

Here Z 0 results by performing an integration over vector potentials, 

with no gauge copies; Z 1 results from integrating over vector potentials 

related by a gauge transformation in the first homotopy class to those 

occurring in the integral for ZO; etc. But it is clear that once we have 

determined ZO, Z n for n ~ 0 may be evaluated by changing variables in 

the functional integral from A ~ to A '~, which is defined to be the gauge 

transform of A B with a large gauge function of the nth homotopy class. 

Such a change of variables does not affect the measure nor the usual 

action, since both are gauge invariant. In the mass term, W(A) changes 

by an integer, so we get 

Z = Z 0 ~ e in~ 8~2 (3.21) 
n =-~ g 

Now we see that if the mass term is not quantized, the infinite sum 

vanishes, by destructive interference. On the other hand, when the 



quantization condition holds, the sum becomes ~ i, which, though 
=~. 

infinite, may be harmlessly cancelled by a nor~allzlng denominator in 

the definition of Z. 

Thus the result: the massive gauge theory vanishes in the absence 

of mass quantlzation. The same conclusion may be established by canon- 
6 

ical reasoning. Lack of time and space prevent giving details, but the 

essential steps are two in number. First, one realizes that the homotopy 

formula (3.13) implies that at fixed time the canonical configuration 

space consisting of spatial components of the vector potentials~ is not 

simply connected. Second, one finds that Gauss' law, which in the canon- 

ical formalism is a constraint on physical states, ~.~. a [functional] 

differential equation that physical wave functionals satisfy, cannot be 
7 

globally integrated unless the mass term is quantized. 

In conclusion, let me speculate concerning the physical significance 

of the mass term. As I have already remarked, finite temperature perturb- 

ation theory for simple models suggests that in the high temperature 

limit a 3-dimensional version of that same model comes into play. Of 

course such a dimensional reduction makes no reference to non-perturbative 

phenomena. Moreover, for a non-Abelian gauge theory, which we know to 

be rich in non-perturbative effects, neither the 4-dimensional finite 

temperature perturbation theary, nor zero temperature perturbation theory 

in three dimensions makes sense owing to infrared divergences. The 

discovery of the 3-dimensional mass term allows the conjecture that the 

high temperature limit of a non-Abelian, 4-dimensional gauge theory is 

governed by a 3-dimensional, massive yet gauge invariant Yang-Mills 

theory, of the type here described. 

There is no derivation of this fact; but neither can it be falsified, 

since naive perturbation theory does not exist and we do not have suf- 

ficient control over the formalism to extract non-perturbative behavior. 

Confronting such a hiatus, we invoke the principle of "naturalness" to 

aid in constructing the effective Lagrangian. The 3-dimensional effective 

Lagrangian should possess all terms with quantum numbers of the 4-dimen- 

sional theory, whose high temperature asymptote is under discussion. 

According to this criterion, the gauge invariant mass should be present, 

since its reflection non-invariance mirrors the reflection non-invariance 

of the 4-dimensional 8-vacua. Indeed, the topological setting of our 

mass term puts into evidence an intimate mathematical connection between 

it and the quantity responsible for the e vacua. However, it is not known 

at present whether this mathematical relationship can be the basis for 

a physical derivation. 

If we accept the gauge invariant mass as a proper term in the ef- 

fective Lagranglan which summarizes high temperature behavior of physical 
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non-Abelian gauge theories, we get another bonus, beyond infrared re- 

gularity. Owing to the quantization condition (3.14), the mass becomes 

evaluated in terms of the coupling constant. Recalling that in a high- 

temperature effective Lagrangian, the dimensionful 3-dimensional coupling 

constant g is related by a power of the temperature T to the dimension- 

less 4-dimensional coupling e, we find 

2 - g e2T 
4w n - 4~ n = ~Tn (3.22) 

The integer structure to Z is most fascinating. A non-vanishing mass 

presumably arises from a non-vanishing 0, and discontinuities 

in the former for the 3-dimensional model are suggestive of different 

phases in the latter for the 4-dimensional theory. That different values 

of 0 correspond to different phases has been occasionally suggested. 

Clearly it would be most satisfying if more understanding of these 

speculative ideas could be obtained. 
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Weyl fermions in the fundamental [doublet] representation are coup 

led to the SU(2) gauge field, their functional [fermionic] deter- 

minant is not invariant against homotopically non-trivial gauge 

transformations. Rather it changes by the factor (-1)N; hence N 

must be even. 



GLUON CONDENSATION AND CONFINEMENT OF QUARKS 

R. Fukuda 
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The purpose of my talk is to argue that if gluon condenses in the 

form of color singlet, then the dual variable becomes a good coordinate 

in the low energy region and acquires a mass gap. 

The vacuum of Quantum Chromodynamics (QCD, quarks are neglected 

for the moment) will be filled with nontrivial configuration of gluonic 

fields Aa(x) : they condense in the vacuum in the form of color singlet 

and of Lorentz scalar. We have to take into account the effect of the 

gluon condensation when we study the vacuum state and the excitation 

spectra. 

Any gluonic operator can be used for the discussion of the gluon 

condensation as long as it has correct quantum numbers: color singlet 

JPC 0++ ~ ~ is the co- and = . We can use G ~(x) A (x)Aa~(x) etc. Here G a 
, ~9 

variant field strength. The gauge has to be fixed of course in the 

case Aa(x)Aa~(x). The most convenient operator should be picked up ac- 

cording to the following criteria, i) The condensation of the selected 

operator is easy to discuss. 2) In case it condenses the effect on the 

excitation spectra is clearly seen. The operator G 2 has been studied 

but it lacks the second property. The operator chosen here is the zero 

a(x)=0, momentum mode A a(0) of Aa(x) in the axial gauge A 3 

Aa(x)~ : A a(0)~ + A a'~ (x) , IA~' (x)d4x : 0 . (i) 

Although <Aa(0)>=0 we can assume <Aa(0)Aa(0)~>~0. The residual gauge 
~a 

symmetry in A3(x)=0 gauge is fixed by specifying the prescription to 

avoid the singularity of the gluon propagator <AaAb>~ u P at P3=0 in momen- 

tum space. The conventional one is the principal part prescription. 

We assume for the moment the condensation of A a(0) in the above sense. 

At the end of the talk the condensation is discussed. 

In case A a(0) condenses, the excitation spectra are determined by 

substituting (i) in the Lagrangian, 

I~ 1 G(0)2~ (A~)d4x = - ~ D9 ~ 
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- 12 IIA~a' (x)Mpuab (x-y)A ub' (y)d4xd4y 

+ (A')3 term + (A')4 term , (2) 

where ~=Id4x. ( The matrix Mab(p) is not a positive definite matrix so 
) ~u ab - -- that the squared mass matrix Mpu(p=0) may have negative (i.e. tachyonic) 

eigenvalues. We have seen that this is indeed the case for SU(2) color 

group. For SU(3) the same phenomenon occurs since SU(2) is a subgroup 

of SU(3). Therefore A a' is not a stable coordinate: we have to con- 

dense above tachyonic unstable modes to reach the really stable vacuum. 

The situation is similar to that discovered by Nielsen and Oleson I. In- 

stead of condensing unstable modes we make a dual transformation and 

find that the unstable modes are absent if the theory is written in 

terms of the dual potential. Moreover the condensation of A a(0) yields 

a positive definite squared mass matrix to the dual potential. 
2 The dual formalism in the axial gauge has been given by Halpern 

with the result 

i A~-~vAa+gfabCAbA ~ ) ~  ~ 2d4x} (3) I[dA]~]exp{- 4 I( ]j p ]J 

i JG:~d4x} (4) = I [dGp~)] d (DpG ~!/c~) exp{- -~ 

1 2 d4x (5) = I[dG ] [dB~]6(n BP)exp i I(BaD~p~- ~ G ) 

ab ab ~aCbAC with A c 1 c In (4) Dp =6 ~p+gz p ~ (x)=~--~3 ~ and n =(0,0,0,i). In the fol- 

lowing indices a,8,Y''" take 0,1,2, while ~,9,p,~... take 0,1,2,3. The 
2 Lagrangian for the dual potential B ~ is written symbolically as 

~(B) = I'~a)N-I a b ( ~ b )  (7) 
- ~ ~ ~- ~ ~ ~,PO 

_i ~P~ • B~=0 and where the tilde indicates the dual tensor as ~ =~e p : , 
x 3 

Nab I dx~B] ab 
P%),  Pa = [l+gj ~, P~" 

In the representation (5) we see that the theory is invariant under 

G a ÷G a and 

x 3 

B a ÷ B a + DabAb + gfabc ~ G b A c dx~ p p j 3~ 

with Aa(x) arbitrary function. This is due to the following identity 
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abc b. c G a = ~ Aa-~ A a + gf A A + e3yp JaY 

x 
• a 1 a f 3Dab b~Ydx wnere A =~--G~ and jay=j P ~ ~. The Ward identities are derived 

from the aSove transformation and we see, by the similar procedure as 

in the conventional case, that the dual potential is massless to any 

finite order of perturbation: writing the propagator as 

ab 
i<BaBb > = 6 g~ 

2 2 (n p~)2) + gauge term , ~ P p+K(p~, 

2 with some constant A. We we can show that ~ behaves near p =0 as App 

have also checked explicitly in the form of (6) that the one loop cor- 

rection produces the correct amount of logarithmic divergence: 
A~II 2 C2(G) InA which corresponds to the 8-function behaving as 

~(g)g~0-~ g3C2(G) where fabcfdbc=~adc2(G). 

Now in the presense of the condensation Aa~0 ,t ~ , we separate it as 
a' 

in (i) and from the variable A u we switch to the dual variable. Since 
a a a' a' 1 a- 

G~ =~.A =~.A , A~ (p)=iP ~-G. (p) where P denotes the prlnclpal part. 
Jp ~ p a p r n ~  P~ ~ 

Writing [dAp]=[dA~'] [dA~] ~nd following the same procedure as above we 

arrive at 

(3) = 

where 

(A (0 

[dA (0) ] exp iJ~(A~ 0)f~ f ,B ) [dB ~ ] 

D~B 1 (0) (0) a N-I ab - B-D B) ( )b ,B ) = ~(D p ~ , p o  p ~ o p 

(8) 

D (0)ab H 6ab~ + gfaCbAC(0) 

I~(A~0),B~)d4x in the form Expanding 

½1Ba~(p)~lab (0) d4p ~eB(A ,p)BbS(-p) ~ 
(27) 4 

+ B 3 term + ... , (9) 

we define the mass of B by the term 

1 as ab 0) i. ~Sy -abc-c(0)Bb(0))2 -- B (0)~B(A( 0)BbS(0) = 2 , ~e g~ A B Y 

Since it is written as a square, we have a positive semi-definite 

squared mass matrix. The dual potential is a stable coordinate: un- 

stable modes which are present in the spectrum of A a' field are elimi- 
P 

nated by the dual transformation. 
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Once the dual potential aquires mass gap, the system is in the mag- 

netic Higgs phase -- dual to the usual Higgs phase. The dual loop in- 

troduced by 't Hooft 3 shows the perimeter law and we expect the area 

law for the Wilson loop and the color electric flux tube will be formed 

as a dual Meissner effect. We do not discuss this scenario here. 

The solution to the U(1) problem is also provided by the above 
a 

mechanism. From (5) we see that B ai and sii,G3i, are canonically con- 

jugate pairs (Here i,i'=l or 2, ~12=-e21=i, ~ii=s22=0) and by (9), prop- 

agators take the form in the low energy region 

a b = a b = ab (i/p~,m 2) (i0) i<B BS> p i(i/m2)<G3 G38>p 6 g~8 

Consider K~=(g2/16 2)eZ~PdAa(~pAa+~ ~ ~ ~ abc b_c, f ApA ). We have to explain 

why ~ K ~ does not vanish at zero momentum. If we substitute (i) in 

K3(x) there appears a term proportional to A a (x)A (0)AC(0) which gives 
Y 

a non-zero contribution to 

I d4x<~ K~(x)~ K~(0)> = Id4x<~3K3(x),~3K3(0)> 

a'=Ga The above quantity gives because of (i0). Recall here ~3A 3~" 

a non-zero mass to ~' meson as is well known. 

Finally we discuss the condensation of A a(0) The effective po- 

tential V(A~ (0))- of A a(0) can be calculated in loop expansion. We know 

that V has a non-trivial minimum at one loop level. Our conclusion is 

that we can develop the series expansion of V in such a way that the 

position of the minimum found at one loop level is shifted slightly for 

small coupling if the effect of the higher order terms of the series are 

taken into account. These shifts are in accordance with the renormali- 

zation group equations. 

Details are found in Ref.4 where we also discuss the whole subjects 

in this talk. 
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GENERALIZED STRING AMPLITUDE AND WAVE EQUATION FOR HADRONS 

H. Suura 
School of Physics and Astronomy 

University of Minnesota 
Minneapolis, Minnesota 55455 

USA 

A gauge invariant hamiltonian formulation of hadron dynamics involving a 

generalized string amplitude is proposed. Resulting partial integro-differential 

wave equations reflect the shielding of the long range potential and determine a 

universal logarithmic derivative of the hadronic wave functions. Because of this 

boundary condition, the new wave equation allows confined solutions without an 

explicit confinements potential in it. 

Instead of the conventional string amplitude exp { ig f ~ • dx}-~ used in gauge 

invariant formulations of hadronic systems, I propose to study a modified string 

operator on a t plane 
2 _> _~ 

U(2,1) = exp { g fl [i ~(x)~ + %E(x)]'~ dx } , (i) 

(A = Aa%a/2). In spite of its explicitly non-covariant definition, the operator is 

useful in taking into account an infinite number of soft gluons created on the 

string as well as the shielding of the long range force due to splittings of the 

string. Using (i), I construct a gauge invariant quark operator 

q~(l,2) = Tr c [~ (i) uT(2,1) ~+(2)1, (2) 

where ~ and B are Dirac indices, and flavor indices have been suppressed. Tr c is the 

trace over color spin. Time development of the operator (2) can be derived in the 

same way as in my previous paper, I which was for the case % = 0. Two new features 

arise because of the E term inserted in (i). Time derivative of A(x) is equivalent ~ 
1 3 

to a c-number operator i ~% , since A = - E. Time derivative of E is equal to 

insertion of the quark current -j, which, after use of a Fiertz identity, gives a 

product of two-string operators. In the following I consider q(l,2) at a large 

distance and neglect all the derivatives of the field operators (B, V x E and 

V x B). Strictly speaking, transverse (to the string) momentum of gluons should be 

kept under the large distance approximation. However, it would give rise to the 

transverse oscillation of the string, which will be studied elsewhere. Thus 

Supported in part by the U. S. Department of Energy Contract No. DE-AC02-82ER-40051. 
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i q (1,2) = ~ q(l,2) + ~  q (1,2) 

2 g2l fl d~ • [ q(a)(l,x)~ q(a)(x,2) 

i 2 ÷ + 
+ 6 g21 fl dx • is(X) q(l,2) "-" (3) 

% q(l,2) = I-is • V 1 + 8m] q-q [iS " V2 + m] . (4) 

+ 

in the third term means a summation over all possible flavors. Js is the color- 
a 

and flavor-slnglet quark current, and represents an emission of a singlet vector meson 

from the string. For vacuum-vacuum matrix element of (3), I may neglect this term, 

and also keep only the vacuum intermediate state neglecting all the hadronic ones, 

since the latter tend to give short range forces. Defining 

S(1,2) = <0 I q(l,2) 10 > , (5) 

I obtain an equation 
2 i 

s ( 1 , 2 )  s ( 1 , 2 )  - f ° o S(Ix)~ S(x,2) 

S(1,2) can be expanded in Dirac matrices like 

S(1,2) = -i ~ Sl(r) +~ S2(r) + i8 ~ S3(r) (7) 

If S(i,2) were the equal-time limit of a quark propagator for which a spectral 

representation holds, then we would have $3=0. Since no spectral representation 

holds for S(i,2) which has no color-singlet hadronie intermediate states we may 

include S 3 term. In fact as shown below S 3 term is necessary in order to obtain the 

spontaneous breaking of the chiral symmetry which says 

< ~-(0) ~ (0) >0 = -S2(O) ~ O. (8) 
I n t r o d u c t i n g  (7) i n t o  (6) I o b t a i n  

~Sl(r) 1 fr 
~I 2 g21 dz [Sl(r-Z)Sl(Z)+ S2(r-z)S2(z) + S3(r-z)S3(z)]=0, 

0 

3S2(r) 
-2 ( ~S3(r)~ + ~2 S3(r)) + ~I g2l frdzo Sl(r'z) S2(z)=O' 

$S2(r) $$3 r 
2 Dr + ~--~-- - g21 f~ dz Sl(r~z) S3(z) = 0 . (9) 

If S 3 = 0, then the third equation tells that S 2 = const, and hence must vanish. The 

solution $2=$3=0 represents a chirally symmetric solution. The time reversal requires 

that the amplitudes SI, S 2 and S 3 in (7) are all real, if the parameter % is taken 
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to be real. The solution of eq. (9) is not well defined without a precise 

knowledge of the boundary conditions in variable % . Nevertheless we may obtain a 

physically reasonable solution in the following way. Neglecting quark kinetic 

energy terms in (9) I obtain an asymptotic solution for large r, 

= _ dD Sl(r) = A(%) e-D(~)r; A ~ /g2% 

S2(r) = b2S I , S3(r) = b3S I , 

2 
where b 2 and b 3 are constants independent of satisfying b 2 

I have 

Si/S I = S~/S 2 = S~/S 3 = -D 

( i0) 

2 
+ b 3 = i .  Thus, 

where 

W = -A -I dA dD 
d--~ ' K = -~ 

The Kr term should cancel the integral terms in (9) in region III. However, in 

region II, the integral involves $2, 3 in region I, so that cancellation will not be 

complete. Thus, in region II, neglecting the integral terms, the second and third 

equations give the Breit-type equation with an effective eigenvalue W and a linear 

potential Kr. The equation must be solved with a boundary condition (ii) imposed 

at a certain radius r = R inside region II. In this way the Klein paradox associ- 

nt _ (2) ated with a linear pote ial is completely avoided. Details of the solution, 

as well as its relation to the pion wave function will be discussed elsewhere. 
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To obtain a picture of the overall solution, I consider three regions in r. In the 

inner region I, the system is free (short range forces are being neglected), so 

that S 2 = 1 and S 3 = 0. In the outer region III, (I0) gives the leading asymptotic 

terms. In the intermediate region II, I may extrapolate from outside and set 

~$2'3 = (W-Kr) (12) 
- ~% $2 ,3  
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STOCHASTIC QUANTIZATION AND LARGE N REDUCTION 

J. Alfaro and B. Sakita 

Department of Physics, City College 

of City University of New York, N.Y. 10031 

The stochastic quantization method of Parisi and Wu is used in 

order to understand the quenched momentum prescription for large N the- 

ories. The Hermitian matrix field theory model is studied first and 

then the same method is applied to SU(N) gauge theory. 

I. Introduction 

After a work of Eguchi and Kawai I, some very intensive and active 

studies on the reduction of degrees of freedom at large N were done re- 
2,3_ 

cently by various groups co reach the quenched momentum prescription 3 

for large N theories. These authors3have based their discussion on a 

detailed analysis of planar Feynman graphs for all order of perturba- 

tion theory. We believe that the large N reduction phenomenon is so 

general that it is likely to have more transparent explanations. 

In this report we present our study on this problem using the 

stochastic quantization method of Parisi and Wu 4. Since in this method 

the average over the random variables is taken at the end of calcula- 

tion of correlation functions (Green's functions), it is possible to 

derive the quenched models by viewing a part of the random average as 

a quenched average. 

Since the stochastic quantization method is relatively new and 

since in this method we believe there are subjects that require further 

studies especially for gauge theories, we first review the method in 

the next section. In section III we discuss the reduction of degrees 

of freedom for large N by taking the Hermitian matrix field model as an 

example 5. In IV, we discuss the same problem for SU(N) gauge theory. 

In this case there exists some confusions whether we really obtained 

the quenched Eguchi-Kawai model or not. This confusion is mainly due 

to our lack of knowledge on the stochastic quantization. We suggest 

our resolution. 
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II. Stochastic Quantization 

In this section, we review the stochastic quantization method of 

Parisi and Wu 3. 

Let us consider an Euclidean field theory of a system of Bose 

field ,£(x). x denotes a d-dimensional space time point while £ repre- 

sents a set of internal indices. The correlation functions (Green's 

functions) of the theory are given by a functional average defined by 

<~zI(Xl)*£2 (x2) "''*Zn (xn) > 

I~*Zl(X l) (x2)'''~ ~ (Xn)e-S[*] 
_ ~12 n (2.1) 

I ~, e -S[*] 

where S[,] is the action of the system. 

One interprets (2.1) as a statistical average of dynamical vari- 

ables ,i(x) with Boltzman statistical weight. The basic idea of sto- 

chastic quantization of Parisi and Wu is that one regards the average 

(2.1) as the large (fictitious) time equilibrium limit of a statistical 

average in an inequilibrium system. The time evolution of this statis- 

tical system can be described by Fokker-Planck equation: 

1 ~_ ^ 
2 ~t = HHF~ (2.2) 

^ 62 1 1 [(~_!~) 2 62s }] 

(2.3) 

The probability distribution function at time t, P[~,t], 

by 

is related to 

s [~] 
~[~,t] = e P[~,t] (2.4) 

It is easy to see that HHF~=0 when P=e -S[~] , so that ~ is station- 

ary. One assumes that at large t the system reaches to this stationary 

state. If this is the case, the average can also be calculated by us- 

ing Langevin equation 

~%£(x,t) 6S 
~t - 6~i(x,t) + ~£(x,t) (2.5) 

where t is a fictitious time. n£(x,t) is a random source function with 
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Gaussian distribution, namely it possesses the following property of 

averages: 

<~£1(xl'tl)~g2(x2't2) "''~gn(Xn'tn) > 

[ ~ t i ) (xj,tj) > 
possible pairs<n~i (xi' ~j q 
combination 

(2.6) 

<~g(x,t)~£, (x',t')>n = 26gg,~(x-x')~(t-t') (2.7) 

In (2.6), when n is odd the average is zero. The connection between 

Langevin and Fokker-Planck is given by 

f 
<F[~( " t)]> = |~ #F[~ (')]P[~,t] (2.8) 

' n 

where ~(x,t) is a solution of Langevin equation with initial condition 

~n(x,0)=~0(x) while P[~,t] is a solution of Fokker-Planck equation with 

initial condition P[~,0]=6(~-#0). Accordingly, the stochastic quanti- 

zation prescription of Parisi and Wu is simply expressed by 

<~gl (xl)#i2 (x2)'''~gn (xn) > 

(x2,t)'''~ ~ (Xn,t)> n (2.9) = lim <~l(Xl,t)~£ 
t+~ 2 n 

n(x,t) is a solution of Langevin equation (2.5) with a car- Since ~g 

tain initial condition, in general the expression (2.9) depends on the 

initial field configuration #0. An implicit assumption made in the sto- 

chastic quantization is that the final result is independent of the ini- 

tial condition. But it seems to us this is a point requires further in- 

vestigations and a source of confusions. We shall come back to this 

point in Section IV. 

III. Reduction of Degrees of Freedom for Large ' N 

In this section we apply the stochastic quantization method of 

Parisi and Wu to derive the quenched momentum prescription for large 

N theories. We illustrate it for the Hermitian matrix model defined 

by the action 

m ~2 S[*] = dx tr{½(~H,)2 + ~- + ~ ,4} 
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where 4 (x) is an NxN Hermitian matrix field (4 (x)=4+(x)). 

We note the action has an SU(N) symmetry and a reflection symmetry 

4 (x) + u4 (x)u + 

4(x) - ~ -4(x) 

u ~ SU (N) 
(3.2) 

Therefore, assuming SU(N) symmetry is unbroken we consider only the 

following Green's functions 

<tr(~ (Xl) ~ (x 2)..-4 (x n))> (3.3) 

which is invariant by the transformations. 

The corresponding Langevin equation to (3.1) is given by 

~ij (x,t) 
~t = (D-m2)~ij (x't) - 3~N (43(x't))ij + nij(x't) 

(3.4) 

where the random source matrix function ~(x,t) is assumed to have the 

Gaussian distribution: 

<nij(x,t)ni,j, (x',t')>q = 26ij,6ji,6(x-x')6(t-t') (3.5) 

One may formally solve Langevin equation (3.4) by iteration, and since 

each term of the solution is classified by a tree diagram the solution 

can be expressed as 

4~j (x,t) = [''" (nq'''~)ij (3.6) 

Inserting (3.6) into (3.3) we can express Green's function (3.3) in 

terms of the ~ averages as following: 

<tr(~(x l).-.4(x n)) > 

= l i m  ~ (N ~) - . .  d Y l d t l d Y 2 d t 2  • t+~ m=0 " "dY2m+ndt2m+n 

Km(Xl'''Xn,t ; Yltl,Y2t2,''',Y2m+nt2m+n ) 

<tr (~ (YI' tl ) ~ (Y2' t2 ) " " "~ (Y2m+n' t2m+n) ) >~ (3.7) 

If we insert the Gaussian distribution property of ~ given by (2.6) and 

(3.5) into (3.7), we should be able to obtain the standard perturbation 
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expansion as shown by Parisi and Wu. A nice point of (3.7) is that in 

(3.7) the SU(N) indices appear only through q so that we can discuss 

the large N limit by examining only the ~ averages. 

Next we show that the reduced form of q defined by 

~iJ (x't) (~) d/2 i (pi-Pj)X _ 
= e ~ij (t) (3.8) 

has in a sense the same Gaussian distribution property in the large N 

limit. In this expression A is a momentum cutoff. In a discrete lat- 

tice version of the theory, A is related to the inverse of lattice dis- 

tance a; A ~!. a 
In this report we describe the proof only for 

<tr(n(x,t)n(x',t'))>q , which should have the property 

<tr(~(x,t)~(x',t'))> = 2N26(x-x')~(t-t ') (3.9) 

In the reduced case, using (3.8) we obtain 

(~A) d i (pi-Pj) (x-x') _ 
[ <e ~ij (t)~ji(t')> (3.10) 
ij Zz p,~ 

As a reduced average over Pi and ~ we choose the integration over Pi in 
^ A ~ r N dp ~ 
n i~ 0 | 1 

a hypercube [--,---] ( H (--)) and the Gaussian distribution for 5: 
2 2 ~ le,i= 1 A 

<nij(t)ni,j, (t')> = 26ij,6i,j6(t-t') (3.11) 

Then, i~j contribution of (3.10) is given by 

~ i (pi-Pj) (x-x') A d dPk 
(5) 2 (N2-N) ~ (t-t') K T e 

k,~ 

2N26(t-t')~(x-x ') ~ 0(N 2) 

while i=j contribution is given by 

d ~ 
(~)d 2N6(t-t') ~ - (~-{) 2N6(t-t') ~ 0(N) 

ks 

In the large N limit we neglect i=j contribution against i@j. Then we 

obtain the same expression as (3.9). 

In order to see the degree of largeness of N we have used we com- 

pare these two contributions by integrating over x. We obtain the fol- 

lowing criterion: 
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A d Ld N >> (~) [3.12) 

Since A is the cutoff momentum and it is ~i/a, the criterion (3.12) 

equivalent to 

is 

N >> number of space-time points . 

For a large N which satisfies the condition (3.12) it is possible 

to prove that the reduced ~ (3.8) has Wick decomposition property (2.6), 

provided N>>n. 

Next we look for a solution of Langevin equation when ~ is given 

by the reduced form (3.8). We first make an ansatz for ~, 

i (Pi-P~ J ) x 
~j (x,t) = e -n~ij (t) (3.13) 

and insert it into (3.4). Then, we obtain 

-~ ~ (t) 3 
~ij [ )2+m2]~ (t) - ~N (~) +- (t) A d 

~t =- (Pi-Pj j 3 ij ~ij (2-z) ' 

(3.14) 

which can be considered as a reduced Langevin equation for ~. 

Combining these equations together we obtain finally 

<tr (¢ (x I) # (x 2) • • • ~ (x n) ) > 

where 

and 

t÷~ 

i i (pi-Pj) x I- • • = lim K d-~A [ e 
t÷~ 

lim <tr(~(Xl,t)-..~n(Xn,t))> (stochastic quantization) 

<-~ -n 
~ij(tl)~jk(t2) "-" > 

(Reduction of ~ and ~) 

i (pi-Pj) x I. • • 
= IH d-~A [ e <#ij0jk • o, > 

(stochastic quantization) 

(3.15) 

<...> - Ida(''') e-~ [~] 

Id~e-S [~] 

(3.16) 
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- - .2z. d 1 
S[~] = (-~) [[. ~((pi-Pj)2+m2)~ij~ji + ~ tr(~4)] (3.17) 

z3 

The expression (3.15) is nothing but the quenched momentum prescription 

proposed by the authors of reference 2. 

IV. SU(N) Gau~e Theory 

The action of SU(N) gauge theory is given by 

S 1 
S = dx ~ tr F vF v (4.1) 

where e is a coupling constant. The field strength F is expressed in 

terms of NxN Hermitian matrix vector potential A as 

F v = ~pA - ~vAp - i[A ,A~] (4.2) 

The Langevin equation of this theory is given by 

i (x,t) = 1 {~vF (x,t)_i[Av,Fv~]} + qp(x,t) , (4.3) 
e 

where q~(x,t) is a random source function with the same Gaussian distri- 

bution property as ~ in III. According to Parisi and Wu, if one solves 

this Langevin equation by perturbation with the initial condition 

A (x,0) = 0 (4.4) 

and calculate the gauge invariant correlation functions by the stochas- 

tic method one obtains the ordinary perturbation results in Landau 

gauge. We note that Langevin eq. (4.3) and the q-average property given 

by (2.6) and (3.5) are invariant by the following (fictitious) time in- 

dependent gauge transformations: 

A (x,t) ---~ u(x)A (x,t)u+(x) + iu(x)~ u+(x) 
P P 

n (x,t) --~ u(x)q (x,t)u+(x) (4.5) 

u(x) E SU(N) 

Since the SU(N) gauge theory described by the stochastic quantiza- 

tion in this way is a slight generalization of the Hermitian model of 
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the previous section, it is not difficult to see that we arrive at the 

following large N reduced model: 

~ (x,t) = (~)d/2 eiP.x ~z(t) e -iP'x 

iP.x ~ (t) e -iP'x A (x,t) = e 

(4.6) 

, A,d/2 
(t) = ~ [P -A~(t) , [P~-A~(tl,P -A (t) 11 + ~-{, ~ 

e 

(0) = 0 , 

(t) 

(4.7) 

(4.8) 

where P is a diagonal matrix with momenta Pi'S in its diagonal elements. 

Now it is straightforward to calculate the gauge invariant correla- 

tion functions in the large N limit by using the perturbative stochastic 

method to obtain the results of the quenched momentum prescription. 

However, there is an unexpected complication in the formal level. If 

we change reduced variables from A to A by 

= A - P , (4.8) 

the Langevin equation in terms of new variables becomes 

A d/2 1 [i (t) [i (t),A (t)] ] + (~-~1 ~(t) , i (t) = - --~ 
e 

(4.9) 

which is independent of P . 

becomes 

On the other hand the initial condition 

i (0) = -P (4.10) 

which depends on P . Therefore, if the results of the stochastic quan- 

tization are independent of the initial condition the momenta are triv- 

ially integrated out and we obtain a matrix model (Eguchi-Kawai model) 

as a large N reduced model rather than the quenched momentum form. 

We believe that this is due to the assumption that the stochastic 

quantization does not depend on the initial condition chosen to solve 

the Langevin equation. In gauge theories, due to the gauge symmetry 

there are no drift forces along the direction of gauge orbit. Thus, 

the system does not reach to the equilibrium distribution along the 

gauge orbit and the final distribution depends on the initial configu- 

ration. This is in a sense a gauge fixing (weighted average). The 
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criterion that this phenomenon occurs is the existence of a continuous 

energy spectrum above the ground state of Fokker-Planck Hamiltonian be- 

cause of the flatness of the potential in a certain direction in confi- 

guration space. In the reduced Langevin equation (4.9), the situation 

is more complicated. We note first that the Langevin equation (4.9) is 

invarinat by the following time independent reduced gauge transformation 

(t) ÷ uA (t)u + 

n~(t) ÷ u~u(t)u + 

u E SU(N) (4.ii) 

We also note that A (0)=-P cannot be obtained by the gauge transforma- 

tion from A (0)=0. Thus, if there remains the P dependence it must be 

due to the continuous spectrum which does not related to the known sym- 

metry. We found an indication that this is the case. We like to devote 

the rest of this section for our preliminary study 5. 

The action and the Fokker-Planck equation corresponding to reduced 

Langevin equation (4.9) are given by 

-i 
S[A] ~ 2 = - 4 tr[A~'Av] (4.12) 

HR - 21 [ 6 2 + 41 V[A] (4.13) 
~,ij 6iij~iji 

1 -2 ~ ~ _ 1 try)2 V[A] = ~ e tr[i , [A~,A ]] 2 2~-l(d-l)N tr(A - ~ (4.14) 

2 
= e ( ) (4.15) 

We notice that when the configuration of A is diagonal the first term 

in Fokker-Planck potential V is zero while the second term negative and 

bottomless. Thus, at least for the weak coupling (small e) the diagonal 

components of A should be treated non-perturbatively. We therefore 

separate A into the diagonal component band the off diagonal compo- 

nent B : 

We insert it into V and then expand V in the powers of B . 

order in e we obtain 

To leading 
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1 -2 
V = ~  . . } BI]B 31 

i~j ~ v 

-i \ ' 1 [bk) 2 (4.16) 
- 2~ (d-l)N I [' (bl- ~ k ~ 

We then calculate the zero point energy due to B fluctuation keeping 

b fixed (Born-Oppenheimer). We obtain 

¼1d_l)-i ~ (bi_b j)2 
13 

which is precisely cancelled by the second term in V. Therefore at 

least in the lowest order in ~ b becomes effectively a cyclic variable 

near the ground state due to the off diagonal fluctuations, and there 

is no effective drift force along the direction of diagonal A . 
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VARIATIONAL METHODS IN THE MASTER FIELD FORMULATION FOR QCD3+ 1 

Masa-aki Sato 

Department of Physics, New York University 

4 Washington Place, New York, NY 10003, U. S. A. 

ABSTRACT 

Master fields are formulated for finite N-QCD3+ I. They satisfy 

classical Yang-Mills equations with an infinite number of internal 

indices and an infinite number of constraints. Master fields and 

constraints on them in the large N limit are derived from the finite 

N master fields and constraints using vacuum dominance among color 

singlet states. The large N constraints can be explicitly solved and 

the solutions involve arbitrary functions which are used as trial 

functions in variational calculations. 

I. FINITE N F~STER FIELDS 

In this letter we will report the outline of our previous 

works I'2 on master field methods for QCD in 4-dimensional Minkowski 

space (QCD3+I). 

We choose the axial gauge (A 3 = 0) and SU(N) for the color group. 

Then the dynamical variables are the 1 and 2 components of matrix 

operator gluon fields, (A)ab(X) (~= i, 2; a, b= i,.--, N), and the 

conjugate momenta, (~e)ab(X), which satisfy usual canonical commuta- 

tion relations. The operator Hamiltonian, H, is given by 
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I A ^2 = d3x 1/2 Tr[K (x) + (~3Ae(x)) 2 + Fl2(X)] 

(1) 

+ 1/4 I d3x d3ylx3 Y3162 . . . .  - (x e - ye) Tr[(Ve~e) (x) (VB~B) (Y)], 

where Tr represents a trace over color indices and all operator pro- 

ducts are color ordered products (COP): adjoint operator products 

which are made from Ae and R e such that the order of the operators 

and the order of the matrix products in the color space coincides. 

An example of COP is given by 

~ ^ ^ ^  ^ 

(AI K2 K3 A4) ab ~ (Ael)aCl(Xl) (~e2)ClC2(X2) 

^ ^ 

× (~e3)c2c3(X 3) (Ae4)c3b(X4). (2) 

Since the Hamiltonian (i) and the total momentum operator are invar- 

iant under global color SU(N) transformations, the energy-momentum 

eigenstates can be classified by the irreducible representations of 

the color SU(N) group. 

Finite N master fields, Ae(x) and He(x), are defined as reduced 

matrix elements of ^ As(x) and H (x) between all singlet and adjoint 

energy-momentum eigenstates such as 1.,2,3 

< sl (A~)ab(X) I g, cd > = /N/(N 2 - i) 

× (dad dbc - I/N dab dcd) (Ae(x)) (s ; g) , (3) 

where s(g) represents the quantum number of a singlet (adjoint) 

energy-momentum eigenstates, I s > (Ig, ab>). The master fields, 

(A (x)) (n;n') and (Ke(x)) (n;n') , can be treated as C-number matrix 

fields with matrix indices n (= s or g). Since COP creates only 

singlet or adjoint states from singlet and adjoint states (when COP 

is applied to an adjoint state one of the indices of the adjoint 

state and the neighboring index of COP should be contracted), any 

matrix element of COP between singlet and adjoint states can be ex- 

pressed as a matrix product of the master fields such as 

< s ]  ( A I ~ 2 ~ 3 A 4 ) a b l g ,  c d >  = /N / (N  2 - i )  

x (dad 6bc - I/N dab dcd) (A 1 E 2 E 3 A 4 )(s ; g), (4) 
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where a matrix notation is used for products of the master fields; 

= Z (AI) (s ; n) (H2) (n ; g). (A 1 9 2 ) (s ; g) n=s,,g , 

Taking matrix elements of the operator equations of motion between 

the singlet and adjoint states, it can be shown that the finite N 

master fields satisfy the classical Yang-Mills equations with an 

infinite number of internal indices, n (= s or g). The canonical 

commutation relations can be inverted into an infinite number of con- 

straints. They are derived by considering the difference between two 

traces of any COP and the induced COP by the cyclic permutation. An 

example of the constraints is given by 

(5) 

(AIA2 ~3 A4 A5A6 ) (Sl ; s2) - (A6 AIA2 H3A4 A5 ) (Sl ; s2) 

= -iNd(3, 6) {sZ3 (A IA 2 ) (s I ; s 3) (A 4 A 5 ) (s 3 ; s 2) 

- I/N 2 (A IA 2A 4 A 5 ) (s I ; s 2) }. (6) 

There is another set of constraints which fix an integer value of N 

and correspond to the Mandelstam constraints 4 for the Wilson loops. 

II. THE LARGE N LIMIT 

In the large N limit contributions from the vacuum dominate over 

those from other excited singlet states 4'5. Then the large N master 

fields can be obtained from the finite N master fields by reducing an 

infinite number of the singlet indices to a single index which corre- 

sponds to the vacuum. They also satisfy the classical Yang-Mills 

equations. Large N constraints are obtained from the constraints 

corresponding to the commutation relations by replacing the sum over 

intermidiate singlet states with the vacuum index. In the large N 

limit Mandelstam-like constraints can be neglected. 

The large N constraints can be explicitly solved and the solu- 

tions involve arbitrary functions which should be determined by using 

dynamical equations. To solve the large N-QCD3+ 1 exactly, the solu- 

tions should involve an infinite number of arbitrary functions, which 

gives us great difficulty. Therefore we will use solutions with a 
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finite number of arbitrary functions and determine them by minimizing 

the vacuum energy. The simplest solution involves a 1-particle wave 

function as arbitrary functions. The variational calculation, in 
1 

which the simplest solution is used as a trial function, gives a 

logalismic potential between quarks and anti-quarks along the Z-axis 

under straightforward cut off. More realistic trial functions were 

given in Ref. 2. The Lorentz invariance and the gauge invariance of 

our method will be discussed within the master field formulation in 

covariant gauges in a forthcoming paper. 
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CONFINEMENT BY THICK MAGNETIC VORTICES 

Tamiaki Yoneya 

Institute of Physics, University of Tokyo 

Komaba, Tokyo 153, Japan 

Abstract: An argument is presented showing that the pure lattice gauge theories which 

are infrared unstable at the origin of the coupling constant are always in confining 

phase, provided that (i) the gauge group is compact and contains nontrivial 

center;(ii) Lagrangian does not contain long range interaction. The steps for an 

attempt at a proof of confinement are suggested. 

i. Introduction 

Although Monte Calro simulations on the lattice have provided several convincing 

evidences for believing in confinement in QCD, we are yet far from microscopic 

understanding of the mechanism of confinement in the continuum limit. In the 

lattice-regularized theory, the continuum theory corresponds to the critical region 

where the physical correlation length is much larger than the lattice spacing a. 

In this talk, I wish to report some simple observations on the general structure 

of the large distance behavior of lattice gauge theories. I will first present a 

rigorous inequality ~I ] for magnetic flux free energies which holds in any lattice 

gauge models with local action and with compact gauge group containing nontrivial 

center. Then, I will show that if this inequality is supplemented by a simple 

assumption, which is apparently of kinetical nature, it leads to an interesting 

consequence for confinement in the large distance critical region. 

2. Center transformation and magnetic vortices 

The inequality is based on the center invariance of the gauge field Lagrangian. 

For definiteness, we take the standard Wilson action of pure gauge theory. 

= X ~ ( U ~ U ~ ]  , U~ =U.~L~r~U~.,~Uw ~ (1) 

where ~ is the parallel transporter from the point x to a nearest neighbough point 

x+ ~ . The center transformation is defined by ~--~ ~f~ U~ , "If~ 

being an arbitrary element of the gauge group center C(G), under which the action is 

invariant. The center invariance is preserved even if the transformation is 

restricted to an infinitely extended d-i dimensional plane-layer of parallel links. 

Furthermore, if a center transformation is performed in a finitely extended layer of 

parallel links, the action density changes its value only at the (d-2 dimensional) 

boundary of the layer, as in Fig. i. The Wilson loop which winds around the boundary 

changes by the group center. It is appropriate to call the energetic object, which 

is produced at the boundary of the layer, the magnetic vortex (or simply vortex). 
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Fig. i. The layer of parallel links 
and the vortex at its boundary. C 
is the Wilson loop winding around 
the vortex. 
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3 

Fig. 2. The 3 dimensional rectan- 
gular box with periodic boundary 
condition in the 3rd direction. 
The strip of parallel links on 
the surface is the intersection 
with the layer of the center trans- 
formation. 

To discuss the possible role of the vortices in the large distance behaviour, we 

have to consider the vortices with larger and larger thickness. For this purpose, 

we extract a finite hypertube which completely encloses the boundary of the layer of 

the center transformation. The center transformation then induces the change of the 

boundary condition on the surface of the hypertube. Instead of a hypertube, for 

simplicity, let us consider d-dimensional rectangular box in which the periodic 

boundary condition is imposed in its last d-2 directions. (See Fig. 2.) Let the 

sides of the box, which is denoted by ~(~,~) ,be (~r,~, ~ .--~). The center 

transformation for the box is equivalent to a change of the boundary condition on the 

strip which is the intersection of the surface and the layer of the center 

transformation. The partition function for ~(~,~') is defined 

U~.~C A(~.o") "pc: ~.¢~,.,,.) (2)  

where {~ represents the boundary value of the parallel transporter matrices on the 

surface ~(~.~']. In (2), the summation and the product are extended only over 

plaquettes and links which are completely contained inside fk(~,~'] . Then, the 

vortex free energy corresponding to a center element %" is given by 

~¢~ ~} = - 9-. [_~^~"~ / Z~,e.~] ] (3) 
/~(~,.~..~ 

where ~IA~% denotes the center-transformed boundary value. We now define ~2] 

"1 
(4) 
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If the gauge group is compact and the Lagrangian does not contain long range 

interaction, the following inequality [i] can be proven 

A ^ ~2 

This interrelates the vortices with different thickness. Let us next discuss the 

possible implications of this simple inequality to confinement problem. For this 

purpose, the properties of ~ ¥~Af~.~) in the large scale limit is crucial. 

3. Large scale behaviour of vortex free energy and confinement 

If the length of the vortex is much larger than its thickness, we expect the 

following behaviour for the free energy 

expected behaviour o f  the f ree energy dens i ty  ~ ( ~  The 

[ 3 ] ,  [4 ]  : 

for large ~ is the following 

(i) confinement phase ~to") ,'," const, gY~ -- o(~ 2 (7a) 
I 

(ii) Higgs phase ~(~) ~ const. (7b) 
/ 

(iii) massless phase (d=4) +(r) ~. const/O'z (7C) 

There is no rigorous justification for these properties (d~3). But any reasonable 

approximation schemes appropriate to each phase predict such behaviours. For 

instance, the strong coupling expansion predicts (7a) with ~ being the string 

tension. Among these properties, that the maximum vortex free energy is proportional 

to ~&-Z for large ~ seems generally valid independently of different phases. 

Unfortunately, however, we have no rigorous control over how large ~ must be for the 

uniform validity of (7). To take into this plausible property account, we adopt the 

following working hypothesis (or conjecture ):In compact pure lattice gauge theories, 

there exists a constant ~-~o.~f. ~) for any ~,~ and ~ satisfying 

t ' ~ .  ,," ~ , ' - °  . x'-=~'/~ << I 

such that 

When C(G) = Z(2), 
_ _k 1 ~t-O 

%" ~ @--I and <~>A(~.~) 1~r~(e.*3" 

Hence, if (6) is valid, we have (8) with ~ ~a-~ . Compactness of gauge group is 

required because only for compact gauge group one can prove that ~ ~At~.~ 
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have finite limit. Under this hypothesis, we prove 

Lemma : Under the hypothesis (8), if there exists an allowed set of ~,~ such that 

< ~ N ~ { . f )  < ~ (9) 

then, 

for sufficiently large ~ , with 

^ ( f .~ )  

Proof : Combining the inequal i ty  (7) and our hypothesis (8) we have 

Repeating this inequality n times (see Fig. 3), we have for large n, 

By setting ~ = %~ , one arrives at our claim. 

(10) 

Fig. 3. Uniform dilatation of the vortex and the Wilson loop. 

This lemma means that under the assumption (6), the vortex free energy vanishes 

exponentially with ~ provided that the vortex free energy is sufficiently small so 

that (9) is satisfied for some ~ and ~. Hence, (9) is sufficient for confinement. 

Clearly, this condition is always satisfied when the bare coupling constant is 

sufficiently large. Furthermore, even if the bare coupling constant is arbitrarily 

small, it is possible that (9) is satisfied at sufficiently large scale because of the 

renormalization effect. We also note that the area-law decay is a rather universal 

property of gauge systems in the sense that if }~)is known to decay faster than ~t~-2) 

it automatically decays exponentially with the cross section. The Mack-Petkova 

inequality [2] then implies that the tension given by (I0) is a lower bound for the 

exact string tension. 
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In theories which are not scale invariant, ~.~) would either vanishes or 

diverges in the limit ~-~ ~ . (We can show[l~ that ~(e~ , if it exists, is 

monotonically decreasing function of a- .) On the other hand, at the scale of cutoff, 

the inverse free energy (which is dimensionless ) is proportional to the bare 

coupling constant. Hence, at general scale ~ , the inverse vortex free energy can 

serve as an effective coupling constant. For the effective coupling constant in the 

U(N) model, we can indeed prove the following inequality.[ i] as suggested from the 

perturbation theory, 

(ii) 

In asymptotically free theories, or more generally, in theories which are 

infrared unstable at the origin of the coupling constant, the effective coupling 

constant should increase at large distances. ((ii) shows that this happens at least 

if d< 4 in the U(N) model.) Thus the only possibility seems to be that the maximum 

vortex free energy vanishes as ~-~ In summary, our conclusion is that the 

pure lattice gauge theories which are infrared unstable at the origin of the coupling 

constant are always in confinig phase with linear confinig potential, provided that 

(i) Lagrangian is local; (ii)the center of gauge group is nontrivial. The crucial 

assumption in our argument was that the proportionality of the vortex free energy to 

its length is valid uniformly for any ~,~ if ~ is sufficiently small. 

Clearly, this conclusion is almost equivalent to the old infrared slavery 

conjecture. An exact proof, if any, of confinement is now reduced to establish this 

fundamental assumption and the infrared instablity in nonperturbative fashion. 

Finally, it should be remarked that our discussion is not affected by the presence of 

matter fields if the matter fields are in the adjoint representation of the gauge 

group. 
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In this note, we aim at revealing the renormalizable structure 

of massive Yang-Mills (YM) theories on the basis of the formalism in 

our previous work, l) quoted as [I], though there had so far been 

found several counter-observations. 2) Our formalism consists of 

four kinds of auxiliary scalar fields other than a massive gauge 
a 

field A~; a massless scalar fields ~a, in addition to the usual 

Lagrange multiplier field H a and a pair of Faddeev-Popov ghost fields 

C a and ~a. In terms of these fields, the Lagrangian density in [I], 

takes the form in the Landau gauge 

_ i a 2 a a + "2 ~--a_ab_b 1 2,.a .a,2 
L - -K(G~v) - A~a~ i ~u ~ u - ~m ~a~ - a~) , 

~ I (i) .a ~ab~ ~b K ab = =[I + ~ ~(iZ~) n] , , 
aU = a o~ , g n=l <n~i): aD 

_acb~c a 3 a 3 a . _abc.boC ab = 6ab~ + gr A~, ~ = g/m where G~v = ~A v - vA~ + gr ~Av, D~ 

and ~ = Ta~ a. As has been shown in [I], (i) is invariant under a 

Becchi-Rouet-Stora (BRS) transformation 3) with a nilpotent character. 

As is elucidated by Kugo and Ojima (KO), 4) " such an exact BRS symmetry 

enables us to impose a KO-type of supplementary conditions on physical 

states, which guarantees our physical subspace to be of positive semi- 

definite due to the quartet mechanism confining the members of the 

quartet (~a, Ha, C a ' ~a) into zero-norm subspace. Therefore our 

physical S-matrix elements, which are taken between any states con- 

taining spin-triplet physical gauge-bosons (the Proca particles) 

alone, is manifestly unitary. 

In the perturbation approach, the interaction Lagrangian is 

obtained by subtracting the free part from (i). Here we should note: 

I) The Feynman propagator of gauge bosons takes the form 

instead of the usual Proca type, and has the same asymptotic behavior 
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(k + ~) as that in massless YM theories; namely, (2) takes a renorma- 

lizable form. 2) A nonpolynomial character of interactions emerges 

with respect to the field ~a. Therefore, at the first sight, one may 

guess the theory is unrenormalizable when the ordinary perturbation 

expansion in the coupling constant or loop expansion is carried out. 2) 

It is, however, not the case, bacause the exponential-type interaction 

provides a promissing way of constructing renormalizable massive YM 

theories, as pointed out by several authors. 5)'6) 

We attack the renormallzability problem on the basis of non- 

polynomial Lagrangian theories. Hereafter, we consider the case of 

SU(2), for simplicity. In this case, nonpolynomial parts of the 

interaction Lagrangian can be expressed as follows: 

Li~ t = P~b3 ~a3 ~bexpEitB(k~)] , (3) 

L A ~ab~a~ ~b 
int = m~A Apop~ exp[it~(k~)] (4) 

Here, (k~) = kava and the operator p~b and Q~b are defined by 

p~b = -o[idttA[d~- (t-l)22t (3ka33 2k ~ 6ab3kn3kn)32 , (5) 

Q~b IldttAId~[(t-l)( 3 2 6ab 3 2 ieabc 3 ], (6) 
= o 2t 8kaskb 3k~k~ ) - 8kc 

where d2 = sineded¢/4w, h a = (sinecos¢, sinesin¢, cose) and A is a 

positive number, which is introduced in order to guarantee commuta- 

tivity of the t- and the other integrations in the S-matrix calcu- 

lation and is taken to be zero finally. 

We shall deal with the S-matrix elements by introducing so called 

superpropagators. Now, we consider only the case of Liner_ alone, for 

simplicity. The S-matrix is given by 

S = i + ~ ~[dxNS(x N) x N 
N>I -J , = (x I ..... x N) , (7) 

where S(x N) is expressed by using the Hori's formula 7) as follows: 

N aibi] I ~2 
s(xN) = [ill PAi x exp[_~. I 3p3vDij a 3(3 ~a) "]J 

~,j 3(3~i) 
N a i a i b i b i 

x H [3 ~ i + ~(i£tj~j )3pDij][3~ i. + ~(i£tjXj )3pDij] 
i=l j j 

N 
i {£2titj x exp[-~ ~ (~i~j)Dij}] x : H exp[i~ti(%i~i)]: , (8) 
i,j i=l 
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a ~b ( 
where ~i ~a(xi) and 6abDij = 6ab = < 01T~a(xi ) xj)I0>. This is 

of various kinds of N-th order (with respect to Li~ t)_ the sum 

diagrams which are specified by the way how to contract 8 ~a with the 

other fields. Each N-th order diagram has the following structure: 

Every two vertex-points are connected with a propagator of the forms 

e ~D, 8 De ~D, etc. called superpropagator (SP), in contrast with the 

usual Feynman propagator D. Thus auN-th order diagram is a super- 

graph expressed as the N(N-1)/2 products of SPs. 

We are now in a position to construct all SPs appearing in 

general supergraphs. As is well known, e mD is the typical SP in the 

case for an exponential interaction of scalar fields, and the exponen- 

tial is expressed by the Sommerfeld-Watson transform: 

e <D iIFdZ <ZDZ 
= 2 tan~zF(z+l) + i , (9) 

where the contour F encloses the positive real axis in the z plane. 

The contour is then opened out to lie parallel to the imaginary axis 

in 0 < Rez < I; namely, F + C (0 < Rez < i; zEC). The Fourier 

transform (FT) of D z is defined for 0 < Rez < 2 by 8) 

FT[D z] = [d4xeikX[ ! ]z : i~(4~)2-2Z(k2-i~) z-2 
J 4w2(x2+ia) sinwzr(z)r(z-l) (10) 

~D Substituting (10) into (9) with F ÷ C, we obtain the FT of e 

Due to the fact that (3) contains the derivatives 8U~ a, we need 

some more SPs. We express them symbolically as 

<zf(~ D,3~vD)DZ 
(ii) f(~D'~vD)eKD = ~I dz tan~zF(z+l) ' 

2 Cf 

where f(~ D, 8 8vD) stands for all possible factors, 8 D, 8 ~vD, 

(~ D)~vD), (~ 8 D)(~vD), (~ D)(SvD) 2, (8 ~vD) 2, (~ 8vD)(8 D)(~ D) and 

(8 D) (8 D) 2, and the contour Cf(Rez < 0) is taken in a range where 

the FT of f(8 D, 8 ~ D)D z can be well defined. 

The generalized function f(8 D,8 ~vD)DZ is dealt with as follows: 

Consider (8 8vD)e~D, for example. Supposing D is an ordinary 

classical function, D (x2) -I = , we obtain the identity 

2 
(~ 8 D)D z = (z+l)(z+2){~ 8v - --~D }D z+l, (D=~ 8 ) (12) 

which holds also for the generalized function D except in the neigh- 

borhood of xN = 0. Evidently, (12) fails at z = 0, since the left 

hand side then becomes 8 8vD while the right hand side is not so 
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because of the fact []D=i64(x) [~ 0] for the generalized function D. 

Information in the neighborhood of x~ = 0 lacks this point. Hence, 

(12) is to be elaborated so that the second term of the right hand 

side should vanish at z = 0, and then we are to have a valid formula 

for all x~ in place of (12). Noting that (~vD)D z always appears as 

the integrand like (II), we adopt 

(~p~vD)D z = lim 2 6Uv t z ~N[]}DZ+I (13) 
(z+l)(z+2){3~v - T~z+-~j 

6÷o 

as the valid formula, 6) where N is an integer (~ i) and 6 is such a 

positive number that the singularity at z = -6 lies to the left of 

the z-contour, and the limit 6 ÷ 0 is taken after the z-integratlon. 

Similar arguments lead to formulae for the other remaining f(3 D, 

~ 8~D)D z, from which their FT together with the position of Cf are 

obtained by use of (i0). Next, we note that the operator P~i bi 

defined by (5) may yield extra singularities in (8) in the complex 

plane of several variables; in fact, the ti-integration of p~ibi zij 
-1 1 

produces factors like (~zij + n + A i) with n any positive integer. 

Such a singularity, however, can be avoided: Take the positive number 

A i to be so large that the contours Cij guarantee (~Rezij + n + A i) 

> 0, then we can safely bend the contour Cij back to rij in (8), 

since we can assure that the inequality (Rezij + n) ~ 1 always holds 

at any pole-point with respect to zij when we count the residues of 

the zij-integrals. Hence, the limit A.÷01 brings no singular result. 

In this stage, we can grasp a power-counting scheme for super- 

graphs, which estimates the degree of ultraviolet divergences in 

their momentum integrations. In (II), we transform z, the real part 

of which is already in a certain range, into z' such that z ÷ z' 

(0 < Rez' < i). We then~ ~ find that the FT of f(~wD,8w~D)e KD becomes 

proportional to (k2) ~n~ with a(n) = z'-2+(n/2) according to n 

(= 0,1,2,3,4) being the number of derivatives in f. Hence, with 

respect to asymptotic behaviors as k + ~, the FTs of fe ~D can be 

classified into five types by n; denote each of them by S(k;n). Our 

power-counting scheme is as follows: Consider an N-th order super- 

graph, in which the numbers of S(k;n) are I n . Then, it holds 

4 
I ~ n=0~ In = N(N-1)/2 , I 1 + 2I 2 + 3134I 4 = 2N - ES~ , (14) 

where E3~ is the number of external ~a-lines. The degree of diver- 

gence d is given in this case by 
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d = 4(I,N+I) - (410+311+212+13) + 2[ Rez'. 
ij !j 

= 4 - 2N " E~ + 2[ Rez'. 
ij i~ 

(15) 

from (14). Since Rez~j can be taken to be as close to zero as pos- 

sible, the condition for convergence of the supergraph (d < 0), 

4 - 2N - E~ < 0, is surely satisfied for N ~ 3. For N = 2, we have 

a single SP which is of course well defined. Therefore, we can 

conclude that all S-matrix elements are finite for Li~ t._ 

Finally we discuss the case of the total interaction Lagrangian. 

The presence of L.Aj calls for four more kinds of SPs other than those 

for Li~ t alone: Duge u, (~ D)Dzv e u, (~ 8vD)Dzv e u and (~D)(~vD)Duv × 

e KD. Here, we are interested in their asymptotic behaviors. Noting 

the asymptotic form of DZv being as ~(k2) -I, we can approximate DZ9 in 

them by D and obtain their asymptotic forms. Therefore, our power- 

counting scheme tells us that the degree of divergence of an N-th 

order supergraph with respect to the total Lin t is given by 

A + I~) + 2~Rez! (16) d = 4 - E A - E~ - 2N - 2(I~ + I I ij mj 

a I A are those of Here, E A denotes the number of external A~-lines and n 

SPs containing D~v and n derivatives of ~. Recognizing that the term 

a ~a and (4-EA) comes from the renormalizable interactions among A~, 

C a , we find that the divergence of any total supergraph becomes 

the less, as the more super-vertices are inserted. 

Thus, we conclude that the massive YM theory can be dealt with as 

being renormalizable in view of nonpolynomial Lagrangian theories. 
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I. INTRODUCTION 

From the observed range of va l id i ty  of the Newtonian approximation, the cos- 

mological constant A is known to be very small. In units with ~ = c = l ,  one has 

A < IO -56 cm -2. In view of the fact that vacuum energy can contribute to the value 

of A,l especially in conjunction with symmetry breaking, 2 i t  is puzzling that the 

value of A is so small. Here I wish to recall and extend an old argument 3-5 which 

implies that the cosmological constant is zero or very small. The same hypothesis 

evidently implies also that the expansion of the universe is isotropic and that the 

early universe is dominated by re la t iv is t ic  particles and radiation, 

The basic hypothesis is that the absence of particle creation, in particular, 

gravitons and minimally coupled massless scalar particles, is a kind of equilibrium 

condition toward which the evolution of the universe tends, and that the classical 

Einstein equations must be consistent with that condition. Here we are referring to 

particle creation as detected by a measuring instrument on one of the preferred 

geodesics of the expanding universe. In Ref. 5 (Section F), we argued that there 

must be a deep connection between the Einstein equations and the conditions for zero 

particle creation. We viewed the Einstein equations as macroscopic equations govern. 

ing the large scale evolution of the universe. We asserted that the underlying 

(unknown) microscopic theory, from which the Einstein equations follow, must be such 

that "in an expansion of the universe in which a particular type of particle ( i .e . ,  

re la t iv is t ic  or non-relativist ic) is predominant, the expansion achieved after a 

long time wi l l  be such as to minimize the average creation rate of that particle" 

and "the reaction of the particle creation back on the gravitational f ie ld  wi l l  

modify the expansion in such a way as to reduce the creation rate." Investigations 

of particle creation in anisotropic 6-8 as well as isotropic 9 expansions support that 

hypothesis, but do not address the question of deriving the Einstein equations from 

an underlying microscopic theory. Candidates for such an underlying unified theory 

include induced gravity. Adler IO has noted that the above hypothesis can serve 

within the context of that theory as a reason for the observed smallness of the 

cosmological constant. 

Our hypothesis may well be a dynamical or stat ist ical consequence of an under- 

lying unified theory, perhaps resulting from a feedback mechanism involving particle 

creation, Or reflecting an underlying equilibrium or consistency condition. Perhaps 

i t  is a s tabi l i ty  condition on the true vacuum. In any event, we refer to the 

hypothesis, loosely speaking, as an equilibrium condition. Without being specific 

about an underlying theory, one can not address the question of the time in the 
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ea r l y  universe at which the suppression o f  p a r t i c l e  c reat ion is imposed, P o s s i b i l i -  

t i es  are the Planck time or the times at  which the grand un i f i ed  theory phase 

t r ans i t i ons  occur. I t  is not even necessary that  the usual concepts of  space-time 

or metr ic should be meaningful "before" the above equ i l ib r ium sets in ,  The under- 

l y ing  microscopic theory is assumed to be such tha t ,  at  the time and scale when the 

c lass ica l  E inste in equations are reasonably well def ined,  they are consistent  with 

an expansion law in which the creat ion ra te  o f  gravi tons and min imal ly  coupled scalar 

pa r t i c l es  is suppressed. In order to f ind  the consequences of  that  hypothesis, we 

can regard the background metr ic  and background matter as governed by the c lass ica l  

E inste in equations. Gravitons are taken to be the quantized g rav i t a t i ona l  wave 

per turbat ions of  the background metr ic .  

2. GRAVITATIONAL WAVE PERTURBATIONS 

I t  is well known that  in an a n i s o t r o p i c a l l y  expanding universe,  p a r t i c l e  

c reat ion is in general more intense than in an i s o t r o p i c a l l y  expanding universe, 

and that  the react ion back of  the created pa r t i c l es  is such as to bring about iso-  

t rop i c  expansion. 6-8 There is no known case in which p a r t i c l e  c reat ion vanishes in 

an a n i s o t r o p i c a l l y  expanding universe wi th nonvanishing Riemann tensor,  The ex i s t -  

ence of  such a case is a l l  the less l i k e l y  because we are demanding that  the expan- 

sion be such that  the grav i ton creat ion rate is zero at a l l  t imes. (That excludes 

global in te r fe rence e f fec ts  resu l t i ng  in no net grav i ton c rea t i on . )  Therefore,  we 

turn our a t t en t i on  to i so t rop i c  expansions, 

The Robertson-Walker universes have l i n e  elements 

ds 2 = -dt  2 + a2( t )do 2, ( I )  

where d~ 2 = g i j dx ldxJ  is the l i n e  element fo r  a space o f  constant curvature.  Define 

a quant i t y  ~ such that  ~ = I ,  - I ,  or 0 i f  the spat ia l  curvature is pos i t i ve ,  nega- 

t i v e ,  or zero, respec t i ve ly .  

The Einste in equations wi th cosmological constant A are 

1 R - Ag~v = 8 ~ G ( T  - ~ g~vT) , (2) 

where T = TX X. The above equation re fers  to the background metr ic  and background 

matter,  both regarded as c lass i ca l .  The background energy-momentum tensor is that  

of  a perfect  f l u i d  

T = (p+p)u u + Pg~v ' (3) 

wi th four v e l o c i t y  u ~. The equations governing g r a v i t a t i o n a l  wave per turbat ions on 

a Robertson-Walker background have been worked out by L i f s h i t z . l l  Let 6p = 6p = 

6u u = 0 and l e t  the symmetric metr ic  per turbat ion  6g~v = h v sa t i s f y  the condi t ions 

u~h = 0 , h ~ = 0 , (4) 
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which are consistent in a Robertson-Walker space-time and also imply that 

h u = 0 . (5) 

(Indices are raised and lowered with the unperturbed metric and covariant differen- 

t iat ion is with respect to that metric.) Two components of h v remain independent 

and correspond to the two polarizations of a gravitational wave. 

co-moving coordinate system of Eq. (1), only the spatial components hiJ In the 

do not vanish. Perturbation of the above Einstein equations yields 

a'3~t(a3~thiJ) - a 2gLmVc~mhiJ + 2ea'2hi j = 0 , (6) 

where ~t denotes B/Bt, VC denotes covariant dif ferentiat ion with respect to the 

spatial metric g i j '  and e takes values l ,  - l ,  or 0 corresponding to the sign of the 

spatial curvature. The perturbation equation is independent of the cosmological 

constant. Let hiJ = GiJ(~)@(t) where the GiJ are tensor spherical harmonics (see 

Ref. l l )  for ¢ = ±l or plane waves for e = O. They satisfy 

~&m~mGiJ : _k2Gi J , 

with eigenvalues k 2 given by 

VjGiJ : O , and Gi i : 0 , (7) 

ll~I2, e : o, o < I~1 < 

k 2 = In2-3, e = l ,  n = 3, 4 . . . .  

q2+3, ~ = - l ,  O < q < 

The function ~(t) satisfies the equation 

(8) 

a-ld(a3d~/dt)/dt + (k2+2~)~ : 0 . (9) 

This is essentially the same equation as is obeyed by the time-dependent part of a 

minimally coupled scalar f ie ld ,  so that the methods developed in Refs. 3-5 to study 

the production of scalar particles are applicable to graviton production• The equa- 

tion is not conformally invariant. The production of gravitons in Robertson-Walker 

universes was studied for the case c = 0 by Grishchuk 12 and for al l  three cases by 

Ford and Parker. 13 

3. CONDITIONS FOR ZERO PARTICLE PRODUCTION 

In this section, we search for cr i ter ia that can be used to infer that the 

creation rate is zero for gravitons and minimally coupled massless scalar particles. 

As noted earl ier,  there evidently are no anisotropically expanding universes in 

which the particle creation rate vanishes. Even conformally invariant wave equations 

give rise to particle creation when the expansion is anisotropic. Therefore, the 

f i r s t  condition that must hold is that the expansion be isotropic. In seeking 

other cr i ter ia ,  we can l im i t  our considerations to isotropic expansions• 
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As a preliminary step, i t  is helpful to recall the conformally coupled scalar 

f ie ld .  I t  is well known that in a Robertson-Walker universe an unaccelerated 

observer having no event horizon wi l l  find that such particles are not created. 3"5'14 

That permits one to unambiguously identi fy positive frequency solutions of the wave 

equation. For the conformal scalar f ie ld one has 

-V~V @ + (R/6)@ = 0 , (I0). 

where R is the scalar curvature. In the Robertson-Walker metric of Eq. (1), one 

can write @ = G(~)~(t), where 

and 

g~mV~VmG = -K2G (I 1 ) 

~1~12, ~ : o ,  o < I~1 < 
I 

K 2 = I n2 -1 ,  s : 1 , n = 1,2 . . . .  (12) 

~q2+l ,  s = - I ,  0 < q < 

There the t ime-dependent  par t  o f  the f i e l d  s a t i s f i e s  

a -3d (a3d~ /d t ) / d t  + [a '2K 2 + (R/6) ]~ = 0 . (13) 

Using the express ion f o r  the sca la r  cu rva tu re ,  

R = 6(a '2a 2 + a ' l a  + ~a -2) (14) 

one f i nds  t ha t  a s o l u t i o n  o f  Eq. (13) is  

Itdt,a-1 ,K(t) = a - l ( t )exp [ - i  (t')(K2+e) I /2 ]  . (15) 

As no particle creation is occurring and this solution is clearly positive frequency 

for suf f ic ient ly  large K, we wi l l  ident i fy i t  as a purely positive frequency solution. 

An instrument measuring the particle creation rate couples to the f ie ld  @ and is not 

direct ly influenced by the coefficient of R appearing in the wave equation (lO). 

Therefore, for a massless scalar f ie ld with a dif ferent coupling to the scalar 

curvature, such as the minimally coupled f ie ld ,  we assume that the creation rate is 

zero for particles of that f ie ld i f  and only i f  a purely positive frequency solution 

of the form of Eq. (15) exists. The same condition was used by us (for e = O) in 

Ref. 3-5. 

We proceed in the same way for gravitons. I f  one adds a term (R/6)hiJ to Eq. 

(6), the equation satisfied by the time-dependent part of hiJ is 

a-3d(a3d@/dt)/dt + [a-2k 2 + 2a'2~ + (R/6) ]~  : 0 . (16) 

This has the pure ly  p o s i t i v e  f requency s o l u t i o n  
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t l 
~k(t) : a- l ( t )exp[ - i  I dt 'a- (t')(k2+3e) I /2]  . (17) 

An instrument measuring the graviton creation rate wi l l  not be direct ly sensitive 

to the coefficient of R in Eq. (16). Therefore, for the actual graviton equation, 

(9), we assume that the creation rate is zero i f  and only i f  a purely positive fre- 

quency solution of the form of Eq. (17) exists. 

The special cases in which the metric of Eq, (1) describes a f la t  space-time 

are g iven by ~ = O, a ( t )  = constant  and ~ = - I ,  a ( t )  = t .  In those cases, the  above 

c r i t e r i a  g ive  zero p a r t i c l e  c r e a t i o n .  Another much s tud ied example is  the l i n e a r l y  

expanding s p a t i a l l y  f l a t  un iverse  (e = O, a ( t )  = t ) .  15 '16 '17 The above c r i t e r i a  

imply  t ha t  the re  is p a r t i c l e  c rea t i on  in t h a t  case, in agreement w i th  the o the r  

methods. Finally, in the spatial ly curved static universes (E = ±I, a(t) = constant), 

our cr i ter ia yield different results depending on the coupling to the curvature. 

There would be no creation of conformally coupled massless scalar particles, but 

there would be creation of minimally coupled scalar particles and gravitons. I t  is 

certainly conceivable that spatial curvature can create particles in a globally static 

space-time. On the other hand, i t  is possible that the above cr i ter ia for zero 

particle creation rate may have to be generalized to include those static universes. 

However, unti l  i t  becomes clear that such a generalization is needed and exactly how 

i t  should be done, we wi l l  assume that Eqs. (15) and (17) are the necessary and 

suff ic ient cr i ter ia for zero particle creation rate of massless scalar particles and 

gravitons in Robertson-Walker universes. 

4. IMPLICATIONS OF ZERO PARTICLE CREATION 

Suppose now that the classical background metric and background matter obey the 

Einstein equations given in Eq. (2). The requirement that gravitons are not created 

places constraints on the form of the Einstein equations and on the equation of 

state of the matter. (We wi l l  deal with gravitons, but i t  should be understood that 

minimally coupled massless scalar particles would give the same results.) 

The absence of graviton production requires that Eq. (9) for ~(t) has a solution 

of the form in Eq. (17). Substitution of (17) into (9) yields the condition that 

-2.2 -2 a a + a - l a  + a E = 0 , ( 1 8 )  

o r  

R = 0 . (19) 

With the background energy-momentum tensor given by Eq. (3), contraction of the 

Einstein equations yields 

R - 4A + 8~G(3p-p) = 0 , (20) 

or with Eq. (19), 
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the behavior of a(t) is essentially arbitrary. 

The energy-momentum tensor 

T ~ )  = ~v@~v@ _ 1 

+ C[QpvV V~(@ 2) - VpVv(~ 2) + Gp~@ 2] (28) 

satisfies the local conservation law V T (@)p~ = O. Furthermore, in the "in" and 

"out" regions, the factor multiplying ~ is a four-divergence. For ~ = I /6,  T (@) p9 
is the "improved" energy-momentum tensor of Callan, Coleman, and Jackiw. 18 Let us 

take ~ = I/6. 

In a Robertson-Walker metric of Eq, (1), i t  can be shown that 14 

p(@)(t2)a4(t2 ) - p(@)(tl)a4(tl ) = g(t 2) - g(t l )  , (29) 

where 

g(t) : 6(4~2)-2[B(a 4 + 2ea 2) 

l a2~2 3 ~4 + C(-a2a'a'- a ~2~ + 2 + ~ + Ea2)] (30) 

and p(@) = <T(@)O0>, the expectation value being taken in a state having the symme- 

tries of the space-time. In Eq. (30), B = -I/360 and C = 1/180. Let t I be in the 

"in" region and t 2 be in the "out" region. Then clearly g(t l )  = g(t2), and 

p(@)(t2)a4(t2 ) = p(@)(tl)a4(tl ) . (31) 

The energy density of the particles present i n i t i a l l y  is merely red-shifted, with no 

real particles being created by the expansion. As the behavior of a(t) in the inter- 

polating regions is arbitrary, one concludes that the creation rate of minimally 

coupled massless particles must be zero during the radiation dominated stage of the 

expansion. Although interpolating regions and "in" and "out" regions were used to 

derive that result, i t  must be valid when there are no such regions, in agreement 

with our earl ier method. 

6. CONCLUSIONS 

We have shown that i f  one requires as an equilibrium condition that the creation 

rate for gravitons or minimally coupled massless scalar particles vanishes in the 

early universe, then the expansion of the universe must be isotropic, the cosmologi- 

cal constant must be zero, and the early universe must be dominated by re la t iv is t i c  

particles and radiation. Such an equilibrium does not necessarily imply thatgravitons 

wi l l  be absent, since they may have been created prior to equilibrium. 

The linearized equation for gravitational wave perturbations was used. In 

higher order, the presence of self interactions among gravitons may give a small 

graviton creation rate when R = O, but one would nevertheless expect the graviton 
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creation rate to be near i t s  minimum in the radiat ion dominated universe. In the 

case of a se l f  interact ing scalar f i e ld  which has been studied, 19'20 i t  is in terest -  

ing that the exp l i c i t  term shown in Ref. 19 to cause par t ic le  creation vanishes when 

R = O. 
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RENORMALIZATION AND SCALING OF NON-ABELIAN 

GAUGE FIELDS IN CURVED SPACE-TIME 

Leonard Parker 
Department of Physics, Univers i ty  of Wisconsin-Milwaukee 

Milwaukee, Wisconsin 53201 

I t  is well known that in f l a t  space-time non-abelian gauge f i e l d  theories are 

renormalizable and asymptot ical ly free. In view of  the absence of a theorem stat ing 

that f lat-space renormal izab i l i t y  implies renorma l i zab i l i t y  in more general space- 

times, one must examine each theory i nd i v i dua l l y .  This is a b r ie f  summary of work 

by my student Todd K. Leen showing that non-abelian gauge f i e lds  in curved space- 

time are renormalizable at the one-loop leve l ;  and that the property of asymptotic 

freedom is preserved. 1 Renormal izabi l i ty of these theories has been proved indepen- 

dent ly by David J. Toms. 2 

In the present work, i t  is shown that gauge invariance, as expressed through 

the Taylor-Slavnov i den t i t i e s ,  insures that no curvature-dependent divergences occur 

in the vector two-point funct ion,  The divergences in the ghost two-point funct ion 

and the ghost-vector-ghost vertex are extracted using local momentum space expansions 

for the propagators. As with the vector two-point funct ion,  no curvature-dependent 

divergences are found. Thus, these three Green functions are rendered f i n i t e  by the 

usual Hinkowski space counterterms. I t  then fol lows from gauge invariance, that the 

three- and four-vector vertex functions are f i n i t e .  F ina l l y ,  renormalization group 

arguments are used to show that the theory remains asymptot ical ly free in curved 

space-time. 

We f i r s t  establ ish notat ion. The gauge group is denoted ~ and i t s  associated 

Lie algebra T~. The gauge covariant der ivat ive is  wr i t ten  

D ~V ( I )  p - gA 

where V is the covariant der ivat ive on the space-time and g the coupling constant 

of the theory. The f i e l d  strength (or curvature) tensor is given by 

F~ : V A - V A v + g[A ,A~] . (2) 

The potent ia ls are decomposed along a basis {T a} on T~ as 

A = A~T a . (3) 

The gauge invar ian t  c lassical  action is then wr i t ten  as 

I 1 F~VFa ) (4) S = dT(x) (- ~ a - ~ -  

where dT(X) is the covariant volume element on the space-time. The theory is quan- 

t ized via the path integral  formalism. The procedure of Faddeev and Popov 3 allows 
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the e l iminat ion of the redundancy due to in tegra t ion  over gauge re lated f i e l d  con- 

f igu ra t ions .  The resu l t ing  generating funct ional with ghost f i e l ds  C and C is 
wr i t ten 

t _ t { 41 ~ F  a a  p~ " 2~ (V~ Ap)2 W[j ,#,~]  = JD[A]D[C]D[C] exp i)dm(x) - 

- (Vpc-a)(DPC) a + j~a a + ~ac a + c-a~ a (5) a p  

The per turbat ive expansion of  th is  generating funct ional  and the ext ract ion of  Green 

funct ions leads to a diagrammatic expansion as in f l a t  space-time, The bare propa- 

gators for  the ghost and vector f i e l ds  s a t i s f y ,  respec t ive ly  

[ ]Dab(X'X ' )  = "~ab ~ ( x , x ' )  (6) 

and 

[ ]~ab, , n p~ab, _g~a~ab6(x,x u~a~x,x ) - (I - Z)V~ vVPDab(x'x')pa - ~ Upa~X,X') = ')  (7) 

where 6 (x , x ' )  is the covar iant  del ta funct ion and the der i va t i ves  and Ricci tensor 

are at  the point x. 

The gauge invariance of  the c lass ica l  act ion Eqo (4) is re f lec ted in re la t i ons  

between the Green funct ions of the theory revealed in the Taylor-Slavnov i d e n t i t i e s .  

For the corrected vector propagator one recovers the re l a t i on  (m = 1 hereaf ter)  

V.'V D~(x,x ' )  : ~ab6(X,X ') . (8) 
V ~ a U  

In lowest order we write the corrected vector propagator as 

D~V(x,x') = DPV(x,x ') + JdT(y)dT(y')D~a(x,Y)~ap(y,y')DPV(y',x') ( 9 )  

where the vacuum polarization tensor ~ap(y,y') contains one-loop contributions only. 

Making use of Eqs. (8) and (7) we recover 

V V ' ~ ( x , x  ') = 0 . (lO) p~  

Thus the vacuum polarization (to lowest order) remains transverse as in Minkowski 

space. The pole part of ~P~ may be written as 

~P~(x,x')Idivergen t = AgP~6(x,x ') + BV~V ~(x,x')  + EQgP~6(x,x') 

+ (aRPV+bgP~R)6(x,x ' ) ( I I )  

where A represents the quadratic divergence while B, E, a and b carry logarithmic 

divergences. This may be understood as follows. The divergences in ~ ( x , x ' )  arise 

in the coincidence l im i t  of the arguments, hence the delta functions. The V~V ~' ,  

[] , R ~ and g~R factors carry dimension (length) "2 so that their corresponding 

coefficients must carry two additional powers of momentum in the denominator of 
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Feynman integrals. Since A carries the leading quadratic divergence, the remaining 

terms are, at most, logarithmically divergent. The transversality of the polariza- 

tion Eq. (lO) determines relations between the coefficients in Eq. ( l l ) ,  One finds 

~V(x ,x ' ) Id iv "  = B(g~D6(x,x ') + V~Vv'~(x,x ') - R~6(x,x '))  . (12) 

Substituting this form for the polarization tensor into Eq, (9) for the corrected 

vector propagator leaves 

DP~(x,x') = (I-B)DP~(x,x ') - BidT(y)(V~yVoyDP°(x,y))DP~(y,x' ) (13) 

Since B is a curvature-independent space-time constant, we see that curvature- 

dependent divergences in the vector propagator are absent. The divergence in the 

f i r s t  term of Eq. (13) is removed by wavefunction renormalization while that in the 

second term is removed by renormalizing the gauge f ix ing parameter. We define 

renormalized quantities via 

A ~ = 71/2 ~3 A~ (14) 

= Z3 ~R ' (15) 

The renormalization constant is identical to that in Minkowski space 

+ 2 (16) Z 3 = 1 g2C2 (~) 
1 6~ 2 

where ~ = ~ + 2 is the dimensional parameter appearing in the regularization and C 2 

is the value of the quadratic Casimir operator for ~. 

We have seen that the gauge invariance is suff ic ient to insure that no diverg- 

ences not present in Minkowski space arise in a general curved space-time. The 

appearance of exp l i c i t l y  curvature-dependent divergent corrections to the vector 

two-point function would have necessitated the introduction of renormalized coup- 

lings between the gauge f ie ld  and the background. Such couplings would spoil the 

gauge properties of the theory. 

The divergences in the ghost propagator are handled using the local momentum 

space expressions of Refs. (4,5,6) for the bare propagators. Here again we find no 

divergences not present in Minkowski space. The lat ter  are removed by defining 

renormalized ghost f ields 

C : ~ / 2  CR (17) 

with the usual renormalization constant 

Z3 = (I g2C2 1 (18) 
+ 1 6~ ~ ~) " 
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Finally, the vector-ghost-ghost vertex is computed using the momentum space 

expansions. Again we find no curvature-dependent divergences. This vertex is thus 

renormalized as in f l a t  space-time leading to the def ini t ion of the renormalized 

coupling constant 

Z1 p~12 
g = ~ gR (I 9) 

L3Ly 

where p is the mass parameter required to maintain proper dimensions during the 

regularization. The constant Zl is as in Minkowski space 

g2C2 l 

162 E 
(20) 

Gauge invariance insures that the above renormalizations are suff ic ient to 

render f i n i t e  the three- and four-vector vertices. 

We have seen that the divergences in the theory are removed by the same counter. 

terms that render the f la t  space theory f i n i t e ,  This suggests that the remarkable 

feature of asymptotic freedom remains in the presence of space-time curvature. To 

veri fy this we derive a renormalization group equation and exhibit the behavior of 

the effective coupling constant. The renormalized one particle irreducible Green 

functions are given by 

?(n) z(n/2)FUN 
p . . . .  (Xl . . . .  Xn; gR'~R'~'g~B ) = 3 ~ . . . .  (x I . . . .  Xn; g,~,g~B) (21) 

where ?UN are the unrenormalized n-point functions. Differentiating the above with 

respect to p and multiplying by p leaves 

(~ ~/~ + B @/~gR " Y(~R @/@~R + ~))?~)  (X l ' "Xn ;  gR'~R'~'g~ ) = 0 (22) 

where 

BgR (23) 

]n Z 3 
Y - ~  TC 

The usual procedure is to eliminate lJ @/814 by scaling the coordinates x i or the 

momenta Pi of the external legs. In curved space-times the natural approach is to 

scale the metric tensor. 7 We consider a one-parameter family of metrics g~JK 2 and 

scale the parameter K. The resulting renormalization group equation reads 

B/@c~.]?(n) (x I 2 n . . . .  ; gR,C~R,U,gc~B/K ) = O. (24) [(D - ~ y )  - K ~I~K + 6 ~l~gR Y~R , lJ,.., 

where D is the mass dimension of F. 

Since, in lowest order, the ~ function is independent of ~,8,9 we are free to 
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discuss the solution to th is  equation for ~ = O; and calculate the B function using 

our previous resul ts (calculated using ~ = I )  for the renormalization constants. 

The solution to Eq. (24) is 

F (n) 0 2 . . . .  (Xl . . . .  Xn;gR,~R = ,~,g~B/K ) 

KDr(n) n r K dK' 
• ~ . . . .  ( X l " ' X n ;  g(K)'~'g~B)exp - 2 Jl - -~Ty(g(K'))  (25) 

with K ~-~K = B(g(K)) g(K=l) = gR 

Using Eqs. (16), (18), (19) and (20) we f ind 

I I  C 2  3(K ) 
= _ T 1 6 2  g 

Because B is negative 

curved space-times. 

(26) 

(27) 

this indicates that the theory remains asymptotical ly free in 
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TWO-POINT FUNCTIONS AND RENORMALIZED OBSERVABLES 
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This is a victory declaration in the theory of a quantized field 

propagating in a given curved background space-time. We now have an 

unambiguous, internally consistent quantum theory of such a system, in 

which any physical quantity can in principle be calculated. Whether 

this kind of model is relevant to the real world is a separate ques- 

tion. I shall present the theory rather dogmatically. 

Doctrine i: The physical interpretation of a quantum field theory 

in curved space must be sought in the stress-energy-momentum tensor and 

other local field observables. (Particle observables are not meaning- 

ful, in general.) 

As a concrete example, let's keep in mind the minimally coupled 

neutral scalar field, whose stress tensor is 

1 + 1 2 (x) ¢(x) 2 T v(x) = V ~(x)vv¢(x) - ~- g vV ¢V~¢ ~ m gnv (1) 

For a field satisfying a linear wave equation, there is little 

difficulty in defining Heisenberg-picture field operators rigorously. 

Making sense of the stress tensor, as a quantum operator, is much more 

of a problem. In my opinion, the most profound clarification of this 

problem came in a series of papers by Wald (1977, 1978a,b). The in- 

gredients of the solution go back to the work of Utiyama and DeWitt 

(1962). The bibliography lists many (but not all) other papers which 

have contributed to our present understanding. 

Doctrine 2: The stress tensor is conserved [V~T v = 0], it 

depends causally on the metric, and the difference of its expectation 

values with respect to any two quantum states can be correctly calcu- 

lated from the classical formula (i). ("The divergent part of T ~v 
is a c-number.") 

(These are three of Wald's five axioms. The other two have been 

supplanted by an improved understanding of the renormalization problem. 

See Wald's papers for a definition of "causally." I leave as an exer- 

cise the equivalence of Wald's axiom about orthogonal matrix elements 

mine about differences of expectation values.) 

Theorem I (Wald): The stress tensor operator of a given field 

theory is uniquely determined by these requirements, up to c-number 
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terms proportional to conserved, covariant, local, polynomial function" 

als of the metric and curvature tensors, such as 

clguv + c2(R - ½Rguv) + c3g-1/2 v~ ,l~2gl/2~cx + c~g -I/2 ~ [c2gl/2dx 
6g~Vj ~g~Vj " 

(2) 
(C 2 is the square of the Weyl tensor). 

Wald observed that the procedure of "point-splitting" seemed to 

provide a T satisfying his axioms. The evidence (e.g., from calcu- Uv 
lations in simple models) suggested: (i) The two-point function 

G ( x , y )  = < ¢ l ¢ ( x ) ¢ ( y ) l ~ >  

is well-defined as a distribution for a large class of states ~. 

(2) As y ÷ x, G has an asymptotic expansion consisting of terms 

which are singular where the geodesic separation between x and y is 

null (lightlike). These singular terms are (a) c-numbers (have the 

same value in all quantum states) and (b) purely local and polynomial 

in their dependence on the geometry. For example, a typical singular 

term in G(x,y) is 

R v(x)a~a v 

gaB(x) a~a 6 " 

where - a~(x,y) is the vector at x tangent to the geodesic from x 

to y, with length equal to the geodesic separation (in other words, 

the Riemann normal coordinates of y relative to x). [A similar 

description applies to an expectation value of the point-split stress 

tensor, T v(x,y) , obtained by applying a suitable differential opera- 

tor to G(x,y), so that T~v(x) [Eqo (i)] is formally recovered 

when y = x: 

~T 
T v ( x , y )  = e ( x , y ) V  ¢ ( x ) ?  , ¢ ( y )  + . . .  

~T 
<¢IT ( x , y ) l , >  = e V V , G ( x , y )  + . . .  

~v 
where e is a parallel-transport matrix. See Christensen (1976) 

for details.] (3) The symmetric part (under the interchange x++ y) 

of this singular series coincides with what is called the Hadamard 

solution of the hyperbolic field equation (V~V + m2~ = 0 in our 

example). For the definition of this object, see DeWitt and Brehme 

(196Q), Hadamard (1952), Garabedian (1964), Friedlander (1975), 
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Adler et al. (1977). (The antisymmetric part of G is the familiar 

commutator distribution, which is entirely c-number and local and 

hence can be disregarded in the rest of our discussion. 

I emphasize that the remainder in the symmetrized G (which can 

be made arbitrarily smooth by subtracting off enough terms of the ser- 

ies) is not a local functional of the metric and is not a c-number -- 

it depends on the quantum state ~. Precisely for this reason it 

contains the most interesting physics in any concrete problem. 

For consistency of the theory it was necessary to prove that the 

picture l've just described holds in general. In 1978, Sweeny, Wald, 

and I proved: 

Theorem 2: If a two-point function, <~l~(x)~(y)I~>, is a dis- 

tribution of Hadamard form at one instant of time, then it remains so 

for all time. 

In 1981, Narcowich, Wald, and I closed the remaining hole by 

proving: 

Theorem 3: In a static background geometry, if ~ is the "natu- 

ral" vacuum state and the mass is positive, then G(x,y) is a distri- 

bution of the Hadamard form. 

Thus it now makes sense to state: 

Doctrine 3: A "physically reasonable" state ~ of a quantum 

field system in curved space is one for which the two-point function 

G is a distribution with singularity of the Hadamard form. 

For, as a corollary of Theorems 2 and 3, we have: 

Theorem 4: In an arbitrary globally hyperbolic space-time (i.e., 

one where the Cauchy problem is well-posed) there exist many "physical- 

ly reasonable" states. (They form a dense subspace of a Hilbert space.) 

If m > 0, the vacuum in a static background g~v is in this 

class of states. If m = 0, strangely enough, the traditional vacuum 

sometimes does not qualify as physically reasonable because its two- 

point function does not exist, as a distribution. In that case the 

"good" states contain, in some sense, lots of particles in the infrared 

modes. 

The reason why the Hadamard states are regarded as "physically 

reasonable '~ is that they yield finite expectation values for physical 

observables after renormalization: 

Doctrine 4: The renormalized stress tensor, Tren(x), is obtained ~v 
by subtracting from T v(x,y) a c-number equal to sufficiently many 

terms off its Hadamard series, and taking the limit y ÷ x. The ambi- 

guity in this prescription must be reduced by requiring that (1) T ren ~v 
is conserved, and (2) terms involving derivatives of gpv of degree 

higher than fourth are not to be subtracted. 
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This procedure is manifestly covariant, since the Hadamard ex- 

pansion is. The result is ambiguous since the terms to be subtracted 

could be changed by any covariant, local, polynomial functional of 

the curvature tensor at x. Even after requirements (i) and (2) are 

imposed, some ambiguity remains (cf. Theorem i). 
mren 

Doctrine 5: The ambiguous terms in ~v can be absorbed into 

the coupling constants in the gravitational field's equation of motion. 

In other words, they represent the nonexistence of any clear division 

of the physical energy density into matter energy and gravitational 

energy. 

Indeed, the ambiguous terms are precisely those listed in Eq. (2); 

c I renormalizes the cosmological constant, c 2 renormalizes the 

gravitational constant, and c 3 and c 4 renormalize the coefficients 

of terms involving fourth derivatives of the metric tensor. These 

coupling constants must be determined by experiment. The appearance 

of fourth-order terms is one aspect of the nonrenormalizability of the 

gravitational interaction. 

Theorem 5 (Wald): In a scale-invariant theory, it is meaningless 

to require a priori that c 3 and c 4 be 0. 

The point is that c 3 and c 4 appear in contexts of the general 

nature of 

c 3 + ~n(L2R). 

The value of c 3 depends on the arbitrary length L. We could define 

L so that c 3 = 0, but then L would be a new fundamental constant 

with units of length. It could be determined (in principle) by experi- 

ment, but it cannot be predicted by a scale-invariant theory. Similar 

phenomena are known to particle physicists under the headings of "re- 

normalization group" and"dimensional transmutation." 

The point I have tried to make by this show of orthodoxy is this: 

Within its own terms, the theory is completely well defined, and it is 

uniquely determined, I think, by accepted physical principles (except 

for the numerical values of coupling constants). The calculation of 

the stress tensor, or some other observable, in anY given quantum 

state is today a problem of ordinary applied mathematics, not a matter 

of the individual investigator's choice of ad hoc mumbo-jumbo as was 

the case seven years ago. 

However, I do not regard it as a substitute for a full quantum 

theory of gravity. The physical circumstances under which such an 
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external-field model is a valid approximation to reality have not yet 

been established; they are the subject of active investigation and 

debate [Horowitz (1981), Duff (1981), Kay (1981), Ford (1982), 

Fulling (1983)]. 
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Abstract 

The vacuum energy of the Yang-Mills field is examined for the con- 

ditions of the bag model. The dominance of high frequency effects re- 

sults in a vacuum energy that decomposes naturally into a volume energy, 

a surface energy and higher shape energies. These quantities are iden- 

tified with the parameters of the bag model. The imposition of con- 

fining boundary conditions for all frequencies is shown to be inconsis- 

tent since this would result in the bag constant and certain of the 

shape tensions being infinite. The manner in which the boundary condi- 

tions should be relaxed at high frequency is discussed. The most naive 

procedure for relaxing the boundary conditions, which is to apply con- 

fining conditions only on modes of frequency less than some cutoff fre- 

quency, results in a negative bag constant and surface tension and would 

render the vacuum unstable against the spontaneous breaking of Poincar6 

invariance. Consideration of the manner by which the interacting elec- 

tromagnetic field avoids a similar instability suggests that a more 

realistic way to relax the boundary conditions on the bag surface is 

to endow the vacuum exterior to the bag with a frequency dependent 

dielectric constant and magnetic permeability. 

Introduction 

The aim of this report is to examine the energy of the Yang-Mills 

vacuum under the conditions of the bag model and to show that a consid- 

eration of the shift in the vacuum energy of the field due to its con- 

finement may yield important insight into the nature of the vacuum 

state for non-Abelian gauge theories. 

The bag model [i] has achieved reasonable phenomenological success 

in the explanation of hadron spectroscopy. This model pictures the 

quantum chromodynamic vacuum as coexisting in two phases. One of these, 

the 'ordinary' vacuum, is impenetrable to colour while the other, cor- 

responding to the interior of the hadron, is such that the gluon fields 

that are the carriers of colour are able to propagate freely. These 

two phases are taken to be separated by a sharp boundary on the interior 

of which the gluon fields satisfy confining boundary conditions 

n • E a = 0 , n x B a = 0 ( 1 )  
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The model was first formulated by the MIT school who proposed that 

the two phases of the vacuum be taken to differ by an amount of energy 

8 per unit volume. Good phenomenology results if the energy of the bag 

is taken to be given by 

Z 

with V the volume of the bag and R its radius. A variant of the model, 

due to the Budapest school, adds to the right hand side of (2) the 

effect of surface tension so that 

g = ~V + aSS - R (3) 

with S the surface area of the bag and gS a surface tension. Fitting 

the data with the MIT expression (2) yields the values Z = 1.8 and 

8 % = 0.145 GeV. The Budapest energy (3) achieves a similarly good fit 

with the same value of Z and a variety of pairs of values for 8 and gS. 

The origin of the Z/R term is not well understood though a contri- 

bution to Z of approximately 0.75 is explained as a center of mass 

effect [2]. It has been suggested [3] that the remainder of this term 

represents the change in the vacuum energy due to the confinement of 

the field. The inspiration for this suggestion would seem to be the 

result obtained first by Boyer [4] and subsequently by several authors 

for the change in the energy of the electromagnetic vacuum due to the 

introduction of a perfectly conducting spherical shell. A recent cal- 

culation by Milton, deRaad and Schwinger [5] yields the value 

hc (o.09zss) (4) 
~MDS = 

The primary aim of this report is to assert that: 

(i) The change in the vacuum energy occasioned by the confining surface 

is radically different in its effect from the simple I/R dependence 

that has been suggested on the basis of (4) and 

(ii) that the vacuum energy resides near the boundary. This has the 

effect that, for a sharp boundary, the vacuum energy possesses a geo- 

metrical expansion and may be expressed in the form 

f f z gvac = ~vv + gSS + &C dS(K 1 +~2) + g~ dS(~ 1 _K2) + 

+ ~I I dSKIK2 + "'" (5) 

where ~I and K 2 denote the principal curvatures of the surface and the 

coefficients &S,~C,... are shape tensions (the first of these is the 

surface tension) which are independent of the geometrical configuration 

of the surface. The fact that the vacuum energy decomposes naturally 
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in this way suggests strongly that the coefficients in the geometrical 

expansion should be identified with the parameters of the bag model. 

On the basis of this identification we find 

(iii) that it is inconsistent to apply confining boundary conditions 

for all frequencies since, as a result of high frequency effects, the 

bag constant and the surface tension turn out to be not only infinite 

but of the wrong sign and hence would be such as to render the vacuum 

unstable against the spontaneous breaking of Poincar6 invariance. 

Some comments are perhaps in order regarding the totally different 

appearances of expressions (4) and (5) In order to relate them we re- 

mark that for the case of pure electromagnetism, i.e. in the absence of 

interaction with say the Dirac field, the surface tension ~S vanishes 

while, for the case of thin shells, the first integral on the right hand 

side of (5) whose coefficient is the curvature tension &C vanishes owing 

to a cancellation between the two sides of the shell. Furthermore the 

first of the integrals quadratic in the curvatures vanishes since for 

a sphere K 1 = K 2. This leaves us with the term whose coefficient is 

&II'C For a sphere this term takes the value 

~I f dSKI~2 = 8~ ~I (6) 

independent of the radius of the sphere (this integral is in fact a 

topological invariant and takes the same value for any surface topo- 

logically equivalent to a sphere). The remaining terms in (5) are the 

terms cubic in the curvatures which, again for the case of thin shells, 

cancel between the inside and the outside and a term which is cutoff 

independent, in the limit of large cutoff, and which corresponds to the 

energy (4) computed by M.D.S. The energy (6) however, although inde- 

pendent of the radius of the sphere, is not zero and in fact depends 

linearly on a cutoff. Thus the vacuum energy of a perfectly conducting 

spherical shell differs from the value (4), which seems to have been 

generally accepted, by a term which is independent of the radius of 

the shell. This possibility was known to Boyer who was scrupulous to 

point out that his calculation determines the derivative of the vacuum 

energy only up to an additive constant. Subsequent calculations have 

overlooked this term for a variety of technical reasons [6]. 

For the conditions appropriate to the bag model, however, it tran- 
C 

and &~I are present spires that all the coefficients gS &C, &I The 
c c o e f f i c i e n t s  g and g l I  a r e  p r e s e n t  j u s t  a s  t h e y  a r e  i n  t h e  e l e c t r o m a g -  

n e t i c  c a s e  and t o  l o w e s t  o r d e r  i n  t h e  Y a n g - M i l l s  c o u p l i n g  g t h e i r  v a l u e s  

can  be  i n f e r r e d  by  m u l t i p l y i n g  t h e  c o r r e s p o n d i n g  e l e c t r o m a g n e t i c  q u a n -  

t i t i e s  by  e i g h t .  The c u r v a t u r e  t e n s i o n  i s  p r e s e n t  S i n c e  t h e  s i t u a t i o n  
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envisioned in the bag model is that of a cavity in an infinite medium 

rather than the vacuum in the presence of a thin shell hence there is 

no cancellation between the inside and outside. Perhaps the most 

striking difference between the Yang-Mills field and the electromag- 

netic field is the presence of a non-zero surface tension &S. The sur- 

face tension is brought about by the self interaction of the Yang-Mills 

field and since it depends cubically on a cutoff it has important 

effects. As for the volume energy, we expect on dimensional grounds 

that it should vary quartically with a cutoff. It is these last two 

terms those associated with ~S and &V that we shall principally be con- 

cerned with here. 

The following estimate [7] may be obtained for the surface tension 

of the Yang-Mills field due to its self interaction 

1 [ ~ ] g2A3 (confining boundary conditions) (7) 2 
g~M = 36~ Ii - N F 

where N F denotes the number of fermion species and A a high frequency 

cutoff and in deriving this estimate we have worked to leading order in 

the coupling g and we have assumed that the fermion masses may be ne~ 

glected in comparison with A. 

A similar estimate, which proves useful for the purpose of com- 

parison, may be derived for the electromagnetic field for the case of 

perfect conductor boundary conditions we have 

~M = e2A3 
21674 (perfect conductor boundary conditions) (8) 

The negative surface tension (7) would seem to indicate an insta- 

bility that would lead to bag fragmentation. Equally serious is the 

result of computing the bag constant 8 (if the confining conditions 

(i) are taken literally then this is just the volume energy &V) from 

the non-linear boundary condition 

1 aFtra + i 0 8 - ~ F~v F ~ - ~  (93 

which dictates the response of the bag wall to the gluon pressure. We 

may estimate 8 by taking a vacuum expectation value of this equation 

for the case of a plane boundary. The contribution of the second term 

on the right hand side of this equation is small in comparison with 

that of the first term if the fermion masses are small compared with 

the cutoff, neglecting this term we find 

A 4 
ByM = - -~ (lO) 
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The fact that 8 and ~S turn out to be negative indicates that the 

vacuum is unstable against dissolving into foam. Clearly something is 

seriously amiss. 

Let us pursue our reduetio ad absurdum a little further since the 

manner in which the interacting electromagnetic field avoids a similar 

instability indicates, I believe, the resolution to the difficulty. 

Consider for definiteness the result of taking a large box on the sur- 

face of which we impose the confining conditions (i) and subdividing 

the box into smaller ones by creating new surfaces on which the field 

is also subject to the same boundary conditions. Since the surface 

tension (7) is negative this process is energetically favourable. Along 

with the new surfaces we will create edges and corners where these sur- 

faces intersect. This turns out to be energetically favourable also. 

It is significant that the interacting electromagnetic field sub- 

ject to perfect conductor boundary conditions would be subject to a 

similar instability. Of course charges and currents are required to 

enforce perfect conductor boundary conditions but these are available 

to the interacting field which will create electron-positron pairs from 

the vacuum if it is energetically favourable to do so. The point is 

that if the field were to create particle-antiparticle pairs in an 

attempt to create a perfectly conducting surface which, if possible, 

would be energetically advantageous then the created particles would 

form not a perfect conductor but rather a medium akin to an electron 

gas the electromagnetic properties of which is described by a dieZeatrie 

aonstant. This is an important point since, as a consequence of the 

analyticity properties enjoyed by the dielectric constant, the surfaee 

tension due to a dieleatrie boundary is always positive thereby restor- 

ing the stability of the vacuum against partitioning, The positivity 

of the surface tension for a dielectric boundary derives ultimately from 

the fact that when account is taken of the energy of the sources required 

to enforce the boundary conditions the sum of the field energy proper 

and the energy of the sources is always positive. 

Dielectric boundary conditions also resolve the difficulty associ- 

ated with the sign of the bag constant at least to zeroth order in the 

coupling. This can be seen either by appealing to the appropriate gen- 

eralization of (9) ~iz 

i ~ &S(K I [(E .D - B .H >] + i ~-~ ~ = 8 - +K2) + ... , (II) 

where the square bracket denotes the discontinuity of the enclosed 

quantity across the interface, or by the following elementary argument. 
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The dispersion relation for modes outside the bag is k 2 = ~E~ 2, but 

since we require ~ = 1 to preserve Lorentz invariance this relation is 

just k 2 = m 2 which is the same as the dispersion relation inside. It 

follows that the volume energies inside and outside are equal and hence 

that 

8 = &Y gv = 0 
zn out 

at least to zeroth order in the coupling. Clearly the calculation of 

8 should be pursued to higher order. It is an important point, however, 

that the coefficients 8 and &S can be calculated either from the bound- 

ary condition (i0) or directly from the energy density and that the re- 

sults agree. This is not the case if confining boundary conditions are 

employed. 

In conclusion: we have shown that confining boundary conditions 

cannot be applied for all frequencies since otherwise the bag constant 

and the surface tension would be infinite and we have suggested a way 

in which these boundary conditions might be relaxed at high frequencies 

by supposing that the external vacuum can be viewed as a dielectric 

medium. These boundary conditions suffer from the serious deficiency 

that in all probability they fail to confine. It is an interesting 

question whether it is possible to find boundary conditions that both 

confine and yield physically acceptable values for the bag constant 

and the surface tension. 
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§i. Introduction 

In my talk I would like to report a modest progress in the Gribov 

problem (1) in the framework of stochastic quantization method. 

According to Paris: and Wu (2), the Langevin equation for a gauge 

field ~ has a form: 

~t ~ Au 

(i) 

where ~ is the white noise. The advantage of the stochastic 

quantization will be the unnecessity of the gauge fixing. So our 

natural question will be: Is the stochastic quantization method with 

no gauge fixing equivalent to the well-established quantized gauge 

theory with gauge fixing ? In order to answer such a problem it is 

natural to consider an intermediate step: stochastic quantization 

with gauge fixing. The Langevin equation (i) can be deformed by 

t -dependent gauge transformation U(t~ as 

~t ~ 6 A----~ -- 

v -- -~ ~U/~ ~' (2) 

As far as gauge invariant quantities are concerned, Eq. (2) gives the 

same results as Eq. (2) does. 

Baulieu and Zwanziger (3) claimed to find V such that the 

probability density • (% approaches the Faddeev-Popov measure: 

where ~t = ~e! + gauge fixing and Faddeev-Popov ghost terms and 
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C and ~ are the ghost fields. That is, the Faddeev-Popov measure 

is a static solution of the Fokker'Planck equation associated 

with the Langevin equation (2), if we choose the functional V as 

where ~ is such that 

BRS transform of k" = gauge fixing and Faddeev-Popov terms, 

A popular choice of ~ will be 

(4) 

with ~ being a gauge fixing function (e.g. ~ = ~ A * ,  )(4) 

§2. Singular Langevin Equation and Gribov Problem 

The attention should be paid to the factor p-i in front of 

the expression (3). As Gribov pointed out Faddeev-Popov measure 

has zeros. Therefore the Langevin equation has singularities in the 

drift force. The Brownian motion of gauge field { A [% ) } may or 

may not cross the Gribov boundary ~ where ~ = 0, depending 

on the sign and strength of the drift force. Let us consider the 

time development ~ [ A ] itself regarding it as a functional of the 

stochastic variable A (~). 

Namely, 

" p'I &~[A]@:(,, I~x ~DCA~ q,C, ) 
near ~ , 

where 9~ is a regular functional: ~ [~k/ Defining 

we obtain 

at p (5) 
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where 

I '° (6) 

Equation (5) actually gives a projection of the Brownian motion to 

the normal direction to the Gribov boundary. According to the 

theorem by Feller (5) , the Brownian motion will never reach the 

boundary %~ if the repulsive drift force is strong enough: C ~ I . 

Otherwise it will go through. 

In the case of "entrance" C ~ I , the Langevin equation by 

Baulieu and Zwanziger gives the equilibrium distribution Gribov 

suggested; the path-integral should be limitted within the Gribov 

region, 

I [~A3 (7) P[A] 

In the other cases ( ~C[ < I , C (-I ), we must impose the boundary 

condition at 5~ to solve the Fokker-Planck equation, which implies 

the non-equivalence of (i) and (2). Unfortunately we have not yet 

succeeded in the evaluation of C for the covariant gauge. (We 

obtained a trivial result C=O for the axial gauge.) 

References 

(i) V.N. Gribov, Nucl. Phys. B139, i, (1981). 

(2) G. Parisi and Wu, Y.-S., 

Scientia Sinica 24, 483, (1981). 

(3) L. Baulieu and D. Zwanziger, 

Nucl. Phys. B192, 259, (1981). 

(4) T. Kugo and S. Uehara, 

Prog. Theor. Phys. 64, 1395, (1980). 

(5) Any mathematical textbook on stochastic process. 



The geometry of the conf igurat ion space of  non abelian gauge theories 

C.M. V i a l l e t  

Laboratoire de Physique Theorique et Hautes Energies 
Universi t~ Pierre et Marie Curie 

Tour 16 - le r  etage 
4 place Jussieu 

75230 PARIS CEDEX 05 

We present here some resul ts  on the geometry of the conf igurat ion space of 

non abelian gauge theories ~ i ,  2, 3 ] .  I t  is on th is  space that  a Schr~dinger 

equation (or equiva lent ly  a path in tegra l )  is to be defined. The study of the 

geometry of the conf igurat ion space is a necessary step for  apropernon perturbat ive 

quant izat ion of  the theory. Two basic ingredients enter our study : ( I )  a volume 

cu t -o f f  (space is compact without boundary e.g. a sphere or a torus) and (2) the 

theory is non abelian. 

I .  SOME NOTATIONS C4, 5]: 

The basic objects of the theory are gauge potent ia ls  (connections) on which 

acts a group of gauge transformations. Let ~ be the space of connections on a 

pr inc ipa l  f i b re  bundle~CM, G)  where JUt= compact metric space without boundary 

ana G = compact semisimple group. 

On ~=~ acts the group of gauge transformations ~ . Local ly 

To any ~ in  ~ )  is associated a covariant der ivat ive V ~  acting on 

covariant objects. In a small gauge transformation ~ = exp~ ~ ~ + ~  

~e have ~c~=V~ 

is an a f f ine  space. 

~,  is  equipped with a gauge invar ian t  scalar product ( 2 ) : 

I I .  LOCAL STRUCTURE OF(~  : 

Through a point  co we may draw the o rb i t  formed with a l l  gauge related 

points in ~ . Tangent vectors to th is  o rb i t  at co w i l l  be cal led ver t ica l  at 

(a l l  ver t ica l  vectors are of the form V ~  ). By de f i n i t i on ,  a vector at c~ is 

said to be hor izontal  i f  i t  is perpendicular to a l l  ver t ica l  vectors at o~ . I f  

X ~  is the ad jo in t  of V~ with respect to ( , ) ,  hor izontal  vectors v e r i f y :  

Generical ly the covariant laplacian r ' ~ = V ~ 7 ~  has t r i v i a l  kernel. We 

denote by ~ i t s  inverse. 

The local st ructure o f ~  around a generic point  may then be described 

by the s p l i t t i n g  of the tangent space at ~ in to  ver t ica l  and horizontal space. 
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~ ~ ~/~ = space of ver t ica l  vectors at cv = tangent through the 

o rb i t  through c~ 

Hm = space of horizontal vectors. 

For generic points, there is a projection operator 11-u~:~ -~7  ~ 

(orthogonal projection on H~ along Vco). 

I I I .  GAUGE CONDITION 

To f i x  the gauge is to cut a l l  orb i ts  once. Around a point Coo define the 

set J<~o - ~ c~ 6 ~ I "l:=O0-Cdo is horizontal at 6oo } . For generic connections 

th is is l oca l l y  a good gauge condition [6]  . We then have a local coordinate system 

around coo for the quotient space ~z//~ , given by the covariant background 

gauge condition at coo 

IV. ORBIT SPACE. METRIC ON THE ORBIT SPACE 

Modulo certain res t r ic t ions on the connections and the gauge transformations 

(taking some away and imposing some regu lar i ty  conditions) the quotient space ~ / ~  

is a C ~ manifold of i n f i n i t e  dimension and the projection ~ : ( ~  ~ : ~ / / ~  

is a pr incipal f ib ra t ion  [1, 2, 7] . 

Notice that the hor izonta l i ty  condition introduced above in ~ y ie lds 

a connection in (~ with connection form ~ - - G ~ 7 ~  , which is not f l a t  : we 

cannot construct a horizontal section of 

Since ~ '  is equipped with a gauge invar iant  scalar product, there is an 

induced scalar product ~ on ~ computed as follows : 

/~ "C*~)  J ~ ' ( ~ )  

Suppose A and B are vectors tangent to ~ at ~ . Let co be a point of 

p - ' ( 1 }  . The vectors A and B have horizontal l i f t s  ~ and TB at co . By 

def in i t ion  ~ ( A , B )  = CTA; TB) . In the coordinate system defined by 

Co.E~' (~) ,  (supposing c~ is not too far  from o-o ) the metric is given by ~ : I ~ F  o. 

V. NON SINGULAR LAGRANGIAN OF GAUGE THEORIES [8,  9]  • 

M = 3-dimensional space, e.g. S~ T 3  . . .  On ~C~;  G)  are defined time 

dependant potent ials AL~) . The Lagrangian of the theory is L=~CA-~7~ A-VAo} 

- Y ( A )  , where ;~:~_~ c~(~ and Y=Zfd~ trF~ (~,3:,,~)/F,;~=~A3-~IIz, F_~,A~3. 

This lagrangian is singular. The use of Dirac's analysis for  singular lagrangians 
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y ie lds the def in i t ion  of the proper configuration space, which is nothing but the 

orbit-space ~ / ~ =  9~ . The non singular lagrangian we get is just~-~Cm~A~A)-~. 

• In other words i f  o~ is a point on ~L and & = ~  , we have 

~ =  ~ ( ~ p ~ I , )  ~ -~ ' (~ )  , where ~ is just  the natural metric introduced 

ea r l i e r  [ 1 0 ] .  

VI. METRIC AND FADDEEV-PDPOV DETERMINANT 

In a given system of coordinates (say the covariant background gauge 

condition at 0-~o ) we may compare det ~ and det~ where ~ = Faddeev Popov 

operator = ~ c ~  ) and ~ : I T ~ I - ~  . Formally we have ~ 0 ]  . 

I = det ~" 

VII.  RIEMANNIAN CALCULUS ON ~Z " 

We may wr i te down covariant der ivat ive,  curvature, equation for  geodesics. 

I f  we use the background gauge condit ion, everything can be expressed in terms of 

simple operators. 

Set ~ :  ~ - V o ~ - ' ~  C resF- ~e= dZ -- V ~ - ' ~  ) 

K~- : ~ -, K~C~) = [ ' C , ~ ]  p and K~i ts  adjoint 

~ = G ~  and ~ its adjoint. 

Suppose X j ~ ~ denote vector fields. 

The covariant derivative is 

Rex,y): 

X,y 

The Riemannian curvature tensor is 

The sectional curvature in the 2-plane generated by two orthogonal vectors 

is ~(~o(,y)= gCRCx,Y)Y,X): 3 ( K~ (~  G~ ~m(Y)). 
The sectional curvature is everywhere non negative 

Notice that any st ra ight  l ine  in ~ which cuts one orb i t  perpendicularly 

cut a l l  orbi ts i t  meets perpendicularly. In other words there are horizontal s t ra ight  

l ines.  They project on geodesics i . e .  the background gauge condition at Coo gives 

normal coordinates at oJo 

VIII. CONJUGATE POINTS 
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Start ing from coo along the horizontal l ine O~o+ X~ , we reach a 

conjugate point co of co° when some vector which is ver t ica l  at co , ve r i f i es  

the gauge condition. This is equivalent to saying that there exists ~ such that 

~ ~  : ~ '~ : O i .e. the Faddeev-Popov operator has non t r i v ia l  

kernel. For any cO° and ~ , there is a f in i te  ~ for which this happens [ I ]  . 

There are conjugate points at f in i te  distance in al l  directions. Moreover i f  we 

consider the region -(-2- around Go° where ~ is a positive operator, this region 

is convex and has the "Gribov horizon" as a boundary [11] . 

We thus get to the following conclusion : the configuration space of gauge 

theories is o~L in f in i te  dimensional space, but the volume cut-off and the non 

abelian character of the theory makes i t  look l ike a "sphere" (positive curvature, 

possibly f in i te  diameter). On that space is defined the potential term coming from 

the magnetic part of the Lagrangian. The next step toward quantization wi l l  be to 

write down a Schr~dinger equation, which includes both, and control the removing of 

necessary cut-offs. Some hope is reasonable for 2 + 1 dimensions especially about 

about the existence of a mass gap. The 3 + 1 dimensional case is s t i l l  out of reach, 

but in any case, the non t r i v ia l  geometry of the configuration space is a saliant 

feature of non abelian pure gauge theory, and i t  wi l l  matter for any non perturbati- 

ve result. 

References 

[1J I.M. Singer, Com. Math. Phys. 6__00, 7 (1978) and Physica Scripta 2_~4, 817 (1981). 

~2J M.S. Narasimhan, T.R. Ramadas, Com. Math. Phys. 67, 21 (1979). 
i 

[3J O. Babelon, C.M. V ia l l e t ,  Com. Math. Phys. 81, 515 (1981). 

[4J M. Daniel, C.M. V ia l l e t ,  Rev. Mod. Phys. 5__22, 175 (1980). 

[5J T. Eguchi, P.B. Gilkey, A. Hanson, Phys. Rep. 66_6, 6 (1980). 

[6J N, Daniel, C.M. V ia l l e t ,  Phys. Lett .  76B, 458 (1978). 

[7.] P.K. Mi t ter ,  C.M. V ia l l e t ,  Com. Math. Phys. 79, 457 (1981). 

[8J P.A.M. Dirac in "Lectures on Quantum Mechanics" Belfer Series (1964). 

[9J L.D. Faddeev, Theor. Math. Phys. 1, 3 (1969). 

[103 O. Babelon, C.M. V ia l l e t ,  Phys. Lett .  85B, 246 (1979). 

[11] D. Zwanziger, PreprLEt. NY U/TR 5/82. 



LATTICE GAUGE THEORY - A PROGRESS REPORT* 

Junko Shigemitsu 
Department of Physics 

Brown Univemsity 
Providence, RI 02912, USA 

and 

Department of Physics 
The Ohio State University 

174 West 18th Avenue 
Columbus, Ohio 43210, USA ~ 

Abstract 

Some recent calculations in lattice gauge theory are reviewed. These include 

estimates of the heavy quark potential, the hadron spectrum, and scales of chiral 

symmetry breaking. 

I. Introduction 

i 
Lattice gauge theory provides an important nonperturbative approach to quantum 

gauge field theories and it promises to continue serving this purpose very productive- 

ly in the years to come. In particular with the advent of Monte Carlo calculations 

with fermions, a much wider range of problems can now be investigated. 2-9 The next 

couple of years should witness a wealth of new quantitative and qualitative results 

which will hopefully help unravel the intricate dynamics of non-abelian gauge theories. 

In today's talk I would like to give a progress report on some of the calculations 

that are currently being carried out on the lattice. Since time is limited, I will 

unfortunately not be able to touch upon a large part of the research in pure gauge 

theories. I apologize to the many physicists who have made important contributions 

to the field for not mentioning their work. To list just some of the topics that I 

will have to omit, they include: 

Estimates of glueball masses 

Studies of the restoration of rotational invariance 

Experiments with different lattice actions 

Investigations of the role of monopoles, vortices, etc. 

The above work has contributed to our understanding of lattice gauge theory and its 

continuum limit and the topics that I will be discussing are built on the knowledge 

Talk presented at the International Symposium on Gauge Theory and Gravitation 
"g and G", Nara, Japan, August 20-24, 1982. 

tPermanent address after September I, 1982. 
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accumulated through such efforts. 

First, I would like to describe a recent calculation of the heavy quark potential 

in Ref. I0 by John Stack. This will give an example of how continuum physics is ex- 

tracted from the lattice theory by working in the scaling region. I will then go on 

to discuss Monte Carlo calculations with fermions. A major objective there is to ob- 

tain a QCD prediction for the hadron spectrum. Many groups have embarked on this 

ambitious program and initial results are encouraging. 2-8 However, these calculations 

should still be regarded as being at a preliminary stage. I do not believe that there 

is sufficient understanding of the approximations involved in order to be able to es- 

timate errors reliably. Undoubtedly, future work will be devoted to gaining control 

over and improving on the approximations. 

Fermion Monte Carlo techniques are also being used to investigate more general 

properties of gauge fields coupled to fermions. The spectrum calculations mentioned 

above indicate that ehiral symmetry is broken spontaneously in non-abelian gauge the- 

ories with fermions in the fundamental representation. If one wants to go beyond the 

strong interactions to gauge theories of the electro-weak plus strong interactions, 

one must understand ehiral symmetry breaking (or the lack thereof) in a more general 

setting. What is the scale of chiral symmetry breaking relative to the confinement 

scale? Is chiral syrmnetry breaking sensitive to the center of the gauge group? Does 

one see evidence for "tumbling" ideas? At the end of this talk I would like to de- 
9 

scribe some attempts to answer these questions using lattice techniques. 

Before turning to the specific topics, let me remind you of the basic features 

of lattice gauge theory. In the lattice approach one replaces continuum space-time 

by a hypercubic discrete lattice. The gauge degrees of freedom are unitary matrices 

U(x,x +~) that reside on the links between neighboring sites x and x + ~. The U- 

matrices can be viewed as the lattice analogues of the path ordered non-abelian phase. 

[i ~xx~ ] iagA~ 
P'exp g A d~ -- e ~ U(x,x+~) . (i.I) 

The matter degrees of freedom live on lattice sites. One defines, for instance, four 

component spinors ~(x) and ~(x) at each site x. The lattice action splits up 

into two parts 

S = S G + S F (1,2) 

The pure gauge part S G is the Wilson action 

g P 

(1.3) 

where ~ is the sum over unoriented plaquettes and U is the product of four U's 
P 
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on links bordering the plaquette. For the fermionic part SF, 

= i 2 ~(x)v~[U(x,x+~)~(x+~) S F m ~ "~(x)*(x) +~ 
x x 

one takes 

-Ut(x-~,x)~(x-~)] +~ l] l]~(x)[2~(x) - U(x,x+~)~-(x+~) 
x 

(1.4) 

- U~(x - ~,x)~(x - ~)] 

Eq.(l.4) is often rewritten as: 

# 

S F = ~ ~ (x)~'(x) + K ~ ~ ~'(x) {(~- r)U(x,x+~)$'(x+~) 
x x }~ 

- (7~ +r)Ut(x - ~,x)~'(x - ~) 1 

(1.5) 

In going from (1.4) to (1.5) we have introduced rescaled spinors, 

~#(X) m~2 ~ ~(X) (1.6) 

and a new parameter, 

I 
K - 2m+8r (1.7) 

The connection with continuum physics is established by going to the scaling re- 

gion, i.e., towards a continuous phase transition point of the lattice theory. In 

order to make contact with an asymptotically free continuum field theory, one is in- 

terested in the critical point at gcrit = 0. As one approaches g -- 0 the renorma- 

lizatlon group tells us that physical dimensional quantities such as masses M i obey 

the following relationship: 

/ \-bl/2bo 2 

=- ciA L (I.8) 

In Eq.(l.8), bo,b I are the coefficients of the two loop perturbative ~-function 

and C i is a pure number. The identity symbol defines the quantity ~. Ratios be- 

tween C.'s for different masses are calculable predictions of the theory. Physical 
l 

distance-dependent quantities such as the interquark potential V(R) obey 

~-V(R) = f(R/~) = function only of R/~ (1.9) 



123 

where~ 

= correlation length = (typical mass) "I (1.10) 

Work on the pure gauge theory has verified that Eq.(l.8) is obeyed by quantities 

such as the string tension ~, the glueball mass MG, and the deconfinement tempera- 

ture Tde c. One now believes that the scaling region extends to relatively large 
2 

values of g , namely 

m 41g 2 ~ 2.2 SU(2) 

m 61g 2 > 5.5 SU(3) 

(l.ll) 

2. The Heavy Quark Potential 

An important quantity that can be calculated in the quarkless theory is the stat- 

ic potential between two external color sources. I would like to show you a recent 

result obtained in Ref. i0 for the gauge group SU(2) (the discrete 120 element 

icosahedral subgroup was actually used, but this should provide an excellent approxl- 

marion to the full SU(2) group for the values of the coupling constant that were in- 

volved).12'13 Using previous calculations of the string tension ~ to fix the 

scale, II'13 the continuum heavy quark potential was obtained up to an overall additive 

constant (other calculations of V(R) have been reported in Ref. 14). 

The static potential can be extracted from an evaluation of the Wilson loop a- 

round a rectangular contour F of extension R X t. 

W(F) = <tr P expEig ~A d~]>- <tr(UU...U)F> (2.1) 

F 

For t >> R one has 

V 
o 

evaluated for 

tlon length 

w(r) ~ exp[-t (v ° +V(R)) ] 

represents the self-energy of the color sources. 

R = a,2a,3a and 4a at several ~-values, 2.2 ~ ~ ~ 3.1. 

was then introduced. 

(2.2) 

In Ref. I0, Wilson loops were 

A correla- 

(2.3) 

The coefficient .012 was chosen so that ~ is given by ~ = i//~, if one uses the 

string tension ~ measured in Refs. ii, 12, and 13. Although R/a takes on only 

four values by combining data at different B, one can work at many more values of 
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X m R/~. As mentioned before, in the scaling region all the data points for ~.V(R) 

versus R/~ should fall on a single curve. The result is shown in Fig. I and one 

sees that scaling holds quite well. 

2.G 

1.0 

0.0 

~'V 

-1.0 

-2.0 

/- 
I 
i 

I 

0.4 0 8  1.2 1.6 2.0 2.4 

x-~ 

Fig. i. ~'V(R) versus X m R/~. ~ is the correlation length defined in Eq.(2.3). 

In order to obtain Fig. I, one had to subtract Vo(~) for each ~ separately. I re- 

fer to the original paper for details on how this was accomplished. Fig. I still con- 

tains a single overall additive constant that remains undetermined. 

Although Fig. i represents the heavy quark potential for SU(2) and not for 

SU(3), it is still tempting to try to compare with phenomenological charmonium poten- 

tials. I have made a rough comparison in Fig. 2. ~-I (or ~) has been set to 

400 MeV. This corresponds to renormalizing the theory such that the R >> I behavior 

of V(R) reproduces the experimentally measured Regge slope. Once the scale has been 

set one can express R and V(R) in physical units, fm and GeV respectively. The 

full curve in Fig. 2 is a phenomenological potential taken from Ref. 15 multiplied by 

9/16, the ratio of the fundamental representation quadratic Casimirs of SU(2) and 

SU(3). This factor 9/16 will hopefully take into account the bulk of the changes 

necessary in going from SU(3) to SU(2). Keeping in mind that the Monte Carlo re- 

suits can be shifted by an overall additive constant, one sees that the agreement 

between phenomenology and quarkless QCD is fairly good. 
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Fig. 2. Same as Fig. i with ~ ~ set to 400 MeV. The full curve is a phenomenolog- 

ical potential from Ref. 15 converted approximately from SU(3) to SU(2). 

3. Lattice Fermions and Spectrum Calculations 

Recent advances in lattice gauge theory have led to the first round of Monte 

Carlo spectrum calculations for the full non-abelian gauge theory with quarks. 2-8 

One must now work with the full action S G + S F. In order to be able to perform 

Monte Carlo calculations, one formally integrates out the fermionic variables and 

ends up with an effective action, 

Sef f = S G - tr ~(&[U]) (3.1) 

A[U] is the lattice Euclidean Dirac operator defined in Eq.(l.4) or (1.5). In 

most of the 4D fermion Monte Carlo calculations to date (except for Refs. 6 and 7) 

one has ignored the second term in (3.1), namely one sets det(g[U]) - i. This amounts 

to neglecting virtual quark loops, lnthe loopless approximation (also called the 

quenched approximation) there is no feedback from the fermions on the gauge degrees 

of freedom. One can first evaluate the quark propagator G(x,U) in a fixed back- 

ground gauge field configuration. One then builds physical, gauge invariant quanti- 

ties such as meson or baryon propagators and averages over U with weight dUe -SG. 
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These calculations require in addition to a pure gauge Monte Carlo also efficient 

numerical matrix inversion methods to invert A[U] and obtain G(x,U). Most calcu- 

lations in 4D gauge theories have utilized the Gauss-Seidel method although other me- 

thods have also been proposed. 16'17 Hadron masses are extracted by writing the meson 

or baryon propagators D(x) as 

-m t 

D(x) laveraged over = ~ Ane n 
n spatial  positions 

(3.2) 

One then hopes that it is possible to go to sufficiently large t so that only the 

lightest state contributes to (3.2). Periodic boundary conditions actually restrict 

the allowed values of t to be ~ Nt/2 , where N t is the number of lattice sites 

in the temporal direction. 

As mentioned in the Introduction, the first estimates of the hadron spectrum 

are in reasonable agreement with experiment. Considering that these are first prin- 

ciples calculations of the spectrum of a very complicated theory, this is very en- 

couraging news. On the other hand people are still struggling to understand and bring 

down the error bars. I will not attempt to show you table after table of hadron 

masses as they are quoted in the many references. Different groups have worked with 

different lattice sizes, at different values of ~ and used different fermlon me- 

thods. They have also averaged over different numbers of U configurations and have 

different criteria for extrapolating to the physical values of m or K (it turns 

out one can never work exactly at __KDhy s or mphy s since the matrix inversion me- 

thods break down there). In order to be able to compare various references one must 

first understand the dependence of the final result on the many variables in the cal- 

culation. The next round of fermion Monte Carlo spectrum calculations must answer 

the following questions: 

I. How do mass estimates change when one varies N s and/or N t. 

2. Has one averaged over a sufficient number of independent gauge field configura- 

tions? 

2. Do hadron masses scale (i.e., obey Eq.(l.8))? 

3. Do we understand how to extrapolate to physical values of m or K? 

4. Are there matrix inversion methods that enable us to work closer to mphy s or 

Kphys ? 
5. How do virtual fermion loops affect the final results? 

Most of the points raised above are technical ones. There are also more basic 

questions concerning lattice fermlons that still need to be checked. Just as one 

must verify scaling and try to test the restoration of Lorentz (rotational) invari- 

ance in as many quantities as possible, a sensible continuum limit of theories with 

fermlons must exhibit all continuous chiral syrmnetries for m = 0. 

It is well known that there are many difficulties with lattice fermions and 
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chiral syrmnetry. Let me discuss separately the cases r = 0 and r ~ 0. 

For r = 0, S F of Eq.(l.4) becomes the "naive" lattice fermion action. It de- 

scribes 16 species (flavors) of Dirac fermions. For finite lattice spacing, the 

m = 0 theory does not have the full U(16) X U(16) flavor symmetry of the continuum 

model. It has only a subset of the continuous axial and vector symmetries. The re- 

maining continuous symmetries are supposed to be restored in the a - 0 limit. How- 

ever even at finite lattice spacing, there are enough discrete syrmmetries to prevent 

quark bilinear counter terms from developing. This is the main advantage of the 

r = 0 formulation. 

One can actually reduce the number of flavors from 16 to 4 by spin diagonallzing 

the fermionlc action. A convenient way to achieve this is to perform the following 

canonical transformation. 18 

~(x) - T(x) ~(x) m X(x) 

~(x) --~(x) T%(x) ~ ~(x) 
(3.3) 

where 

Then 

where 

x x x 2 x . 
T(x) = y 0V_ Iv _V 3 (3.4) 

"U "£ 'Z "3 

1 

s F = m D ~(x) X(x) + 2 D D ~(x) -- i(x)(U(x,x+~) ×(x+~) 
x x 

- u~(x-~) x(x- ~)) 

(3.5) 

x 0 x0+x I 
~0(x) = I, ~l(X) = (-I) , ~2(x) = (-I) , ~3(x) = (-i) x0+xl+x2 . (3.6) 

Although the X(X)'S start out as four component spinors, Eq.(3.5) shows that the 

different components decouple and one can work with single component fermlonic vari- 

ables. This leads to the "staggered" fermionmethod. 

The Euclidean staggered fermion action describes 4 flavors. At finite lattice 

spacing the m = 0 theory has only one continuous axial syr~netry (nonsinglet) in 

addition to the U(1) vector syrmnetry. The full U(4) X U(4) syrmnetry is restored 

only in the a - 0 limit (up to anomalies). Again discrete syrmnetries prevent mass 

counter terms from developing. 

The staggered fermion method has been used to evaluate ~>m= 0 in the quenched 

approximation. 2'3'9 There were clear indications that <~> ~ 0 both at strong 

coupling and into the scaling region. Since staggered fermions have one continuous 

synmaetry that is spontaneously broken by ~n~> ~ 0, one should find a Goldstone 
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boson even at strong coupling. This particle will be one out of the 15 pions expected 

in the 4 flavor continuum theory. This massless state has been observed in Refs. 2, 

3 and 7. The real challenge now is to show that the remaining 14 pions also become 

massless as one approaches the continuum limit. This will verify that the full 

SU(4) × SU(4) X U(1) flavor symmetry is being restored, realized however in the 

Nambu-Goldstone mode. Finally at the same time that the 14 pions are becoming mass- 

less, one would like to observe that the flavor singlet meson, the ~, remains mas- 

sive. In order to achieve this however one must put back quark annihilation graphs. 

Although both the naive and the staggered Euclidean fermions are believed to have the 
19 

correct U(1) anomaly in weak coupling perturbation theory, it is not known how 

easily the anomaly will show up in a Monte Carlo calculation. 

For r # O, one obtains the Wilson fermion formulation which has been used in 

most spectrum calculations. 2, 4, 5, 6 The moment r is nonzero, 15 of the 16 

species encountered in the naive fermion method acquire large masses as a -- 0. The 

Wilson formulation avoids the "doubling" problem. However the term in S F propor- 

tional to r breaks chiral symmetry completely. There is no symmetry to prevent mass 

terms from developing. With this method one must fix the parameter K of Eq.(l.7) 

by some prescription before being able to extract hadron masses. One has tradition- 

ally fixed K so that the pion mass comes out right. In particular if one adjusts 

K to K e such that the pion becomes massless, one argues that the theory has been 

finetuned to its chirally syrmnetric point. I believe it is important to devise as 

many independent tests as possible that one is indeed dealing with a chirally syrmne- 

tric theory at K = K . 
c 

2O 
The Wilson method has also been shown to have the correct U(1) anomaly. 

There are in principle no obstacles in obtaining a correct pion-eta splitting once 

annihilation graphs have been taken into account. Some work in this direction has 

already been carried out in Ref. 2. 

4. Scales of Chiral Symmetry Breaking 

As the last topic, I would like to describe some further studies of chiral sym- 

metry breaking using lattice techniques. My collaborators, J. Kogut, Steve Shenker, 

D. Sinclair, M. Stone, W. Wyld and I are investigating chiral properties of theories 

with quarks in different representations of the gauge group. We hope that such stud- 

ies will shed new light on the mechanism responsible for chiral symmetry breaking. 

According to the picture that we have of chiral symmetry breaking, the vacuum 

of QCD should be unstable with respect to the formation of quark-antiquark pair con- 

densates. Once a condensate has formed chirality of the vacuum becomes indefinite 

and it is possible to have nonzero vacuum expectation values of operators such as 

~. This picture tells us that in order for chiral symmetry breaking to occur, at 

the very least pairs must bind. Attractive, maybe relatively strong, binding forces 
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must exist. It is, however, not at all clear whether long range confining forces are 

necessary. In fact, initial models in 4D of chiral symmetry breaking were theories 

with very short range interactions. 21 If an effective four fermion interaction theory 

is ever a good guide to what goes on in QCD, maybe chiral sy~netry breaking is insen- 

sitive to the long distance behavior of the theory. 

The question raised above can be studied by considering theories with quarks in 

N-ality zero representations (e.g., the adjoint representation). Such quarks do not 

experience a confining force at large distances since they can be screened by gluons. 

Consequently if chiral symmetry breaking is sensitive to the force law at large dis- 

tances one would expect the chiral properties of theories with adjoint fermions to be 

very different from in models with fundamental representation fermions. It could also 

be that adjoint quarks prefer to bind with glue degrees of freedom rather than form 

pairs. 

My collaborators and I have performed Monte Carlo evaluations of ~-~nk>~ for sev- 

eral representations ~ of SU(2). We have used the staggered fermion formula- 

tion (Eq.(3.5)) and work within the quenched approximation described in the previous 

section. We find that quarks in screenable representations also lead to chiral sym- 

metry breaking. We conclude from this that chiral symmetry breaking is independent 

of confinement and it occurs in general, (depending on the representation) at shorter 

distances than confinement. 

Having established that chiral syrmmetry breaking is not associated with confine- 

ment, one might ask the following questions: Is it possible to introduce disparate 

length scales into a theory with a single gauge group? Does one see evidence for 

"tumbling"? 22 

The authors of Ref. 22 have pointed out that in an asymptotically free theory 

one can obtain a large hierarchy in length scales by allowing different types of con- 

densates to form sequentially. We have attempted to use fermion Monte Carlo calcula- 

tions to estimate the relevant scales of chiral symmetry breaking for different repre- 

sentations. We find that indeed a hierarchy of scales emerges. Let me be a little 

bit more specific about what is meant by the "relevant scale of chiral symmetry 

breaking". 

Consider a system at nonzero real temperature T. As T increases one expects 

all sy~mnetries that are spontaneously broken at zero temperature to eventually be re- 

stored. This should also be true of chiral symmetry breaking (the simplest picture 

of such a phase transition would have the pairs in the condensate unbind as the system 

becomes too hot). Thus if one observes the order parameter ~> at different tem- 

peratures one should see, 

¢ o  ~ < T  
¢~> c (4. i) 

=0 T>T 
c 
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The critical temperature T sets the relevant scale for chiral symmetry breaking. 
c 

We find that if one compares two representations such that their quadratic Casimirs 

C2(~) obey 

C2(%2) > C2(~I) (4.2a) 

then 

Tc(~2) > Tc(%l) (4.2b) 

which is consistent with tumbling ideas. 

It is also interesting to compare T for the fundamental representation with 
e 23-26 

the deconfining temperature Tde c of the quarkless theory. One finds 

Tde c < Tc(fundamental ) . (4.3) 

In Fig. 3 we compare our curve for Tc(fundamental) , denoted TF, with a curve for 

Tde c which is taken from Ref. 23. Since temperature is a physical quantity with di- 

mension of mass, it obeys the renormalization group relation Eq.(l.8) once one has 

entered the scaling region (4/g 2 ~ 2.2). 

Fig. 3. 
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Comparison of the chiral sy,lnetry restoration temperature 
tal quarks with the deconfining temperature Tde c. Tde c 
Ref. 23. 

T F for fundamen- 
is taken from 

From Fig. 3 one reads off the continuum result 

TF/Tde c N 1.6 • .2 (4.4) 
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(Other estimates of Tdec 24-26 tend to place it slightly higher than in Ref. 23, so 

Tde c and T F could be closer than indicated by Eq.(4.4).) 

We also have data for the representation % = i (adjoint), £ = ~ and ~ = 2 

and they are consistent with Eq.(4.2) with large ratios between the T 's. We are 
c 

currently working very hard to nail down T more precisely for the adjoint represen- 
c 

tation. We are finding that TA/T F is at least 7 or larger. However, the error 

bars are still too big and uncertain to enable us to quote a reliable number. Need- 

less to say, many of the reservations and difficulties with fermion Monte Carlo cal- 

culations that were mentioned in the previous section also apply here. We are trying 

to understand possible sources of systematic errors in our calculations. For instance 

previously when we had less data on different sized lattices, our analysis gave 

TA/T F ~ 56. We now believe that this number will be reduced when finite size effects 

are properly taken into account. In a forthcoming paper we will give a detailed dis- 

cussion of finite size effects and other aspects of our calculations. We will also 

report on results for SU(3) and U(1) gauge theories. 

5. Concluding Remarks 

I have tried to give you a flavor of some current work on the lattice. Most of 

the projects are very time consuming (and often also very CPU time consuming) long 

term endeavors. We may still have some ways to go before we can be truly satisfied 

with the accuracy of the results. However it is gratifying that more and more ques- 

tions are starting to lend themselves to the lattice analysis and that this nonpertur- 

bative method is producing a continuous flow of new results and ideas. 
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Recent Developments in the Theory of Large N Gau@e Fields 

Tohru Eguchi and Hikaru Kawai 

Department of Physics 
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Bunkyo-ku, Tokyo 113 

It has been known for some time that quantum field theories with global 

or local U(N) (SU(N), O(N),,,) symmetry greatly simplify in the limit 

N÷ ~. The well-known example is the so-called O(N) vector model which 

is a theory of massless scalar fields ~i(i=l,,N) taking values on S N-I. 

In two dimensions lagrangian is given by 

i~l (~p~i ' i=l[ ~i = i. (i) 

It is known that the interaction caused by the constraint ~i2=i 

creates a finite mass gap in this system (N > 3). In fact the model 

becomes exactly soluble in the large N limit and becomes a free theory 

of massive scalar particles. When N is finite, these massive fields 

begin to interact weakly with the strength I/N. Thus the N = ~ limit 

yields an exact solution which gives a qualitatively correct description 

of the system also for finite N. 

In the case of gauge theories it is also known that a considerable 

simplification takes place in the limit of large gauge group. Both in 

the continuum and the lattice formulation of gauge theory the following 

characteristic properties have been known of the N = ~ gauge fields. 

1 
i. Dominance of planar Feynman diagrams (planar surfaces) 

coupling (strong coupling) perturbation theory; 
2 

2. The factorization property of Wilson loop amplitudes. 

in the weak 

These properties are derived from a power-counting analysis of Feynman 

(strong coupling) diagrams. In the case of weak coupling perturbation 

theory a simple combinatorial analysis shows that the weight of a 

Feynman diagram becomes N X where X is the Euler characteristic of the 

diagram (interaction vertices, propagators and color loops are regarded 
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as vertices, edges and faces of a polyhedron, respectively) when we 

let g2N to be independent of N (or let g2=O(i/N)). Thus in the limit 

of N = ~ with g2N fixed graphs with the heighest Euler number give the 

dominant contributions. In the case of a Wilson loop amplitude, for 

instance, 

<exp i I A dx >mO(N) (2) 

C 

the leading contributions come from the planar graphs with the topology 

of a disc while non-planar graphs with h handles are down by N -2h. 

Moreover, when we consider the case of more than one quark loop, say 

C 1 and C2, the leading contribution to the correlation function 

<exp i A dx exp i A dx 

C 1 C 2 

come from the disconnected piece, 

I I > ~ O(N2)" (4) <exp i A dx ><exp i A dx 

C 1 C 2 

This is because when there exist gluon exchanges between C 1 and C 2 we 

obtain a topology of an annulus and hence of order only O(N0). 

In this way in the large N limit with g2N fixed there exist no correla- 

tion between quark loops and the amplitudes always factor 

<~ exp i I A dx > = ~ <exp i I A dx > (5) 
i ~ ~ i ~ 

C C 
1 1 

Since a Wilson loop amplitude may be interpreted as a meson propagator, 

factorization implies that at N = ~ gauge interactions are exhausted to 

form bound states and mesons do not scatter from each other. In this 

respect N = ~ gauge theory is analogous to O(N) vector model where 

interactions are also exhausted at N = ~ in creating a dynamical mass 

to scalar fields. The dominance of planar surfaces and factorization 

are also shown order by order in the strong coupling lattice perturba- 

tion theory. 
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Reduction 

Now the recent developments on the theory of large N gauge and spin 

system 3'4'5'6 have uncovered a further property of N = ~ gauge fields; 

3. Reduction of dynamical degrees of freedom. 

By means of reduction one may replace the N = ~ gauge field theory by a 

much simpler system, a model with only a finite number (=space-time 

dimensionality) of U(N) (or NxN hermitian) matrices, without loosing 

information of the original theory. This is a remarkable result in 

the sense that a quantum field theory may be reduced to a kind of 

dynamical system with a finite number of dynamical variables. 

In the lattice formulation of gauge fields the argument goes as follows3; 

we start from the standard Wilson theory defined by the partition 

function 

d d 
Z = ~ ~ dU exp{8 ~ [ tr U + U + a} (6) 

y p=l Y'P y p~a=l Uy,pUy+p,a y+o,p y, 

where U is an U(N) matrix lying on a link connecting the lattice 
Y,P 

sites y and y+p (p is the unit vector in the p-direction) and d is the 

dimensionality of space-time. 

The Wilson loop amplitude is defined by 

= . > (7) W(C) <tr Ux, Ux+~, Ux+~+~, x- • Ux_a, ~ 

for a contour C which connects lattice sites x,x+~,x+~+v,x+~+~+l,,,x-o, 

x successively. We then reduce the model by identifying all link 

variables in the same direction 

Uy,p ~ Up (8) 

and thereby shrink the entire space-time lattice to a single hypercube. 

The reduced model is then defined in terms of matrices U I,U 2,,,..,U d 

and its action is given by 

d + + 
Sr = p~!=l tr(UpUoUpU a) . (9) 

The analogue of the Wilson loop amplitude is defined by 

Wr(C) = <tr(U U UX .-- Ua)> r (i0) 
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where the averaging is taken with respect to the weight Eq. (9) and we 

have identified the contour C with the sequence of directions (U,~,X,,, 

a) 

C ; (x,x+p,x+p+v,x+o+~+X,-..,x-o,x) ~ (U,~,X,-.-,a). (ii) 

The above correspondence is one to one when we ignore over-all transla- 

tions. 

We remark that the reduced model Eq. (9) is ivariant under the phase 

transformation 

i0 
U -~ e U (12) 
P P 

and this symmetry implies 

. o .  

Wr(C) = <tr UuUvU X U > = 0 (13) 

for every open contour C. This is because in the case of an open 

contour there exists at least one direction p for which U and U + 
P P 3 

noticed appear different number of times and %(C) has to vanish. It was 

that if the symmetry Eq.(12) is left intact, i.e. not spontaneously 

broken, the equation of motion for the Wilson loop amplitudes in the 

original and reduced models become identical in the limit N = ~ with 

g2N fixed. Consequently the Wilson loop amplitudes agree 

W(C) = Wr(C). (14) 

Also the free-energy per unit volume of the original theory agrees with 

the free-energy of the reduced model. Thus the infinite-volume Wilson 

theory Eq.(6) and the one-site reduced model Eq. (9) become equivalent 

to each other in the large N limit. 

In order to elucidate the physical meaning of the reduction let us 

consider a "partial reduction" of N = ~ gauge field where we shrink 

the size of one particular direction, say, the time-direction, of the 

d-dimensional lattice to a unit distance while keeping the size of the 

other directions unchanged. We compare the free-energy of the original 

and partially reduced systems, 

Z = Tr T L -- e -LF 

-F 
Z = Tr T = e r 
r 

(15) 
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where we have introduced the transfer matrix and L is the original 

size of the time-direction. Making use of eigenstates of the transfer 

matrix with eigenvalues E. (i=0,i,2,..) we obtain 
1 

F = E 0 , 

-(Ei-E 0 ) 
F r = E 0 - £n (i + [. e 

1 
. 

(16) 

If the system confines, there exist only color-singlet excitations 

and the sum over i will not generate N dependent factors. Thus 

F r = E 0 + O(N 0). (17) 

On the other hand we know that the vacuum energy E 0 is O(N 2) and 

consequently 

F = F, N = ~. (18) 
r 

Therefore the free-energy of the N = ~ gauge field is independent of 

the lattice size and we may reduce the theory so far as the system 

confines. 

U(1) symmetry 

In the partial reduction of the lattice we have squeezed the time- 

direction to a unit distance. This creates a finite-temperature 

situation since the periodic boundary condition is imposed in the re- 

duced model. Thus the reduction effectively heats up the gauge system. 

It is known that gauge fields, when heated, will undergo a deconfining 

transition into a plasma phase at a certain critical temperature T 
c 

via the spontaneous violation of the invariance under the center of the 

gauge group. 7'8 Therefore if this transition temperature stays finite 

at N = ~ gauge fields, we would expect that there exists a critical 

coupling I c in the reduced model such that for I (= N/~) > I c U(1) (the 

center of U(N)) symmetry Eq. (12) is unbroken, however, it will break 

spontaneously below I c (T c and I c are related as I/T c = a(l c) where 

a is the lattice constant dependent upon the coupling strength I). 

Monte Carlo simulation of the reduced model 4'9 in fact shows the 

spontaneous violation of U(1)symmetry below I c = 2. This is signaled 

by the non-zero expectation value for open loops. Below the transition 

point the eigenvalues of the reduced link variables U 's are no longer 
P 
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uniformly distributed but are concentrated around an arbitrary point 

on the unit circle. The transition is smooth and appears to be 2nd 

order. This is consistent with our interpretation of its being the 

finite-temperature deconfining transition. 

Thus the original reduced model is equivalent to the standard Wilson 

theory only in the strong coupling regime I > I and the equivalence 
c 

will be lost below 1 
c" 

Quenchin~ 

In this situation it is possible to restore the broken symmetry by 

integrating over the location of the concentration of the eigenvalues 

In the quenching procedure of Bhanot-Heller-Neuberger link variables 

are diagonalized as 

U = V D V + 
P P P P 

ieJ 
(Dp)ij = e P @ij" 

(19) 

The angular variables 8 J's are held fixed when we first average over 
P 

marices V ' s 

P I ~ dVp tr(Vp ~ P ~ ~ ~ D  V+V D V +..-VaD V +) e +BS(V'8) 

W(C;8) = P (20) 

I ~ dV e +Ss(v'e) 
p P 

We then take an averaging over 0's 

Wq(C) = I dp(@) W(C;@) 

with a suitable measure p. Using the method of Parisi 5 

that when one makes a change of variable 

(21) 

it was shown 6 

V + = D W (22) V D ~ 

and expands 

W = exp iag A (23) 

in terms of g, the quenched model reproduces the planar perturbation 

theory of the continuum gauge fields. Here the eigenvalue 8i-e j has 

the meaning of the momentum carried by a gluon line with a pair of 
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color indices (i,j). 

Thus the quenched model reproduces the weak coupling expansion of the 

continuum gauge theory for small I while it agrees with the original 

reduced model for large I. Hence it is now believed to be equivalent 

to the standard theory throughout the range of coupling constants. 

Here the possible trouble is that the quenching procedure is justified 

only with recourse to the weak coupling perturbation theory and it is 

not completely clear if the non-perturbative information of the theory 

is coded correctly into the quenched model. 

Twist 

Another promissing method of avoiding the problem of the degeneracy 

of the eigenvalues of U is to introduce a twist to the system. I0 
P i2~/N 

For instance, we introduce a phase factor e into the action. 

Then the minimum energy configuration for a plaquette 

e i2~/N tr(U U U+U~) + h.c. (24) 
P P 

is no longer given by U = U = 1 but by 
p d 

U = P, U = Q p 

pQ = Qp e i2~/N 
(25) 

where P, Q are matrices of 't Hooft II 

C01oll <le2iIN o 1 P = , Q = (26) 

1 0 e2Zi (N-l)/N 

Eigenvalues of P and Q are uniformly distributed on the circle and 

thus U(1) symmetric. Therefore the introduction of a twist lifts the 

degeneracy of eigenvalues and would restore U(1) symmetry. In fact 

there exists some numerical indication 10 that the original reduced 

model has no U(1) symmetry breaking in the region of negative coupling 

constant I and agrees with the Wilson theory. 
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Topological Excitations on a Lattice 

Y. lwasaki and T. Yoshi~ 

Institute of Physics, University of Tsukuba, Ibaraki 305, JAPAN 

We study by numerical methods the existence (or the non-existence) of instantons 

and the role played by instantons on a lattice, by taking the CP I model in two dimen- 

sions as an example. 

The CP I (non-linear 0(3) o) model is defined by 

2 3 
L = ~z ~ l E (~ ~.)(8 o i)_ _ : E o. 2 = i (i) 

~=i i=l ~ I I 

An 0(3) invariant regularization of this model gives the classical 0(3) Heisenberg 

model defined by 

-> -~ 

H = E E S(n)S(n+~) , (2) 
n~ 

where ~ is a 3-component unit vector, n is a lattice site and ~ is a unit vector on 

the lattice. This model will be referred to as the standard model. 

However there are infinitely many other choices for Hamiltonians which give the 

same naive (classical) continuum limit. For example, taking three couplings (nearest, 

next-nearest, and third-nearest neighbor), we write I) in the form 

H = E {~I(V ~(n)V ~(n)) + ~2(V V ~(n))(V V ~(n)) 

2-'> (V2~(n)) (V2y~(n))(V2y-~(n))] } 
+ ~3 [ (VxS(n)) + (3) 

where 

V f(n) = f(n+~) - f(n) (4) 

The correlation functions are given by 

I I ~d~(n)~(S2(n) - I)F(S)exp(-SH) . <F(S)> = 
n 

(5) 

If we take ~i = 1/2, any Hamiltonian given by eq.(3) reduces to the non-linear 

0(3) o model defined by eq.(1) in the classical continuum limit. 

Let us investigate topological properties of the models. Berg and LHscher 2) 



142 

have provided a suitable definition of topological charge on the lattice in the form 

Q = z q(n*) 
n* 

where n* is a dual lattice site. 

(6) 

They have found that the topological susceptibility 

X t = E <q(O)q(n*)> (7) 
n* 

does not scale as a renormalization invariant (mass) 2 in the case of the standard 

model. Further L~scher 3) has explained this phenomenon by pointing out that there 

exist short range fluctuations of the topological charge with such a small action 

that they overwhelm the contribution of the slowly varying fields, which otherwise 

dominate in the continuum limit. The point is that the minimum energy configurations 

with Q = i are not the Solutions of the lattice field equation. The spin configura- 

tions are planar. They are at the boundary of configurations with IQI = i and those 

with Q = O; they are "exceptional" configurations due to the terminology in ref.2). 

We call these exceptional configurations "dislocations", following Berg. 4)'5) These 

dislocations dominate the topological susceptibility X t at low temperatures. 

Up to this point they are all well known. Now, let us take the Hamiltonians (3) 

instead of the standard one. With positive ~2 and a3' the energy of a short range 

fluctuation becomes large~ However, the energy of a slowing varying field does not 

change much. Therefore by increasing the parameter a 2 and/or a3' we can make the 

energy of a dislocation much larger than 4~, the energy of an instanton of the con- 

tinuum theory. 

If the energy of a dislocation is much larger than 4~, we naturally expect that 

some configurations with Q = i are solutions of the lattice field equation. We 

indeed find such solutions by increasing a 2 and/or a3" We find them by two ways: 

One way is to start from random spin configurations and to lower systematically the 

energy of spin configurations until a solution of the classical lattice field 

equation is obtained. The other way is to start from a discretized-instanton 

Sl(n) + iS2(n) z-a (8) 
re(n) = = c z-b 

i + S3(n) 

and to lower systematically the energy. Here z = n I + in 2 and a, b, c are complex 

numbers. 

For a 25x25 lattice, with c = i, a = 7.5 + ii.5i, b = 16.5 + ii.5i, the energy 

of the discretized-instanton is systematically lowered by replacing a spin in such a 

way to minimize its local energy. Even for ~2 = 0.i and a 3 = 0.0 Where the energy of 

the dislocation is smaller than 4~, we obtain a stable instanton. For ~2 = 0.25 and 

~3 = 0.25 (these numbers have no special meanings. We choose them arbitrary) where 

the energy of the dislocation is about twice that of the continuum instanton, we 
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certainly obtain a stable instanton. 

Thus we conclude that the existence (or the non-existence) of instantons depends 

on the form of lattice action. Among theories which are identical in the naive con- 

tinuum limit, some theories where short range fl~ctuations are suppressed prossess 

stable instanton solutions, while others do not. 

Because the Hamiltonians (3) reduce to the same non-llnear 0(3) a model in the 

naive (classical) continuum limit irrespective of ~2 and ~3' all of them are equiva- 

lent in perturbative theory, only by redefining the coupling constant 8. However, 

they may give inequivalent non-perturbative effects. We will discuss it below. 

First let us give the relation between various coupling constants in the frame- 

work of perturbation theory. We follow the method which was first used by Parisi 6) 

when deriving the relation between the coupling constant of the standard model and 

that of the continuum theory. 

The relation may be given in terms of the scale parameter 

A : 8_ exp(-2zS) (9) 
a 

After some calculation we obtain 

A(e2=O.l , ~3 = O) = 8.9 A(e2=O, e3=O) 

A(~2:0.25 , e3:0.25) = 124.3 A(~2=O, e3=O) 

If we neglect 8 in the numerator in eq.(9) we have rough relations from eq.(lO) 

(i0) 

~(~2=0.i, ~3=0) ~ B(e2=O, ~3=0) - 0.35 

8(~2=0.25 ' ~3=0.25) m 8(~2=0, ~3=0) - 0.77 

( I i )  

At any rate eqs.(10) hold for 8 >> i and therefore eqs.(ll) are enough for our later 

use. Thus the inverse-temperature 8 = 1.3 in the standard model corresponds to 8 m 

0.85 when ~2 = 0.i, e3 = 0 and 8 & 0.53 when e2 = 0.25, ~3 = 0.25. 

We will mainly discuss two theories with e2 = 0, ~3 = 0 and with ~2 = 0.25, ~3 

= 0.25. The case with =2 = 0, e3 = 0 corresponds to the case where an instanton is 

unstable, while the cases with ~2 = 0.25, ~3 = 0.25 to the case where an Instanton is 

stable. 

Next we measure X t defined by eq.(7) by Monte Carlo simulations on 50x50 spins. 

In the case of ~2 = e3 = 0, Berg and LUscher 2) have already measured X t for a i00×i00 

lattice to find that Xt does not scale as expected. We find that for ~2 = ~3 = 0.25, 

Xt is consistent with the scaling for 0.4 < 8 < 0.6 [where the correlation length 

varies from 2 to 6]. This is expected because the energy of an instanton is much 
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lower than that of the dislocation. The reason why we have considered X t for the 

range of B, 0.4 < B < 0.6, is the following; for B < 0.4 the correlation length is 

too small to expect the scaling behavior of X t and for B > 0.6 finite size effect 

becomes significant. 

Qualitative differences between the two theories in physical quantities which are 

connected with the topological charge are naturally expected. However, the differ- 

ences between the two theories may be more deep. If instantons are stable at B = ~, 

their effects will remain in the limit B ÷ ~, while if instantons are unstable at ~ = 

~ their effects will become weak in the limit B ÷ ~. 

As already noticed by Berg and LUscher 2) , and Martinelli, Parisi and Petronzio 7) , 

the magnetic susceptibility Xm itself does not scale as expected, although the devia- 

tion from the scaling is not so large as in X t. Our results are consistent with the 

previous results for ~2 = ~3 = 0 and the data for ~2 = ~3 = 0.25 are consistent with 

RG. 

The deviation from RG for the standard model might be due to the higher order 

power corrections. However, we rather interpret the fact that X m does not scale as 

consistent with RG for ~2 = ~3 = 0, while it does scale for ~2 = ~3 = 0.25, as results 

from the fact that short range fluctuations dominate for ~2 = ~3 = 0 at low tempera- 

ture, while slowly varing fields (instantons) dominate for ~2 = ~3 = 0.25. 

If our interpretation is correct, it means that in the continuum limit for ~2 = 

~3 = 0.25 Xt and X m have their limits, for ~2 = ~3 = 0 they do not have non-trivial 

limits. This further implies that theories which are equivalent in perturbation 

theory do not necessarily give equivalent non-perturbative effects. 

Now let us try to find indications of the topological sy~netry breaking proposed 

previously by the present authors: In previous papers8) " we have conjectured that the 

vacuum of the non-linear 0(3) o model (CP I model) is two-fold degenerate and that a 

spontaneous symmetry breaking occurs from the requirement of the cluster property of 

the vacuum. We add an external source term proportional to Q 

- 4~0Q (12) 

to the Hamiltonian (3). We use the Metropolis method to measure hysteresis effects 

by changing 6. We measure hysteresis curves for ~2 = ~3 = 0 and for ~2 = e3 = 0.25. 

Two cases show completely different patterns. In the case of ~2 = ~3 = 0, at e = 0 

the residual topological charge is zero, while in the case of ~2 = ~3 = 0.25, at 0 

= 0 the residual topological charge is about ten. We make the same measurement by 

changing random numbers as well as the number of steps. In every cases the patterns 

of hysteresis curves are the same, only the residual topological charge at 0 = 0 for 

~2 = ~3 = 0.25 changes slightly. This behavior is consistent with our assertion that 

the topological symmetry breaking occurs for ~2 = ~3 = 0.25. 

We also investigate the size dependence of X t for both cases with ~2 = ~3 = 0 
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and ~2 = ~3 = 0.25. If a system has the spontaneous topological symmetry breaking, 

the expectation value of the topological charge density is not zero; 

<q(i)> = q (13) 

Therefore the topological susceptivility X t has a size dependence Xt ~ N2q 2 where the 

N 2 is the size of the lattice. This is analogue of the spontaneous magnetization. 

On the other hand, if a system has no spontaneous topological symmetry breaking, X t 

is expected to be size independent. 

It should be noted that X t is dominated by dislocations in the standard model. 

Dislocations are short range fluctuations and therefore they are not influenced each 

other; a dislocation with positive topological charge and a dislocation with negative 

topological charge can coexist. The situation is similar to that of the dilute 

instanton gas picture. Contrary to the standard model, in the model with ~2 = e3 = 

0.25, instantons dominate Xt; instantons are slowly varing fields and they influence 

each other. In the continuum limit we cannot apply the dilute instanton gas picture 

to this system due to the analysis of the continuum theory. 9)'I0) 

AT 6 = 1.3 with ~2 = ~3 = 0, the topological susceptibility X t does not change 

even if the size of the lattice is changed from 25x25 to i00×i00 (via 50x50). On the 

other hand, at 6 = 0.6 with e2 = ~3 = 0.25, X t increases if the size of the lattice 

changed from 25×25 to 50x50. For a i00×i00 lattice we have also a preliminary result 

for Xt; it shows also a tendency to increase. These results strongly support our 

assertion. 

More details are discussed elsewhere. II) 
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OBSERVATION OF AHARONOV-BOHM EFFECT BY ELECTRON HOLOGRAPHY 

A.Tonomura, T.Matsuda, R.Suzuki, A.Fukuhara, N.Osakabe, H.Umezaki, 

J.Endo, K.Shinagawa, Y.Sugita and H.Fujiwara 

Central Research Laboratory, Hitachi Ltd. ,  Kokubunji, Tokyo 185, Japan 

We feel rea l l y  honoured to give a ta lk  before act ive researchers in th is  f ron-  

t i e r  f i e l d  of physics, gauge theory and grav i ty .  Although the member of our group are 

not f am i l i a r  wi th the deta i ls  of concepts and theoret ical  approachs in th is  f i e l d ,  

we understand the importance of the Aharonov-Bohm ef fect  in the electromagnetism, i .  

e. the f i r s t  example of gauge f i e lds .  
I )  2)-4) 

Since the theoret ical  work by Aharonov and Bohm in 1959, several experiments 

have been performed to prove th is  e f fec t  and these experiments have been f a i r l y  

famous also among electron-microscopist.  

We thought the e f fec t  has the sound basis beyond doubt but we noticed also that 

a few peop le5)s t i l l  ins is ted on i t s  non-existance or doubted the v a l i d i t y  of the 

experiments and that the controversy s t i l l  continued. 6j' Therefore i t  seemed worth 

whi le to t r y  an experiment in a newly designed form to confirm the ef fect  again. 

This was our motivat ion. 

Before going into our experiment, l e t  us explain b r i e f l y  about those in the past. 

The schematic diagram in F ig . l  shows the idea of the elaborate experiment by 

M~llenstedt group. 2} ' The lens and bi-prism are, of cource, electro-magnetic ones in 

fac t .  They fabricated a f ine solenoid coi l  whose diameter was unbelievably small, 4.7 

pm. 

Two electron waves from the same source travel around the solenoid and are over- 

lapped coherently to cause interference fr inges on the f i lm  below. Even i f  the waves 

never touch the magnetic f l ux  inside the solenoid, the f r inge must be shi f ted with 

the change in the phase di f ference between the waves owing to the Aharonov-Bohm ef fec t  

when the co i l  current ~ changes. In order to confirm the f r inge s h i f t ,  they set a 

s l i t  over the recoreding f i lm  and moved the f i lm with changing the co i l  current i .  

The resu l t  is reproduced in Fig.2. The f r inge s h i f t  is c lear ly  recorded. 
'3j-4Lre~ " sl i a r t  Other experiments a "m'l o th is  one in p r inc ip le  except that ferromagne- 

t i c  needles were used instead of solenoids. 

A l l  these experiments were very elaborate ones for  the technology of those days 

but we must admit that  they have one defect in common. That i s ,  the lack of experi-  

mental ve r i f i ca t i ons  that there is no magnetic f l ux  leakage into the electron paths. 

To improve th is  points, Kuper7)proposed in 1980 the idea of perfect confinement 

of magnetic f luxon by a hollow torus of super-conductive mater ia l ,  as shown in Fig.3. 
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Fig.2 Observed phase change due 
to the coil current. 

Fig. l  Interference experiment 
by Mollenstedt 1962. 
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Fig.3 An experiment proposed 
by Kuper 1980. 
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Fig.4 Electron hologram recording 
and optical reconstruction. 
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Fig.5 Tungusten t i p  as electron 
emi t t ing source. 
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Fig.6 Hologram recording of a toro ida l  magnet. 

Fig.7 Inter ference f r inge pattern of electron waves. 
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From the prof i le of the diffraction pattern below, one can te l l  the phase difference 

between waves having passed through the inner and outer f ield-free spaces around the 

torus. However, a t iny specimen of such a structure seems desperately d i f f i cu l t  to 

be realized for an experiment. 

We would l ike todescribe our experiment8)hereafter. What was new of our experi. 

ment is two-hold. 

One point is making use of a very small toroidal magnet which has a closed cir-  

cuit structure of magnetism so as to leak no magnetic flux outside of i t se l f .  The 

usage of a toroidal ferromagnet was independently recommended by Greenberger in 1981. 

Our toroids are made of permalloy and its fabrication was made possible by the opti- 

cal lithography of microelectronics together with magnetic material technology, 

which are both available now in our research laboratories. 

The second point of our experiment is an application of holographic technique to 

measure the phase difference of electron waves having passed around the toroid. 

Let us explain the principle of holography very br ief ly with Fig.4. Suppose a 

monochromatic electron wave irradiates a specimen and eventually reaches a screen, 

where only i ts intensity distribution of this object wave is recorded at f i r s t .  Then 

a part of the wave, called a reference wave, from the same source but free from the 

effect of the specimen is overlapped on the screen and we have a different pattern, 

which includes not only the intensity of the object wave but also its phase infor- 

mation in a form of interference fringes. The pattern recorded on the medium in 

the lat ter  way is called a hologram. 

The hologram is then irradiated by a choherent optical wave usually from a laser 

after the hologram is enlarged roughly by the wave length ratio. The interference 

fringes on the hologram act as a mixture of optical gratings and di f f ract  the inci- 

dent l ight  so as to repY~)duce the whole f ie ld  of the electron object wave with~ a 

visible l ight.  This is the principle of the holography, for which D. GaborlO~ot the 

Novel Prize in 1971. 

The most serious technical problem in electron holography is to assure good co- 

herence of wide electron waves. We have been successful in this point by using 

field-emission type electron source~l);1, electrons are emitted from a tungusten t ip  

l ike the one shown in Fig.5 and the sharpness of the t ip ensures good spatical cohe- 

rence. Fig.6 i l lustrates schematically the horogram formation in our apparatus. 

The hatched part shows the reference wave. When the specimen is empty, we have only 

a fringe pattern of equal spacings as shown in the enlarged part of Fig.7. The num- 

ber of fringes is a measure of good coherence and is some lO times as many as that 

by conventional electron sources. 

Fig.8 shows the view of an arrangement for the optical reconstruction. The op- 

t ical system may look complicated, but i ts function is only to adjust the size and 

position of the reconstructed real image. 

Fig.9 shows pictures taken by this apparatus from the same horogram of a single 

crystal of cobalt. 
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Fig.8 Optical arrangement for image reconstruction and 
interference microscopy. 

Fig.9 Image and interferograms optical ly formed from 
a hologram of a cobalt single crystal. 
(a)ordinaly electron-microscopic image, (b)interfero- 
gram, (c)contour map of phase change. 
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Fig.12 Ordinary(a) and Lorentz(b) electron-micrographs 
of a toroidal magnet. 

Fig.13 Interferogram of the toroidal magnet in Fig~12. 
(a) for  para l le l  comparison wave, (b) for  t i l t e d  
comparison wave. 
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Firs t ,  the usual electron microscopic image on the le f t (a )  is reproduced accor- 

ding to the holography pr inc ip les.  In this case the comparison l i gh t  beam, ref lected 

by mirror C in Fig.8, is omitted. The image shows only the out l ine of the hexagonal 

shape and the uniformity of i ts  thickness, but no phase information, 

When the comparison l i gh t  beam is superposed, we have an interferogram shown in 

the middle(b). Furthermore, we can adjust the d i rect ion of the comparison wave so 

that the fr inges on the background vanish as shown on the r igh t (c ) .  This corresponds 

to the coincidence of axes of two l i gh t  waves, i .e .  the comparison wave is pa ra l le l .  

In this f ina l  case(c) the concentric pattern is,  in fact ,  a contour map of the phase 

of the object wave caused by the magnetization within the crystal .  

Suppose two electron t ra jec tor ies  within the object wave as in Fig.lO. Then the 

phase dif ference between these two is described by the magnetic f lux  enclosed between 

them. I f  the two t ra jec tor ies  are those reaching adjacent dark l ines on the contour 

map, the phase dif ference must be just  2~and the enclosed f lux  equals to the f lux 

quantum h/e, i r respect ive of the electron energy. 

Thus we can say that the contour map for the para l le l  comparison wave is equiva- 

lent  to a project ion of the magnetic f lux  f i e l d  normalized by a uni t  of h/e. 

Now we w i l l  show the results about toroidal  magnets(Fig. l l ) .  The photographs 

in Fig.12 were taken with an ordinary electron microscope. Under usual experimental 

condit ions the electron def lect ion due to the Lorenze force is too small to af fect  

the image at just  focusing(a). However, in the image far  out of focus(b) the ef fect  

of the def lect ion can be recognized as white contrast at magnetic domain boundaries. 

Thus the closure structure of magnetization or equivalent ly  of magnetic f lux  is just  

as expected. 

Fig.13 shows the interference fr inges obtained by our holographic technique just  

l i ke  those for the cobalt crystal .  The pattern(a) for  the para l le l  comparison wave, 

i .e .  the project ion of the magnetic f lux ,  also shows the closed c i r cu i t  structure 

more accurately; the phase difference between the inner and outer space of the 

toro id is equivalent to some 6 wavelengths. From this we can estimate the tota l  mag- 

netic f lux  inside the toroid at same 6h/e, which was consistent with the magnetiza- 

t ion of permalloy 9500G,the thickness 400 ~ and the width 6400 A. 

An interferogram(b) obtained from the same hologram and t i l t e d  comparison wave 

can decide the d i rect ion of magnetization as well as the phase dif ference. Here the 

phase sh i f t  is measured as the discrepancy of fr inges between the outer and the inner 

spaces around the toro id.  

We found also the sample with the opposite d i rect ion of magnetization(Fig.14). 

In th is case the sample width is larger so that the phase dif ference is larger,  some 

8 wavelengths. 

We in ten t iona l l y  chose the thickness such that the sample is hal f  transparent 

for  the electron beam in order to count the number of fr inges or to trace them. Thus 

a part of  the electron wave has passed through the toro id and has f e l t  the magnetic 

f lux  inside. I t  should be remembered that our hologram is taken just  at the image 
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plane of the electron opt ical  system. The electron wave having passed through the 

toroid does not contribute the image of the inner or outer space around i t  within the 

accuracy of electron opt ical aberrations. In the experiment in the past the in ter -  

ference to be observed was that between electron waves both having t rave l led around 

a specimen; however, in our experiment, these waves are made in ter fere  with the 

th i rd  one, called the reference wave, so that the re la t i ve  phase dif ference between 

the former two can be determined where they do not overlap each other. 

As for  the f lux  leakage out of t ro ids,  these contour maps themselves reveal that 

the leakage was less than one f lux quantum so that i t  does not af fect  the conclusion. 

When the leakage is  serious, we can recognize i t  on the contour map as an example of 

unsuccessful preparation(Fig.15). 

In conclusion, we have succeeded in measuring the phase dif ference of the 

electron wave around magnetic toroids, which are consistent with the predict ion by 

Aharonov and Bohm. We would l i ke  to believe that we have added sol id experimental 

confirmation to this famous ef fect .  

Fig.14 Interferograms of a toroidal  magnet with magnetization 
d i rect ion opposite to that in Fig.13. 

Fig.15 Toroidal magnet with f lux  
leakage. (a)Lorentz micro- 
graph, (b)phase contour map. 



154 

References 

I )  Y.Aharonov and D.Bohm : Phys. Rev. 115 (1959) 485. 

2) G.Mollenstedt and W.Bayh : Phys. BI. I___8 (1962) 299, 

3) R.G.Chambers : Phys. Revo Let. 5 (1960) 3. 

4) H.A.Fowler, L.Marton, J.A.Simpson and J.A.Sudeth : J.A.P. 32 (1961) 1153 

5) D.S.DeWitt : Phys. Rev. 125 (1962) 2189, 

S.M.Roy: Phys. Rev. Let. 44 (1980) I I I .  

Bocchieri et  al : Nuovo Cimento 4_]_7 (1978) 475 ; 51 (1979) 1 ; 56 (1980) 55 ; 59 

(1980) 121. 

6) For example, D.Bohm and B.J .Hi ley  : Nuovo Cimento 52_ A (1979) 295 ; H.J.L ipk in:  

Phys. Rev. D23 (1981) 1466 ; U.Klein : Phys. Rev. D23 (1981) 1463. 

7) C.G.Kuper : Phys. Let t .  794 (1980) 413. 

8) A.Tonomura et  al : Phys, Rev. Let t .  48 (1982) 1443. 

9) D.M.Greenberger : Phys. Rev. D23 (1981) 1460. 

I0) D.Gabor : Proc. Roy. Soc. London A197 (1949) 454 ; Proc. Phys. Soc. 864 (1951) 449 

I I )  A.Tonomura et  al : J.Electron Microsc. 28 (1979) I . ;  



BPS Transformation and Color Confinement *) 

K.Nishijima 
Department of Physics,University of Tokyo 

Tokyo, Japan 113 

Interpretation of hadrons in terms of quarks and antiquarks has 

been so successful that one can no longer think of its substitute. 

The hadron spectrum and high energy hadron reactions are believed to be 

described by means of quantum chromodynamics (QCD). Thus, we feel the 

existence of quarks so real on one hand, but we have never detected 

isolated quarks on the other hand. In this way the explanation of the 

confinement of quarks and also of gluons became one of the central 

problems in QCD. 

In the lattice gauge theory the condition for quark confinement 

is given by the area law for the Wilson loop [i]. In the present paper 

we shall look for the corresponding condition within the framework of 

the conventional continuum field theory. As we shall see later this 

condition is given by the existence of certain bound states between 

a pair of Faddeev-Popov ghosts. 

= - ~F + A-2 B + ~B.B 4 ~.F g g 

+ i~gc.Dgc - ~(y D +m)~, (i) 

where covariant derivatives D are defined by g 

D c = ~ c + g A g  x C ,  

D ~ = (~g-igT-A 1~, (2) 

F = ~ A - ~ Ag  + g A  x A . 

We have made use of the abbreviations,S-T = SaT a and (S×T) a = fabcSbT c. 

Next we introduce the Becchi-Rouet-Stora (BRS) transformtion of 

Heisenberg-fields [2]. 

6A = D c, g 

6B = 0, 

1 
~c =- 2-gc × c, (3) 
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6c = iB, 

6~ = ig(c.T)~. 

This supersymmetric transformation can be expressed in terms of its 

generator QB as 

60 = i[QB, O]_, (4) 
+ 

where we choose the -(+) sign when O involves an even (odd) number of 

the hermitian anticommuting ghost fields c and c. Kugo and Ojima [3] 

have introduced another charge Qc satisfying 

i[Qc, c(x) ] = c(x) , i[Qc, ~(x) ] = - ~(x) . (5) 

It commutes with all other fields, and it defines the ghost number, 

namely +i for c and -i for c. These two charges satisfy the relations 

2 
i[Qc" QB ] = QB' QB = 0. (6) 

The second relation implies that the BRS transformation is nilpotent, 

namely, 62 = 0. 

Then we shall introduce asymptotic fields and their BRS transfor- 

mation. Because of infrared singularities in QCD the existence of 

asymptotic fields might be doubtful, nevertheless we shall simply 

assume it in the present paper. Then the BRS transformation for the 

asymptotic fields is linear. When ~a(x) = b(x) # 0 so that 62a(x) = 0, 

{a(x), b(x)} is called a BRS doublet. When 6a(x) = 0 but its parent 

f(x), satisfying ~f(x) = a(x), does not exist, a(x) is called a BRS 

singlet. Doublets and singlets are the only irreducible representations 

of the BRS transformation. 

By extending the assumed existence of asymptotic fields we shall 

further postulate the asymptotic completeness. The state vector space 

spanned by asymptotic fields in QCD will be denoted by ~. Kugo and 

Ojima [3] introduced a physical subspace ~phys by 

q phys = >II > QBI > = 

Then, by applying only the singlet asymptotic fields to the vacuum 

state a subspace of ~, denoted by ~S, is generated. Obviously we 

have 
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C--~ D ~ phys ~ ~S. (8) 

The S matrix exists as a consequence of the asymptotic completeness and 

commutes with QB" When le> and IB> belong to ~S' the unitarity 

condition of the S matrix can be expressed as 

<~I~> = <sls+sl~ > = <sls+P(~s)Sl~ >, (9) 

and similarly for SS~ This relation is a consequence of the Kugo-Ojima 

theorem [3]. P(F-~ S) stands for the projection operator to the subspace 

~S' so that no doublets show in the intermediate states of the up 

unitarity condition. In this sense, doublets in QCD are analogous to 

longitudinal and scalar photons in QED and are confined in the unphysical 

state vector space. Interpreting that singlets represent hadrons, the 

problem of color confinement reduces to that of demonstrating that both 

quarks and gluons are BRS doublets. 

We have already assumed that the vacuum state [0> belongs to ~ S 

and hence to ~Dhys. Thus we have QBI0> = 0 and consequently the BRS 

identity 

< o l 6 T ( - - - ) I o >  = o. (lO) 

In what follows we shall abbreviate <01T(-..) I0> as <...>. Then, by 

making use of the BRS identities we find the following Ward-Takahashi 

(W-T) identities [4]: 

- a 
~i<(Dlc)a(x), 6~(y), ~(z)> + $1<(Dic) (x), ~(y), @~(z)> 

= ig Ta(64(x-y) - 64(x-z))SF(Y-Z) , (ii) 

- a b - a b c 
~l<(Dic) (x), 6A (Y) ' AC(z)>v + ~I <(DIe) (x) , A (y), 6A (z)> 

• a 64 64 = lg~c( (x-y) - (x-z))DFH V(y-z) , (12) 

where M a bc = ifbac' and S F and DFH ~ denote propagators of the quark and 

gluon fields, respectively. We shall write 

< (Dlc) a(x) I a • 6~(y) , ~(z)> = g d4z'Gl(yz ' :X) SF(Z'-Z) , 

<(Dic)a(x) , ~(y), 6~(z)> = gld4y'SF(y-y')Gl(y'z:x). 

(13) 

(14) 
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The Fourier-transform of Eq. (ii) may be expressed as 

a -a 

(p-q) l-Gl(p, q)SF(q) + SF(P)(p-q)l-Gl(p, q) 

= iT a(S F(p)-S F(q)) . (15) 

a and -a by their spin zero projection In this equation we may replace G1 G1 

defined by 

a (0) (P-q) l(P-q)~ Ga(p, q) (16) 
G 1 (P, q) = (p_q) 2 

In order to simplify our argument we shall choose the Landau gauge 

(e = 0) in what follows. In this gauge we have ~IDI~ = 0, and possible 

poles in G1 due to massless vector particles will disappear in this 

projection. A pole due to the massless scalar particle is still present 

as can clearly be seen from the W-T identity 

<(Dlc)a(x) , cb(y) > = i~ab~iDF(X-y) , (17) 

where D F denotes the free massless propagator. This equation shows that 

DI~ generates a massless scalar particle, and we introduce asymptotic 

fields corresponding to this massless scalar particle as 

D~ ÷ ~, c ÷ r. (18) 

We then replace Dlc by Dlc - ~i~ and write F and F for G and G in 

Eqs. (13) and (14). The functions Fla(p, q) (0) and Fla(p, q) (0) so 

defined are free of the poles at (p_q) 2 = 0 except for the projection 

operator in Eq. (16). 

According to Nakanishi's theorem [5] the asymptotic field 

carrying the ghost number (-i) cannot be a BRS singlet, but it must 

be a member of a BRS doublet. Confinement is realized when ~ is 

the second generation of the doublet expressible as 

~d(x) = ~(x). (19) 

Then the BRS identity leads to 

<~l~(x) , 6~(y) , ~(z)> + <~l~(x) , ~(y) , 6~(z)> = 0, (20) 

and by subtracting Eq. (20) from Eq. (ii) we find 
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(p_q) l.F 1 a (p, q) (0)SF(q) + SF(P ) (p_q) l.~la(p, q) (0) 

= iTa(SF(P) - SF(q)). (21) 

We then put p - q = eP with p2 # 0, and apply the limiting procedure 

lime÷0~/~£ to Eq. (21). Since the individual terms on the £. h. s. 

of Eq. (21) are of the order of e because of the absence of poles at 

(p _ q) 2 = 0, we obtain 

Pi.Fla(p, P: p)(O)SF(P ) + SF(p)pl.~la(p, P: p)(0) 

a 8 
= iT PI'~--~I F(p). (22) 

F1 and F1 gain a possible dependence on the direction of P through 

the factor PIP /P 2 originated from the projection operator in Eq. (16). 

Eq. (22) shows that F 1 and/or F1 must share a pole with SF(p) at 

ipy + m = 0. For the symmetry reason both must have this pole implying 

that both 6~ and 6~ generate a pole at the quark mass. 

When ~ is the first generation of the doublet contrary to Eq. (19), 

however, the BRS identity (20) does not hold. Then we have to go back 
a 

to Eq. (15) because Eq. (21) does not follow. Since the functions G 1 
- a 2 

and G1 are not free of the pole at (p-q) = 0, the individual terms 

on the £. h. s. of Eq. (15) are generally of the order of 1 and only 

the sum of the two terms is of the order of e. Then application of 

the limiting procedure mentioned above leads to an equation in which 

derivatives of S F appear not only on the r. h. s. but also on the 

i. h. s. in a sharp contrast to Eq. (22) in which the S F on the i. h. s. 

is not differentiated. In such a case, however, we cannot conclude 

that G 1 and GI must have a pole at the quark mass. Perturbation theory 

falls into this category. 

Thus, when Eq. (19) holds, {~in, 6~in} represents a BRS doublet 

and quarks are confined. A similar argument starting from Eq. (12) 

shows that gluons are also confined under the same condition. 

We shall reexpress the condition (19) in a more convenient form 

by using the BRS identity. 

O = <~(x) , F(y)> 

= <6d(x) , F(y) > 

= - <d(x) , 6F(y)>. (23) 
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This implies the existence of 6F. Since F is the asymptotic field Of 

c and 6c ~ c × c, there must exist the asymptotic field of c × c 

carrying the same set of quantum numbers as that of c but for the ghost 

number. Conversely, when 6F exists, there must be an asymptotic field 

for which <d, 6F> ~ 0. Then we can replace D~c in Eqs. (13) and (14) 

by Dlc - ~16d to introduce the poleless vertex functions FI and FI. 

After that we can repeat the same argument leading to the quark con- 

finement. 

Thus the existence of the asymptotic field for c x c is a suffi- 

cient condition for color confinement. Quarks and gluons are confined 

when they form bound states with the ghost c as is clear from the 

explicit expressions for 6~ and 6A in Eq. (3). When the ghost c itself 

forms a bound state with another ghost, the ability of forming a bound 

state with the ghost is communicated to other colored particles through 

the BRS identities. 

The Bethe-Salpeter equation for the bound states between a pair of 

Faddeev-Popov ghosts can be solved exactly in the ladder approximation, 

but the normalization integral is not convergent. It can be shown, 

however, that introduction of a parameter of the dimension of mass 

is necessary for the convergence of the normalization integral. 

A promising way of improving the approximation to make the normalization 

integral convergent is to exploit the renormalization group method in 

which a mass parameter enters as a renormalization point. 

*) A preliminary version of the present paper will be published in 

Physics Letters. 
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COVARIANT OPERATOR FORMALISM OF GAUGE THEORIES 
AND ITS EXTENSION TO FINITE TEMPERATURE 

Izumi OJIMA 
Research Institute for Mathematical Sciences, Kyoto University 

Kyoto 606, Japan 

On the basis of "thermo field dynamics" allowing the application of the Feynman dia- 
gram method to real-time Green's functions at T#0°K, a field-theoretical formulation of 
finite-temperature gauge theory is presented. It is an extension of the covariant 
operator formalism of gauge theory based upon the BRS invariance: The subsidiary con- 
dition specifying physical states, the notion of observables, and the structure of 
the physical subspace at finite temperatures are clarified together with the key for- 
mula characterizing the temperature-dependent "vacuum". 

i. Introduction 

Although thermodynamic aspects of gauge theory are currently discussed in the so-called 
imaginary-time formulation of QFT at finite temperatures, which is believed to be the 
only choice pertaining to the Feynman diagram method, this belief is not correct as 
shown by Takahashi and Umezawa [i]. They proposed a real-time formulation named 
"thermo field dynamics" in which statistical averages are expressed in the form of 
temperature-dependent "vacuum" expectation values and in which the Feynman diagram 
method can be applied to real-time causal Green's functions at a finite temperature 
(i.e. statistical averages of time-ordered products). In contrast to the imaginary- 
time formulation having no time variable, we have here both a temperature and a time 
variable without being bothered by the cumbersome discrete energy sums over the 
Matsubara frequencies and the full information about spectral functions is attained 
without analytic continuation in energy variables. 

Thus, this is a formalism to be regarded as a natural extension of QFT (at T=0°K) 
to the case of T#0°K. According to [2], we briefly describe here a field-theoretical 
formulation of gauge theory at T#0°K on the basis of the covariant operator formalism 
of gauge theory [3] and this "thermo field dynamics". 

2. Thermo field dynamics 

The point of thermo field dynamics [i] is to introduce fictitious "tilde" operators 
corresponding to each of the operators A describing the system and to perform a 

temperature-dependent Bogoliubov transformation mixing A's with AT's, which realizes 
the state space at a finite temperature and the temperature-dependent "vacuum" 10(S)> 
giving statistical averages. 

This is seen in the simplest example of a harmonic oscillator defined by 

H = caTa, [a,a #] = i. (2.1) 

By introducing tilde operators &, &T[=(~)T=(ar~)] as duplicates of a,a # commuting with 
a,a T, 

[~,~¢] = i ,  [ a , ~ ]  = [ a t , ~ ]  = . . .  = O, ( 2 . 2 )  

the temperature-dependent "vacuum" 10(6)> is determined by the Bogoliubov transforma- 
tion as follows: 

a(6) ~ a Coshe(6)-~tsinhe(6), a(6) ~ ~ coshe(6)-aCsinhe(6); (2.3) 

cosh@(~) E I/(l-e-6S) I/2, sinh@(6) E e-SS/2/(l-e-6e)i/2; (2.4) 

a ( 6 ) 1 0 ( 6 ) >  = ~ ( 6 ) 1 0 ( 6 ) >  = O. (2,5) 

It can easily be checked by the aid of (2.3)~(2.5) that statistical averages over 
the Gibbs ensemble are given by the "vacuum" expectation values: 
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<A> ~ Tr(Aexp(-6H))/Tr(exp(-6H) = <0(6)IAI0(6)>. (2.6) 
The origin of the Bogoliubov transformation (2.3)~(2.5) is traced to the following 
relations: 

Io(6)> = ~n>oe-6n~121n>eln>l(1-e-6E) -1/2 
= exp[e(6)(at~t -~a) ]10 > ~ exp(-iG)10>, (2.7) 

a(6) = exp(-iG)a exp(iG), &(6) = exp(-iG)a exp(iG). (2.8) 

Although the unitary operator exp(-iG) has its proper meaning only for the system 
with finite degrees of freedom, these formulae will be useful heuristically also in 
the later discussion of gauge theory. 

Now, the essence of (2.3)~(2.5) can be summarized in a formula 

exp[6(H-H)/2]MI0(6)> = MTI0(6) >, (2.9) 

which reproduces (2.5) in the case of M=a,a Twith the help of (2.1)~(2.4) and H=e~%~. 
By extending the definition of ~ antilinearly, (2.9) holds for any polynomial M of a 
and aT. Taking account of the commutativity of tilde and non-tilde operators, we can 
derive from (2.9) the KMS condition [4] characterizing Gibbs states , 

<AB(t)> = <B(t-i6)A>. (2.10) 
The basis for (2.9) can be found [2] in connection with the algebraic formulation 

of statistical mechanics[5] due to Haag, Hugenholtz and Winnink [6] and Tomita-Takesaki 
theory [5]. The key concepts there are the modular conjugation operator J and the 
modular operator exp(-6H) defined by 

Jexp(-SH/2)MI0(6)> = M%10(6)> for  M - ~ ,  (2.11) 

where ~Tg is the algebra of operators desribing the system. 

satisfying j2 = l, J10(6)> = 10(6)>, 

J~[J = n1~' (~ commutant of ~Tg ), 
and H satisfies 

~[o(6)> -- o, 
exp (itH) ~ exp (-itH) = ~rg , 

J~J = -2. 

Thus, by identifying M with JMJ and H with H-H, 

= JMJ, 

= H-H = H-JHJ, 

(2.9) can be derived from (2.11) with the help of (2.i6) and (2.12). 

J is an antiunitary operator 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
(2.18) 

(2.17) and (2.13) explain the com~utativity of tilde operators with nontilde ones. 
In the case of fermions, however, ~ should anticommute with @ in order to keep the 
Bogoliubov transformation meaningful, whence (2.17) for fermions is modified by the 
Klein transformation [2]: 

= iJ~Jexp(i~(F-JFJ)). (2.19) 

Here F is the fermion number operator. In contrast to (2.9) which requires modifica- 
tion to cover the cases with fermions, (2.11) remains unchanged, and hence, it should 
be taken as the key formula characterizing the temperature-dependent "vacuum" I0(8)> 
at T=l/kB6 independently of a specific model (except for gauge theory discussed later 
in §4). 

Now, corresponding to the "total" Hamiltonian (2.18) which is consistent with (2.16), 
the "total" Lagrangian~of the "total" system consisting of tilde and non-tilde 
objects is given by 

.~ = -'g~- .~ = -~--J='gJ. (2.20) 

Since the Gell-Mann-Low relation can be verified relative to the splitting of~into 
the free and interaction parts,~g.=~go+~i, and since the Wick theorem holds (at the 
operator level in contrast to the Blo~h-D~Dominicis-Wick theorem in the imagin~ 
time formulation), we can develop the Feynman diagram technique also here on the basis 
of the propagators such as 
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<o(B ) T~ (x) ] (~t (y),$ (Y))I 0(~ )> 

[i/(p2-m2+i0) 0 ] t 
0 JOB(i i'8); (221) 

= )(2~)4 -i/(p2-m2-iO) 

cosh8(B) sinhB(8)], (2.22) 
u~(I~i,8) : [si~e(8) ooshe(8) 

where 8(8) is given by (2.h) with ~ replaced by (~2+m2)i/2. 

3. Covariant operator formalism of gauge theory [3] 

To apply thermo field dynamics discussed in §2 to the case of gauge fields, we reca- 
pitulate the points relevant here of the covariant operator formalism of gauge theory 
based upon the BRS invariance [3]. The Lagrangian density 

: -F ap~Fa'p~/4+~matter ( ~,~ ~ )-A~PBa+~BaBa/2-i~Pca(D c) a (3.1) 

is invariant under the BRS transformation whose generator is given by 

% e Id3x[Ba(D0c)a-Baca+(i/2)gc~(cxc)a]; (3.2) 

[iQB,A p] = D c, [iQB,B] = 0, [iQB, ~] = igcaT~, 

{iQB,C} = -(g/2)c×c, {iQB,~} = lB. (3.3) 

Although the state space~Ynecessarily contains unphysical particles with negative norms, 
they have been shown [3] to decouple from all the physical processes by quite a general 
norm-cancellatiOn mechanismcalled quartet mechanism. This is based upon the subsidi- 
ary condition specifying the physical suhspace ~physe{Iphys>} given by 

%Iphys> = 0, (3.4) 

and the relation for the projection operator P onto the subspace % of states con- 
taining physical particles alone, hys 

P+{QB,R} = 1. (3.5) 

The basic properties of QB leading to (3.5) are the following: 

: : o, (3.6) 
[iQc, %] = %, (3.7) 

where Qc is the Faddeev-Popov (FP) charge 
[iQc,e] = c, [iQc,C] = -e, otherwise [iQe,¢] = 0. (3.8) 

Since the positive semi-definite space %hys contains zero-norms, the usual Hilbert 

space with positive definite metric is obtained by taking the quotient of ~phys with 
respect to its zero-norm subspace~2 0 =IB[2, 

 phys   hys'VO :  phys (3.9) 
in which every physical process is described. The trace operation in the statistical 
average should also be taken in this Hilbert space H _ , 

^ ^ ~nys 

<A > = Tr(e-BHA)/Tr(e -SH) = Z<ile-8~Ali>/Z<:le-8:[:>, (3.10) 
where H and A are operators in Hphy s obtained as quotient mappings from the Hamiltonian 

H and an observable A in,satisfying the defining relation for observables [7,3], 

[%,A]~phy s = o. ( 3 . n )  
For the observable A satisfying a stronger condition 

[%,A] = 0, (3.12) 

(3.10) can be written [8] in terms of the trace in the total space~ as 
<A > = Tr(Aexp(-BH~:~Qc))/Z(8) ; Z(8) = Tr(exp(-SH+~Qc)) , (3.13) 

by using (3.5) and the fact that Qc vanishes in~hys=P~2. (3.13) applied (in disre- 

gard of (3.12)) to FP ghosts leads to the periodic boundary condition of their tempera- 
ture Green's functions [9,8]. 
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4. Gauge theory at finite temperature [2] 

Following the discussion in §2, We first try to express the r.h.s, of (3.13) in a form 
of a "vacutum" expectation value 

Tr(Aexp(-BH+~Qc))/Z(~) = <0(~)IAIO(6)>, (4.1) 

irrespective of the condition (3.12) to guarantee the equality in (3.13). In this 
case, the heuristic formula for IO(B)> corresponding to (2.7) is 

I0(~)> = Z e x P ( - ~ k / 2 - i ~ { / 2 ) ~ l k > ~ l b / z ( ~ ) l / 2  (4.2) 
with k,~ 

HI b = Eklb,  iQclb = Nklb;  (4.3) 

= ~ (4.4) 

Note that the trace in'with indefinite metric should be understood as 

Tr~ [ (n-1)k~<~ I~I k>. (4.5) 
k,~ 

To generalize the relation (2.11) characterizing I0(6)> to the case of gauge theory 
with indefinite metric and to determine the propagators, we work out explicitly the 
Bogoliubov transformation leading to (4.1) and (4.2) for the free Aheli&n gauge theory 
in Feymman gauge (~=i): t 

Io(B)> = exp[[d,(m)e(l~l ,~){-at(P)~ ~ (P)+~ (P)a~(P) 
-i(ct(p)~t(p)+~(p)~(p)+~ (p)e (p)+c-(p)c(p)}]lO>; (4.6) 

a ( P , 6 )  = a ( p ) c o s h e ( l ~ l , 6 ) - ~ t ( p ) s i n h e ( l ~ l , 6 )  ~ ~ ' 

c(p,~) = c(~)coshe(l~l ,B)-~' (p)sinhe(}t l ,~) ,  
~(P,B) : ~(p)coshe(l~l ,~)+~t(p)sinhe(l~l ,~),  (4.7) 
a (p ,S) lO(~ )>  = c ( p , 6 ) l O ( ~ ) >  = ~ (p ,6 )10 (6 )>  = O, (4 .8 )  ~ 

with similar equations to (4.7), (4.8) for a , c, ~. According to (2.17) for bosons 
and ( 2.19) for fermions, tilde operators are defined by 

~ = Ja J, ~ = iJcJexp(-WQc) , ~ = iJ[Jexp(-~fQc),. (4.9) 

with the antiunitary J satisfying (2.12), (2.13) and the "total" FP charge 

Qc ~ Qc-JQc J" (4.10) 

The relations (4.8) as well as the ones with tildes are unified into 
Jexp [ - (6H-~Qc) /2 ] (  ~0 (6 )>  = ~%10(6)>,  (4 .11)  

which is a generalization of (2.11). The propagators to be used in the Feynm~n diagram~ 
are given in momentum space as 

[~I ~ 2 [ o -1/(~27~o)] 

0 -1/(p2-i0J 
where Um(l~l,6) is glven by (2.22) with m=0. 

In (4Y12), we have allowed the appearance of unphysical negative norms by applying 
(4.1) to non-observable quantities A ,c and ~ for the sake of developing the Feynman 
diagram me-~od. Therefore~ we have {o treat again at finite temperature an indefinite- 
metric space~(6) obtained by applying ip, i~, c, ~ etc., to the "vacuum" I0"(6)>. 
T--h~s ~s taken care of by the "total" BRS charge defined by 

~s ~ ¢~-{~ ~ Cs-i~exp(-~ c) (4.13) 
which sat~s~ies~10(6)>=0. Since Qc defined hy (4.10) andes satisfy 

0, : %, (414) 

similarly to (3.6) and (3.7), the .zuartet mechanism discussed in §3 works again here 
on the basis of the subsidiary condition for physical states 
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ensuring the positive semi-definiteness of ~(~) _ . Likewise, an observable ~ is 
defined similarly to (3.11) by the condition pnys 

[Q-~,O]~(B)phy s -  = O, (4.16) 

which allows us to transfer ~into the physical Hilbert space H(B)phys~(~)phys/~B)O 

by taking its quotient mappingS. Since H, H-~Qc/~, ~c and J also satisfy (4.16), 

the relation (4.11) for the observable O satisfying (4.16) can be transferred into 

~(B)phy s, 

where we have used Qc=0 valid in H(B)phy s. The relation (2.11) for the standard cases 

with positive metric is thus recovered in H(B)phy s. 

At the end, we add a few comments. Firstly, as for the renormalization of the Feynman 
diagrams in this formalism, it has been proved [i0] that all the UV divergences at 
T~0°K are removed by the eounterterms set up at T=0°K. Secondly, the Lorentz (boost) 
invariance of relativistic QFT is shown to be broken spontaneously at T~0°K without 
any Goldstone bosons but with continuous zero-energy spectrum due to particle pairs 
having opposite energy-momenta [ii]. Thirdly, in view of the general condition imposed 
on the well-defined charges, supersymmetry turns out to be unable to be implemented at 
T~0°K [ii]. Finally, the application of this formalism to the curved space-time [12] 
and to quantum gravity will be of interest. 
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PATH INTEGRATION AT THE CROSSROAD OF STOCHASTIC AND DIFFERENTIAL CALCULUS 

C4cile DeWitt-Morette, Department of Astronomy and Center for Relativity, 
The University of Texas, Austin, Texas 78712 

Ever since Newton differential calculus has been a very successful language for 

the description of physical systems; stochastic calculus on the other hand has only 

recently become an instrument of thought but has already been used in challenging 

problems. For instance the traditional quantization scheme can be summarized in the 

following chart. 

The description of a physical system starts with 
its configuration space 

or its phase space 

its dynamics being given by 
a lagrangian 

or an hamiltonian 

The classical lagrangian or the classical hamiltonian is then used to 
quantize the system 

Lagrangian -+ Hamiltonian ---+ Hamiltonian operator 

I t 
i i 
I I 
i____+ Path +___I 

integration 

where the dotted arrows indicate that the corresponding construction is 
not unique. 

The stochastic scheme on the other hand proceeds as follows. 

The description of a physical system starts with 

a fibre bundle on its configuration space 
or on its phase space 

its dynamics being given by 

a stochastic differential 
equation 

Then there is a unique prescription for the following constructions. 

stoch, diff. eqn. ÷ Path integral ÷ Hamiltonian operator 

+ 

Its WKB approximation 
(Lagrangian) 

Here classical physics is obtained as the WKB limit of quantum physics. 

Before presenting some applications of the stochastic scheme, I recall briefly 

the key concepts of stochastic calculus. Differential calculus is based on the as- 

sumption that dx(t) is of order dr; but if dx(t) is for instance of order (dt) I/2, as 

in brownian motion, then lim dx(t)/dt is undefined and, at best, one can only speak 

of the probability that a particle which is at x o at time t o will be at x ° + dx(t) at 

time t o + dt. Thus stochastic calculus begins with a probability space (Q,~,w) where 

Q is a set of points ~6~, the events are subsets of Q which make a ~ algebra ~, and 

random variables are measurable functions 
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@: (Q,F) ÷ (l n, Borel o-algebra) henceforth abbreviated to @: Q ÷ R n 

Random or stochastic processes are sets of random variables indexed, for instance by 

time T, {x(t)} where 

x: T x ~ ÷ ~n x(t): ~ ÷ E n 

w is a measure on Q such that w(~) ~ I. For quantum physics the concept of measure 

has to be generalized to the concept of prodistribution - technically a projective 

family of tempered distributions on a projective system of finite dimensional spaces 

[I]; a prodistribution is defined by its Fourier transforms ~w. The condition 

w(~) = 1 becomes ~(0) = I. Here I shall simply refer to measures, promeasures, pro- 

distributions as "integrators". 

A stochastic differential equation defines a stochastic process x in terms of a 

known process z, e.g. let z: T x Q + ~ be brownian with z(t o) = 0 and let 

t 

x(t,co) " Xo(~O) + 

t o 

X(x(t ,co))dz (t,co) where X is given. 

It is usually abbreviated to dx = X dz , X(to) = x O. 

Stochastic integrals f X(x(t))dz(t) when dz(t) is not of order dt have been 

given meaning by It8 and by Stratonovich. 

Very few stochastic differential equations can be solved explicitly, but expec- 

tation values of functions of stochastic processes 

E¢(x(t)) := ~ dw(co)~(x(t,0~)) := <~(x(t))> 

are functions of t and the initial point x o = x(t o) whose properties can be deter- 

mined from the stochastic differential equation satisfied by x(t) without solving it. 

The prototype of such a situation is the Feynman-Kac formula: given the stochas- 

tic differential equation 

{ dx=(t) = ~i(x(t))dzi(t) +A=(x(t))dt 

dv(t) V(x(t))v(t)dt 

x ( t  o) = x o 

v ( t  o) = I 
(1) 

Then T(t,Xo): = ~ dw(~) v(t,m)~(x(t,m)) is a solution of the diffusion equation 



~2~ 
=~ x~(xo)X~(x o ) ~  _ ~ -  

at i 
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+ A ~ (x o) ~ + V(Xo)~ :=~ 

~(to,X O) = #(x O) (2) 

To obtain a path integral solution of the SchrDdinger equation for H = i~ with ~ = 

i H A + A = 5 + I V one must modify the above scheme and work with complex gaussian 
2 m 5x o i~ 
(technically prodistributions) over the space of paths vanishing at t rather than t o . 

Note that the SchrDdinger equation obtained from the stochastic process (i) where V 

is replaced by V/i~, is not the equation of a particle in an electromagnetic poten- 

tial; indeed there should be an A 2 term. One can, of course, modify the stochastic 

equation (i) to bring out the desired terms but then one is faced with having to 

choose the order of the factors in the hamiltonian operator. On the other hand if 

one sets up the problem on the appropriate fibre bundle one has an obvious choice for 

the stochastic differential equation. In the case of a particle in an electromag- 

netic field the appropriate fibre bundle is the U(1) bundle over the configuration 

space. Given a fibre bundle the "obvious" choice of stochastic differential equation 

is described in the two following examples where (i) the fibre bundle is a principal 

fibre bundle (ii) the fibre bundle is an associated vector bundle [3], [7]. 

i) A particle of mass m in a riemannian space M, dimension n, metric g, with the 

riemannian connection. 

Let O(M) be the orthonormal frame bundle, p e O(M) is a pair (x,u) where x eM and u is 

a frame at x 

u: ~Rn -> T M 
X 

Given a path x: T÷M, x(t o) = x o, and a frame u o at Xo, the connection defines a path 

u: T + O(M), u(t o) = u o and a map 

such that 

X: O(M) x ~n ÷ T O(M) 

d u ( t )  = X t u ( t ~ t u ( t ~ - l , ,  , , ,  , , ,  d x ( t )  
dt dt 

Recall that dx(t)/dte Tx(t)M and (u(t))-idx(t)/dt e ~n . If the path x is not dif- 

ferentiable, one can define a stochastic frame by the corresponding stochastic dif- 

ferential equation (in the Stratonovieh sense because It8 calculus is not tensorial) 



169 

du(t) = ~X(u(t))dz(t) , 

where ~ = -/(~/m) 1"2 and z is brownian, the brownian path z being multipled by ~, so 

that ~z has the dimension of length. A stochastic path on M is the projection of a 

path on the bundle: x(t) = ~(p(t)). Given an arbitrary (good) function ~: M ÷ ~, 

then ~ dw(o)~(~(p(t,~)) is the path integral representation of the solution ~(t,Xo) 

of the diffusion equation 

5~ 1 ~2 
--=-- A~ 
5t 2 

~(to,X o) = ¢(x o) 

where A is the Laplace-Beltrami operator on M defined by the metric g on M. It is an 

easy matter to write the stochastic differential equation which gives a diffusion 

equation with a vector and a scalar potential. The corresponding path integral has 
-2 -i 0 

been computed as an expansion in powers of ~ for the terms of order ~ , ~ , ~ in 

[I] and more recently for the terms of order 1 by a recursion method [2] which in 

principle can give higher order terms in ~. 

ii) A particle in a gauge field in flat space. 

t ~(x(t)) be the parallel transport from t to t o of ~(x(t)) along the stochas- Let ~t 
o 

tic path x(t) = ~z(t) for ~ = (5(m)) 112 and z brownian. Then ~ ~ dw(~)~o~(X(t,~)) is 
i 

the path integral solution ~(t,x o) of the diffusion equation 

~(to,X o) = ~(x o) 

where A is the laplacian constructed from the covariant derivatives defined by the 

gauge connection. 

Both examples can be summarized by saying that a stochastic connection yields a 

diffusion equation with covariant derivatives. Starting from a stochastic process on 

a fibre bundle has the following advantages: 

i. It is a unifying scheme which applies to a wide class of apparently different 

problems [3]. 

ii. It gives simple answers to such problems as parallel transport along a brownian 

path, short time propagator on riemannian manifolds, canonical relationship between 

lagrangian function and hamiltonian operator. 

iii. It is cast in a framework which guarantees gauge invariance. 

The Feynmn-Kac formula and its generalization to stochastic processes on fibre 

bundles is but a small example of the bartering which goes on at the crossroad of 
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stochastic and differential calculus [4]. Stochastic calculus is also used in quan- 

tum field theory [5], [6]. 
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General relativity and quantum field theory are two brilliantly successful fun- 

damental theories of physics. It is, therefore, of very fundamental importance to 

unify both theories in a consistent and beautiful manner, because if it were impos- 

sible to do so then either general relativity or quantum field theory might have to 

be abandoned in order to achieve the ultimate unified theory. The purpose of this 

talk is to claim that a quantum field-theoretical formalism of gravity has been for- 

mulated in quite a satisfactory way. 

Unfortunately, however, there seems to be no consensus about what theory of quan- 

tum gravity is to be called satisfactory. Relativists usually expect that quantum 

gravity should inherit the geometrical concept of general relativity. On the con- 

trary, according to most particle physicists, quantum gravity is nothing more than 

a quantum field theory of massless spin-two particles, and though the Einstein gravity 

is unitary and Lorentz invariant, it is not satisfactory because it is not renormal- 

izable. Their primary concern in quantum gravity is thus not the connection between 

the spacetime structure and gravity at the quantum level but how to remove the ultra- 

violet divergence in perturbation theory. 

I completely disagree to such a standpoint. It is totally nonsense to discuss 

the divergence problem of quantum gravity in perturbation theory, because Feynman 

integrals become meaningless when the contributions from the energies greater than 

the Planck mass are significant. In other words, since the gravitational constant K 

is a fundamental constant at the same level as the light velocity c and the Planck 

constant 4, the perturbation expansion in quantum gravity is mathematically inade- 

quate just as the expansioninpowers of I/c or ~ is. Accordingly, quantum gravity 

must be formulated in a non-perturbative way. Of course, it is a very important and 

extremely difficult problem to invent a divergence-free non-perturbative approxima- 

tion method, but I emphasize that it is a problem at a stage different from construct- 

ing a satisfactory formalism itself. I believe that the invention of an appropriate 

approximation method is not a prerequisite for the judgement that the formalism is 

satisfactory. 

I make some comments on the path-integral formalism because one might assert 

that it already provides a satisfactory formalism for quantum gravity. The path- 

integral formalism is well-formulated for scalar field theories and it yields correct 

results in perturbation theory. I must emphasize, however, that in gauge theories 
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and in quantum gravity, the non-perturbative approach based on the path-integral 

formalism has n__o_o justification for its validity, because the proof of unitarity has 

been made only in the perturbative way. Since the non-perturbative functional meas- 

ure of a path-integral is quite ambiguous, its definition should be made so as to 

.guarantee unitarity, but there is no idea for finding such a definition. I believe 

that the path-integral formalism may be at best a convenient calculational technique, 

but it cannot be worth being called a fundamental formalism. Indeed, given an oper- 

ator formalism, it may be possible to derive the corresponding path-integral, but 

the converse is generally impossible. This is because the path-integral formalism 

does not contain complete information; for example, it has no information concerning 

the hermiticity assignment for field operators in the indefinite-metric case. 

In my opinion, a satisfactory operator formalism should be based on the follow- 

ing four principles: 

i. Lagrangian and canonical formalism. 

2. Manifest covariance. 

3. Indefinite-metric Hilbert space with subsidiary conditions. 

4. Asymptotic completeness. 

I believe that mathematical rigor should not be regarded as a basic principle. The 

positivity of Hilbert-space metric is mathematically very convenient, but it is rather 

a source of various pathological features of quantum field theory. As is well known, 

it is inevitable to use indefinite metric in manifestly covariant gauge theories. 

Though a consistent positive-metric formalism of quantum electrodynamics is possible 

in the Coulomb gauge, I conjecture that no consistent non-perturbative formalism is 

possible in the positive-metric Hilbert space for non-abelian gauge theories nor for 

quantum gravity. 

The celebrated operator formalism of a gauge theory is the Gupta-Bleuler formal- 
1 

ism for quantum electrodynamics. It is a satisfactory formalism from my point of 

view. But I note that it is more reasonable to introduce an auxiliary scalar field 

B(x) into the fundamental Lagrangian. I believe it natural to have a gauge-fixing 

condition as an independent field equation. Then B(x) should be regarded as one 

of fundamental fields. I wish to call such a formalism, in general, "B-field formal- 

ism." The Landau gauge can be properly formulated only in the B-field formalism. 

It took longer than a quarter of a century to achieve the correct extension of 

the Gupta-Bleuler formalism to non-abelian gauge theories. This too much long delay 

has, unfortunately, brought people's blind confidence in the path-integral formalism. 

The manifestly covariant canonical formalism of non-abelian gauge theories was formu- 

lated quite successfully by Kugo and Ojima. 2'3 The basic ingradients of the Kugo- 

Ojima formalism are as follows: 

I. B-field formalism. 

2. Correct hermiticity assignment of the Faddeev-Popov (FP) ghosts. 
4 

3. Becchi-Rouet-Stora (BRS) invariance. 



173 

Then it is crucial to note that there exists the BRS charge QB and that it is nil- 

potent (QB2=0) and hermitian (Q~ =QB ). The physical states are defined by a subsid- 

iary condition 

QBlphys> = 0. 

Then one can quite generally prove the unitarity of the physical S-matrix under the 

postulate of asymptotic completeness. 3'5 This fact is extremely important because it 

is the only non-perturbative proof of unitarity in non-abelian gauge theories. 

Now, I proceed to the manifestly covariant canonical formalism of quantum grav- 

ity. 6-20 As in the Kugo-Ojima formalism, it is natural to introduce the B-field 

bp(x) and a pair of the hermitian FP ghosts c°(x) and -cT(x) and set up the 

fundamental Lagrangian in such a way that the action integral is BRS invariant. 

But it must be remarked that there is an important difference from the case of the 

Yang-Mills theory: The invariance under the general coordinate transformation in 

general relativity is a spacetime symmetry. Hence the corresponding BRS invariance 

is also a spacetime symmetry. I defined the "intrinsic" BRS transformation ~, as 

a fermionic derivation satisfying !2=0, by 6 

HI'''~ k k H i ~I'''X'''Hk 

~(~ V l . . . v )  = <( Z ~X c "~ Vl...v~ 
i = l  

Z ~ % ~l'''~k 

j=lOV.c] .w Vl...%...v Z) 

for any classical tensor 

for convenience.) 

~l'''Hk 
@ and by (The signs of 6 and c are changed 

~I...~ -- p 

6(x ~) = <c H, whence 6(c D) = 0, 

6__(L) = ib , whence 6_(b v) = O, 

[!,~v] = -<~vc~.~. 

Here ~(x H) = <c H is owing to the basic rule of constructing the BRS transform, 

namely, the rule that the infinitesimal transformation function is replaced by one of 

FP ghosts. The vanishing of 6(c H) represents the abelian nature of the translation 

which is the global version of the general coordinate transformation. The more con- 
21-25 

ventional BRS transformation, which I denote here by ~,, is given by 

!,(e) = !(@) - <c~9 

for any field ~(~ b),L). The second term is the "orbital" part of the BRS trans- 

formation. 
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The gauge-fixing term ~GF is chosen so as to be a scalar density under the 

general linear transformation. I believe that the requirement of general linear in- 

variance for gauge fixing is quite natural, because the introduction of the Minkowski 

metric ~ into the fundamental Lagrangian is too abrupt and destroys the spirit Of 

general relativity unnecessarily violently. The simplest, most natural expression 

for ~GF is given by 

~GF = -K-ig~b~ ' 

where ~V E _~g g~V with g H det g~ . It is noteworthy that general linear invari- 

ance can be realized only in the framework of the B-field formalism. 

The FP-ghost term ~FP is determined by the requirement that 

-i 

-~g (~GF + ~FP ) = ~(iK-Ig~'~); ~ v 

then 

~FP = -igP~Tp'~vcP" 

The total Lagrangian is given by 

"~ = "~E + ~GF + ~FP + ~M' 

where ~E is the Einstein Lagrangian, 

~m = (2K)-I~ R, 

and ~M denotes the matter-field Lagrangian. 

It is very important to note that ~FP contains simple derivatives only but 

n__o_ocovariant derivative. Its form is quite similar to the FP-ghost term of quantum 

electrodynamics. Though it is widely believed that quantum gravity is similar to the 

Yang-Mills theory, I emphasize that quantum gravity is much more similar to quantum 

electrodynamics. This feature is, of course, the consequence of the abelian nature 

of the translation group. The reason why people could not be aware of this very 

simple observation is that they did not make clear separation between the intrinsic 

part and the orbital one. 

Since the operator formalism which follows from the above Lagrangian ~. is of 

outstanding beauty, I wish to claim that it is the "correct" formalism of quantum 

gravity. One might say that since the choice of ~GF +~'FP is rather arbitrary, 

the fundamental thing is the classical Lagrangian. But I disagree to this opinion. 

Since quantum theory is to be more fundamental than the classical theory, the quantum 

Lagrangian must be more fundamental than than the classical one. Hence I believe 
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that the expression for ~GF + ~FP should be uniquely determined in the correct 

theory. This standpoint is very crucial also in considering quantum field theory in 

a background curved spacetime. Since it is usually constructed on the basis of clas- 

sical general relativit~Duff 26 has criticized it by pointing out that the starting 

Lagrangian is quite ambiguous owing to the freedom of field redefinition. His dif- 

ficulty is totally resolved if one starts with the full quantum-gravlty theory having 

the uniquely specified gauge fixing. 

Now, the field equations which follow from 2_ are as follows: 

I I 
Rp9 - ~ gp R - Epv + ~ gpx)E = -KTpV (quantum Einstein equation), 

with 

Ep~) - 3pb9 + i K 3 p L ' ~ ) c  p + (p ~ x)), 

3pg~$/x) = 0 (de Donder condition), 

3 (~P~vc 0) = 0, 

@p(~@vcL) = 0. 

Taking covariant derivative of the quantum Einstein equation, I obtain a remarkably 
• 6 simple equatlon, 

~ (g$1~)b 0) = O. 

The four equations other than the quantum Einstein equation can be put together into 

~ ( ~ x )  = 0, 

where X = (xt/K,bp,CO,%).__ This  remark w i l l  become i m p o r t a n t  v e r y  l a t e r .  

Canon ica l  q u a n t i z a t i o n  can be c a r r i e d  out  c o n s i s t e n t l y  w i t h o u t  employing D i r a c ' s  
• 2 7  

method of  q u a n t l z a ~ i o n  (which h a s s e r i o u s  d i f f i c u l t y  i n  t he  quantum v e r s i o n  of con-  

s t r a i n t s Z 8 ) . ^  The second d e r i v a t i v e s  of  gpv i n  Z E and t he  d e r i v a t i v e  of  bp i n  

"f'GF a re  e l i m i n a t e d  by i n t e g r a t i n g  by p a r t s .  Canon ica l  f i e l d s  a r e  g~v '  ca - -  c y ~  

a n ~ m a t t e r  f i e l d s ;  bp i s  no t  r ega rded  as a c a n o n i c a l  f i e l d .  D e s p i t e  t h i s  d i f f e r e n c e  

from th e  s t a n d a r d  c a n o n i c a l  fo rma l i sm,  one can  prove  the  e q u i v a l e n c e  be tween  f i e l d  
• 7 e q u a t i o n s  and He i senberg  e q u a t i o n s .  

I t  i s  q u i t e  r emarkab le  t h a t  a l l  e q u a l - t i m e  ( a n t i - ) c o m m u t a t i o n  r e l a t i o n s  be tween 

any two f i e l d s  and between any f i e l d  and the  f i r s t  t i m e - d e r i v a t i v e  of  any f i e l d  can 

be c a l c u l a t e d  e x p l i c i t l y  i n  c l o s e d  form. 6 For  example,  I have  
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where a subscript 

From the BRS 

tional BRS charge 

divergence, I f i n d  6 

= . ,~00.-I.~0 + 65g )63(x - 
[g~v(x),bp(Y)]0 -iK~g ) topgp~ PP y), 

[gp~(x),gpx(y)] 0 = -2iK(~OO)-l[gDvg0% . gp0g~% - g~xg~p 

, 00,-i,~0~0 6060 
+ ~g ~ ~°~°0g~% + p xg~0 + (~-+V))]63(x - y), 

0 0 
0 of a commutator indicates to set x = y . 

Noether current, I can calculate the expression for the gravita- 

Qb" By using the quantum Einstein equation and dropping total 

Qb = I d3x g0%(bpD% cp- ~%bp "cp)' 

which is nilpotent (Qb2=0) and satisfies 

i[Qb, ~]+ = 6(~) - <cX~xq~ 

for any field ~(x). The subsidiary condition is set up by 

Qblphys> = O. 

Then the unitarity of the physical S-matrix can be proved without recourse to pertur- 

bation theory. 

The presence of the orbital term in [Qb' ~ ] is a very important characteristic 
¥ 

of quantum gravity. As its consequence, any local operator ~(x) has a non-vanishing 

(anti-)commutator with Qb unless ~(X) itself is a BRS transform of another oper- 

ator. Hence, in contrast with the gauge-theory case, ~(x) lO> is not a physical 

state for any non-trivial local operator ~(x). Accordingly, Lehmann's spectral func- 

tion of any non-vanishing two point function can acquire the contribution from nega- 

tive-norm intermediate states without contradicting unitarity. Thus Lehmann's theo- 
29 

rem breaks down in quantum gravity, that is, the exact two-point function may have 

a milder (perhaps oscillatory) high-energy asymptotic behavior than that of the cor- 

responding free Feynman propagator. 30 This fact supports the old expection that 

quantum gravity may provide a natural ultraviolet cutoff, without employing any kind 

o_~fapproximation. 
31 The above remark also resolves the Goto-Imamura difficulty for the current- 

current commutator 

<01[J0(x),jk(Y)]010>. 

Despite the fact that it must be zero if one relies upon the canonical anticommutation 
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relations, one usually assumes the existence of the Schwinger term 32 in order to 

avoid the contradiction with the result of general framework. As is well known, how- 

ever, the $chwinger term is the most pathological beast in quantum field theory. If 

quantum gravity is taken into account, one cannot prove the non-vanishing of the above 

commutator because of the presence of negative-norm intermediate states. 30 Thus the 

Goto-lmamura difficulty is resolved without introducing the Schwinger term. 

It is straightforward to define the canonical energy-momentum tensor including 

gravity. It is interesting to note that the symmetric energy-momentum tensor cannot 

be defined so as to be a tensor density under the general linear transformation in 

contrast with the canonical one. By using the quantum Einstein equation and drop- 

ping total divergence, I find that the translation generator P is given by a re- 
8 P 

markably simple expression 

P = K-lfd3x ~OX~xb 
independently of the expression for ~M" Of course, the well-defined energy-momentum 

operator depends on ~M' but the above expression is sensible as a translation 

generator, because the volume integration should be carried out after commutator is 

taken. 

Likewise, the generator of the general linear transformation is shown to be 8 

M~ = K-iId3x g0X[x~%b V - ~b - iK(L~%cP - ~L'c ~)]. 

It should be noted that MP cannot be a well-defined operator. Indeed, if it were 

well-defined, one could exponentiate it, that is, one could consider finite general 

linear transformations. Then the equal-time (anti-)commutation relations imply that 

any two fields would (anti-)commute at all non-zero spacetime separations. Of course, 

however, M~ is sensible as a generator. For example, I have 

.^ ~ +P + 
z[M~ ,goT] = ~og~T ~Tgo~ x~g~T" 

It is very important to note that general linear invariance is necessarily spon- 

taneously broken. Since translational invariance should not be spontaneously broken, 

the vacuum expectation value of gOT(x) must be a constant. Then I can set 

<01goT(x)[0> = NOT 

without loss of generality just as in the case of the Higgs model in which one can 

assume without loss of generality that the vacuum expectation value of the complex 

scalar field is a positive constant. From the above two formulae, I find 
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i<Ol[~ ,goT]lO> ~ D ~ O. = ~oq~T + 6TNO~ 

Thus M~V is spontaneously broken. But its antisymmetric part 

is not broken. It is nothing but the Lorentz generator in the absence of spinor 

fields. The gravitational field is the Goldstone field of the broken ten components 

of ~ .33 Thus the physical graviton mass must vanish exactly. 

Now, the most remarkable result of the manifestly covariant canonical formalism 

of quantum gravity is the existence of a sixteen-dimensional supersymmetry. 14'15 As 

mentioned already, the (super)current 

~(x) = ~x 

is conserved, where X = (x%/<,bo,c°,~) , which is natural to be called the sixteen- 

dimensional supercoordinate. Let X and Y be two sixteen-dimensional supercoordi- 

nates. Then ~ ~(X) = 0 implies that 

~?%~(X,Y) = ~g~9(X~)Y- ~gX'Y) 

is also conserved, where E(X,Y) = -I if both X and Y are FP ghosts and 

(X,Y) = +i otherwise; /$~ = +I, //~ = +i. From those conservation laws, I 

obtain conserved (super)charges 

P(X) ~ Id3xp0(X), 

M(X,Y) ~ Id3x~10(X,Y). 

Here X in P(X) and X and Y in M(X,Y) are not arguments but indices, each of 

which takes 16 values. 

From the definition of M(X,Y), it is evident that 

M(Y,X) = - &(X,Y)M(X,Y), 

whence one sees that M(X,Y) has 128 independent components. Since, of course, 

P(X) has 16 independent components, the theory possesses 144 independent symmetry 

generators altogether. The previously given generators P , M~ and Qb are expres- 

sible in terms of P(X) and M(X,Y). 

By calculating the (anti-)commutators with field operators, I can determine the 

symmetry transformation laws corresponding to P(X) and M(X,Y), and verify the 
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invariance of the action under them. It is very important to note that those trans- 

formation laws could not be discovered if quantization were made by the path-integral 

formalism. The Noether (super)currents of those symmetries can be confirmed to 

reproduce the original (super)currents ~D(X) and 77z~(X,Y) apart from total 
19 

divergence. 

The generators P(X) and M(X,Y) form a superalgebra quite similar to the 

Poincar~ algebra. Hence I call it "sixteen-dimensional Poincar~-like superalgebra" 

(Some people 34'35 call it "choral symmetry" because it was proposed in the nineth 

paper of the series.). I define the sixteen-dimensional supermetric n(X,Y) by 

rl(x~'/K,bp) = q(bp,X~/<) = (c~,Cp) = -q(Cp,C ~) = 6 ~- q p, 

q(X,Y) = 0 otherwise. 

15 
Then the (anti-)commutation relations between generators are as follows: 

[P(X), P(Y)] = O, 

[M(X,Y), P(U)] = /- C--~-~-~[T](Y,U)P(X) - &(X,Y)(X+-+Y)], 

[M(X,Y), M(U,V)] = /-~(XY,I/V){[T](Y,U)M(X,V) -~(U,V)rI(Y,V)M(X,U)]- E(X,Y)[X++Y]} 

This superalgebra is a natural "super" version of the Poincar~ algebra. 

The syn~netry implied by a generator is a spacetime symmetry if and only if it 

has the B-field b as an index. Thus the sixteen-dimensional Poincar~-like super- 
P 

algebra contains both spacetime and internal symmetries in complete harmony. Further. 

more, it is quite remarkable that it realizes, in some sense, the democracy between 

spacetime coordinates and quantum fields. 

Some symmetries among the 144 generators are necessarily spontaneously broken. 

Unbroken ones are i0 Poincar~ generators and 74 M(X,Y)'s involving no spacetime 

as an index. The Ward-Takahashi-type identities 

<0 I[M(X,Y), ~] [0> = 0 

hold for those 74 generators, where £f denotes an arbitrary T-product of field 

operators. The perturbation-theoretical validity of those Ward-Takahashi-type iden- 

tities has been confirmed at one-loop level. 18 

Though the sixteen-dimensional Poincar~-like superalgebra includes no particle- 

physics symmetry other than the Poinca~ algebra, in quantum gravi-electrodynamics 

it is possible to extend this superalgebra so as to include the electromagnetic U(1) 

syn~netry. 17 In this way, therefore, there might be a possibility of unifying all 



180 

physically relevant symmetries without contradicting the no-go theorem. 36'37 

Now, another very interesting feature of the manifestly covariant canonical for- 

malism of quantum gravity is a revival of general covariance at the purely quantum 

level; more precisely, in this theory tensor analysis becomes relevant for certain 

commutation relations. Since the inevitable violation of general covariance in quan- 

tization has been quite regretable from the point of view of relativists, this revival 

of general covariance is quite noteworthy as the evidence showing that the theory is 

the rightful successor of Einstein's general relativity. 

Since the B-field b O is not a canonical field, the equal-time commutator be- 

tween b 0 and a canonical field may not necessarily vanish. It is found that the 

commutator between b and a local operator which is a tensor at the classical level P 

has, in general, quite remarkable regularity. Let ~ pl'''~k ~i...~ (x) be a tensor gener- 

ically. Then the general form of the equal-time commutator is 13 

~l'''~k 
[~ ~i...~% (x) ,bp (Y) ] 0 

.Pi°0 "''Pi"''Pk _ ~ ~j'~0 ~l'''Pk = iK(g °°)-l[ L ~ s ,~l 
i=l P ~i ~i'''~ j~l 0 Vj ~l'''~j''''~%]63(x- 

y). 

This commutation relation is tensorlike in the sense that it is consistent with the 

rules of tensor analysis, that is, its form is preserved in raising or lowering tensor 

indices, in constructing tensor product of two tensors, and in contracting upper and 

lower indices. The validity of the above tensorlike commutation relation has been 

verified explicitly a large number of examples including the Ricei tensor RD . 

Quite surprisingly, the tensorlike commutation relation can be extended into the 

four-dimensional form. 20 The four-dimensional commutation relation between b and 
P 

a tensor consists of two parts: The main part is tensorlike, consistent with taking 

covariant derivative, and manifestly affine (i.e., translation and general linear) 

covariant, while the remaining part is of different character and has the same form 

as the four-dimensional commutation relation between an FP ghost and that tensor. 

Hence, in particular, one sees that the equal-time commutation relation between a 

tensor and b is tensorlike with no additional terms if and only if that tensor 
p 

commutes with an FP ghost at the equal time. 

In discussing the four-dimensional commutation relation, the quantum-gravity 

extension of the Pauli-Jordan invariant D-function has been introduced. 20 Since the 

metric tensor is now an operator, the new invariant D-function, which I denote by 

~)(x,y), must be a biloeal operator. It is uniquely defined by the following four 

properties: 

(1) ~>(x,y) = -~(y,x). 

x ~p~ x 
(2) 8p[g (x)$ J~(x,y)] = 0. 



181 

(3) ~(x,Y) 10 = O. 

(4) ~;~(x,Y) lo = -[gOO(x)]-163(x- y). 

[Here, even if the operator ordering is reversed in (2), the defined ~{x,y) can be 

shown to be the same.] Then ~(x,y) can be shown to be affine invariant in the 

sense that 

i[P V, 
X 

~ ) ( x , y )  ] = + ~) .~(x,y) , 

i[M~ , ~ ) ( x , y ) ]  = ( x ~ ;  + y ~ ) ~ ( x , y ) .  

B u t ,  o f  c o u r s e ,  ~ ) ( x , y )  i s  n o t  i n v a r i a n t  u n d e r  f i n i t e  g e n e r a l  I i n e a r  t r a n s f o r m a t i o n s .  

I t  h a s  no c - n u m b e r  l i g h t c o n e  s i n g u l a r i t y ,  and t h e r e f o r e  t h e  s h o r t - d i s t a n c e  e x p a n s i o n  

b r e a k s  down i n  q u a n t u m  g r a v i t y .  T h i s  f a c t  i s  i m p o r t a n t  i n  o r d e r  f o r  q u a n t u m  g r a v i t y  

to  p l a y  t h e  r o l e  o f  a n a t u r a l  r e g u l a t o r .  

I n  a l l  t h e  a b o v e ,  t h e  g r a v i t a t i o n a l  f i e l d  h a s  b e e n  d e s c r i b e d  by t h e  m e t r i c  t e n s o r ,  

b u t  when t h e r e  a r e  D i r a c  f i e l d s ,  t h e  f u n d a m e n t a l  g r a v i t a t i o n a l  f i e l d  m u s t  be  t h e  

v i e r b e i n  ( t e t r a d ) .  S i n c e  t h e  s i x  a d d i t i o n a l  d e g r e e s  o f  f r e e d o m  i n  t h e  v i e r b e i n  a r e  

o f  l o c a l  L o r e n t z  t r a n s f o r m a t i o n s ,  q u a n t u m  t h e o r y  can  be  c o n s t r u c t e d  q u i t e  s i m i l a r l y  

t o  t h e  Kugo-Oj ima  f o r m a l i s m  f o r  t h e  Y a n g - M i l l s  f i e l d .  

I t  i s  v e r y  c r u c i a l  t h a t  t h e  l o c a l - L o r e n t z  g a u g e - f i x i n g  t e r m  i s  c h o s e n  t o  be  a 

s c a l a r  d e n s i t y  u n d e r  t h e  g e n e r a l  c o o r d i n a t e  t r a n s f o r m a t i o n .  The r i g h t  e x p r e s s i o n  

t u r n s  o u t  to  be  10 

~~V~ ab~ 
~LGF = -g i OvSab, 

where ~ ab denotes the spin connection and Sab is a new antisymmetric scalar B- 

field. Since the spin connection contains first derivatives of the vierbein, Sab 

cannot be regarded as a Lagrange-multiplier field. Owing to this form of ~LGF' all 

components of both the vierbein and the B-field Sab describe dynamical degrees of 

freedom. 

The local-Lorentz FP-ghost term "~LFP is added in such a way that--?LG F +LLF P 

becomes a local-Lorentz BRS transform of some quantity. Then the manifestly covariant 

canonical formalism of quantum gravity can be extended quite beautifully to the 

vierbein case. Canonical quantization can be carried out consistently without using 

Dirac's method, and all equal-time (anti-)commutation relations are found explicitly 

in closed form. II Almost all results established in the metric-tensor case, such as 
o 

the field equations and the equal-time commutation relations for g~v' bp' c , and 

cT, various expressions for generators, the sixteen-dimensional Poincar~-like super- 

algebra, the tensorlike commutation relations, etc., remain intact. I0'II 

An important modification is necessary, however, for the spontaneous breakdown 
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of general linear invariance. In the vierbein case, even the antisym~etric part, 

~B' of M~ is broken. The unbroken is given by 12 spontaneously one 

- -  ab 
%~ ~ M ~ + ~anBbML , 

ab 
where % is the generator of the global version of the local-Lorentz transformation. 

The true Lorentz generator %~ is thus characterized at the level of the representa- 
19 . 

tion of field operators, just as the electromagnetic charge is in the Weinberg- 

Salammodel. This fact is conceptually very important: Lorentz invariance should not 

be regarded as a first principle determining the fundamental Lagrangian; Lorentz in- 

variance is an S-matrix sy~netry rather than a fundamental symmetry. I therefore 

conjecture that the usual supersym~etry hav'ing a spinor charge is not on the right 

way toward the ultimate unified theory. 

Finally, I summarize the main achievements of the manifestly covariant canonical 

formalism of quantum gravity. 

i. The theory is a beautiful and transparent canonical formalism of quantum 

gravity. Equal-time commutation relations such as [gu~'r g%P] are explicitly found 

in closed form. 

2. Unitarity is proved in the Heisenberg picture. Since the perturbation series 

of quantum gravity is unrenormalizable, it is very important to construct the formal- 

ism without using perturbation theory. 

3. There is a possibility that the ultraviolet divergence difficulty of quantum 

field theory may be ultimately resolved by taking account of quantum gravity: The 

theory achieves the evasion of Lehmann's theorem without violating unitarity. 

4. The theory is manifestly covariant as in the Gupta-Bleuler formalism of 

quantum electrodynamics. 

5. Though general covariance is broken by gauge fixing, which is necessary for 

quantization, general linear invariance still remains unbroken at the operator level. 

It is spontaneously broken up to Lorentz invariance, and the corresponding G01dstone 

field is nothing but g~ . 

6. The theory is invariant under a huge superalgebra, called "sixteen-dimen- 

sional Poincar~-like superalgebra", consisting of 144 symmetry generators. It con- 

tains both space-time and internal symmetries in complete harmony without contradict- 

ing the no-go ~heorem. 

7. The theory has a very interesting property, called "tensor-like commutation 

relation". General covariance is revived in this way purely at the operator level. 

8. All the above establishments are beautifully extended to the case in which 

vierbein is the fundamental field. 

9. The Lorentz invariance of particle physics is characterized by spontaneous 

breakdown, whence it cannot be a first principle. 
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i. So 

2. T. 

3. T. 

4. C. 

5. N. 

6. N. 

7. N. 

8. N. 

9. N. 

I0. N. 

ii. N. 

12. N. 

13. N. 

14. N. 

15. N. 

16. N. 

17. N. 

18. N. 

19. N. 

20. N. 

21. R. 

22. K. 

23. P. 

24. K. 

25. T. 

26. M. 
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A GAUGE INVARIANT RESUMMATION OF QUANTUM GRAVITY 

Andy Strominger 

The Institute For Advanced Study 
Princeton, NJ 08540 

Abstract 

Quantum gravity is expanded in powers of I/D, where D is the 

number of dimensions. The extra dimensions are highly compactified. 

The expansion is gauge invariant. The leading term is equivalent to 

the iterated one loop matter corrections due to a free, massless 
1 

R~ 2 term necessary for conformal scalar field without the ~ 

invariance. The I/D expansion is renormalizable. Flat space is 

found to be unstable under small fluctuations. 

Despite many valiant efforts, the question of whether or not 

pure quantum gravity is a consistent theory remains unresolved. The 

standard expansion in powers of the dimensionless parameter 

GE = (Newtons constant) x (typical energy) encounters nonrenormaliza- 

ble high energy divergences. No definitive conclusions can be 

drawn from this, however, since GE is not small at high energies and 

we cannot expect an expansion in GE to give a good estimate of 

high energy corrections. 

What is needed is an expansion parameter that is small at high 

energies, sUch a parameter has been suggested by Tomboulis. 1 

Tomboulis considers gravity coupled to N matter fields, rescales 

Newton's constant, and then expands in powers of I/N. The resulting 

effective action is, to leading order in l/N, simply the classical 

Einstein action with one loop quantum matter corrections. For 

conformally invariant matter fields and certain choices of 

renormalization constants, it also turns out to be asymptotically 

free, renormalizable, and unitary with a Lee-Wick prescription. 

There are, however, several drawbacks to this approach: 

(i) Since no graviton loops are included, it is not clear 

that we are learning anything about quantized gravity. We may 

have just swamped out the quantum gravitational effects by dominating 

the theory with matter fields. If one were to use the same approxi- 

mation scheme for QCD, for example, one would conclude that it was 

neither asymptotically free nor confining. 

(2) Qualitative features of the expansion depend on the type of 

matter fields (i.e. scalar or fermion), how they are coupled, and how 
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it is renormalized. Most choices lead to various types of insta- 

bilities. In particular, without conformal invariance, various diffi- 

culties arise from the spin zero degrees of freedom. Since conformal 

invariance is not an observed symmetry of the real world, this 

somewhat obscures the physical relevance of the expansion. 

In view of the above, it would be nice to find a way to resum 

gravity itself--with no extra matter fields. We could then analyze 

the internal consistency of quantum gravity and would be spared the 

ambiguity associated with different choices of matter couplings. 

Such a resummation is in fact possible. Pure quantum gravity 

contains a hidden expansion parameter that is small at all energies. 

That parameter is l/D, the inverse number of dimensions. The funda- 

mental fields of gravity are arranged in a DXD matrix. Just as in 

Yang Mills, Feynman diagrams contain factors of D that arise from 

traces over this matrix. With an appropriate rescaling of Newton's 

constant, S matrix elements can be expanded in a series of non- 

negative powers of l/D, and the leading term can be explicitly eval- 

uated. 

Before proceeding further, however, we must define how the 

theory is to be extended to D dimensions. There are two 

inequivalent methods. 

The first method is to simply take the standard D dimensional 

Einstein action on a D dimensional manifold. This theory is 

invariant under the full D dimensional diffeomorphism group. 

Extraction of the leading term in the I/D expansion requires analysis 

of the D dependence of both the trace factors and of the phase space 

factors in the D dimensional Feynman integrations. This analysis can 

be found in Reference [2] and will not be discussed further here. 

In this talk we consider a different approach. The extra di- 

mensions are compactified to very small circles. Excitations of the 

metric along those dimensions are necessarily very short wavelength 

and very high energy. If the circles are made small enough, such 

excitations are negligible. The effective theory then consists of a 

D dimensional matrix of fields on a four dimensional manifold. 

This theory is equivalent, via the Kaluza-Klein mechanism, to 

gravity coupled to (D-4) massless U(1) fields and (D-4) (D-3)/2 

scalar fields. For the purpose of analyzing the large D behavior, 

however, it is not convenient to reexpress the theory in terms of 

these fields. 

The Feynman rules for this theory are determined from the 

standard Einstein action with gauge fixing and ghost terms: 
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where 

1 r d4x 1 g~ [ G-I J det-I/2 [G] L+ ~ tr[G,~ ,~] 
2K 2 

+ tr [G, ~G-I] tr [G, c G-I] ] 

1 gA~, gBV, 
BgAB 

+ 3g~V' tr[G-I,uG] + 

1 ~ABA } + ~-~FAFA + 

(G) AB = gAB 

A,B = 1,2,...D 

~,B,U,~ = 1,2,3,4. 

(i) 

1 FAFA AMABcB 2-~ is a gauge fixing term and ~ the corresponding ghost 

action. K is the gravitational coupling. Where the indices label 

derivatives, they only run from 1 to 4 since the arguments of the 

fields are four dimensional. This has been indicated by the use of 

Greek indices. The invariance group of this action is 

x A ÷ x A +EA(X p) 

under which 

gAB(Xp ) ÷ gAB(Xp ) +eA(X~) ;B +EB(Xp) ;A" (2) 

This contains four dimensional coordinate transformations and con- 

stant translations in D dimensions. The expansion presented here is 

in the inverse dimensionality of this latter invariance group. 

Isolating the large D behavior in terms of h ~v =gUy _~pv is 

awkward because of the double trace term in (i). It is not de- 

scribed by any simple set of diagrams, and in fact gets a contribu- 

tion from every diagram. 

This difficulty is circumvented by using an exponential 

parametrization: 

AB e2K~/D(eK~)AB" g = (3) 

is a traceless DxD matrix and ~ is a scalar. The factor of I/D in 

front of ~ is necessary to ensure that ~ has a D independent 

propagator. The action may now be written: 

S = jd4x e-K~(I-2/D){~ tr[~,~,B] (eK~)~B + ~,~,B(eK~(-I+~) 

! 1 1 (½(eK~)AB, p (eKe) ~B, B (eK~) A B + K(eK~)~B' ~,~(6-~)- 
2K 2 

1 + ;AMAB~B) } + ~ EAFA 
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The large D behavior can now be examined by rescaling the coupling: 

K ÷ K/D (5) 

and counting powers of D in Feynman diagrams. Alternately, one may 

note that, because of the trace, the first term in (4) is order D 

while the subsequent terms are order one. The ghosts are the 

fermions (fundamental multiplet) of this theory and can't contribute 

to the large D limit. This has the pleasant consequence that the 

lar@e D limit is gauge invariant. 

The quantum contribution to the large D limit thus comes from 

fluctuations of the first, trace term of (4). Since 

le-K~(1-2/D)(eK~)~Btr[~,~,~] 1 /~ gab tr [~,~ B] (6) =~ , 

we arrive at the following conclusion: The I/D expansion o_ff quantum 

gravity i_{s equivalent to the I/N expansion o_ff gravity coupled to N 

free, massless scalars, where N =D 2. 

This result might seem obvious in view of the fact that the 

theory is equivalent, via the Kaluza-Klein mechanism, to gravity 

coupled to (D-4) (D-3)/2 scalars and (D-4) U(1) fields. As we have 

seen here, however, the I/D expansion arranges the fields in such a 

way that it is not just the scalar fields that contribute to the 

large D limit. This analysis shows that contributions remain when 

D=4 and the "extra" scalar fields are not there. The expansion 

should remain valid at D=4, where it describes pure quantum gravity. 

The leading I/N corrections for quantum gravity coupled to N 

massless, free scalar fields has been discussed in various forms in 

the literature. The resummed propagator has a i/p 4 behavior at high 

energies which allows the theory to be renormalized with an R 2 type 

counterterm. Because there is no conformal invariance, however, 

difficulties arise from the spin zero modes. This can be seen by 

evaluating the energy of static, spatially varying perturbations of 

flat space. This energy is equal, by standard arguments, to minus 

the effective action and can be obtained from general formulae 
3 

computed by Hartle and Horowitz. For our case, it is given by: 

[~ .TT,2 E[he~13] =i~2 I ~ 21"c~ 1 
-4- (2z)~ 

451 7__68 Tr 2 +2 h T 
32[K21n ~2/ 2 P ) ] I [ 

][1+K2+2 +2, 2] p ±np /~ | 
1920 "n-2 ] 

where h T =PeSh 8 is the trace part of ha8 and hTT~8 =p Yhy~p68 - 2hasl T 

is the traceless part of h 8 in momentum space. It is readily seen 

that the energy can be decreased by fluctuations in h T. This means 
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that flat space is unstable and is not the ground state expectation 

value of the metric. 

Several different conclusions may be inferred from this: 

(i) The Einstein action is not a fundamental action but an 

effective action and should not be quantized. The sickness we found 

is a result of incorrect quantization. 

(2) Quantum gravity needs matter fields for consistency (e.g. 

supergravity). 

(3) Quantum gravity is a good theory. The instabilities are 

just telling us that we have the wrong ground state. 

(4) Quantum gravity is a good theory but the I/D expansion is 

bad at D=4. 

A final conclusion awaits further analysis. 
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"The Gauge Invariant Effective Action for Quantum 

Gravity and Its Semi-Quantitative Approximation" 

Bryce S. DeWitt 
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Introduction 

The configuration space of quantum gravity is PR(M), the set of 

all pseudo-Riemannian metrics on spacetime M. The gauge group of quan- 
* 

tum gravity is Diff (M). A gauge transformation $ acts on PR(M): 

: PR(M) + PR(M) ~ e Diff (M) 

+ ~(~) ~ ~ PR(M) (i) 

Gauge transformations divide PR(M) into orbits. The orbits Can be 

shown to comprise an infinite dimensional manifold PR(M)/Diff (M). 

This manifold is the space of physically distinct fields. 

Infinitesimal gauge transformations take the form I 

~+~ + ~ ~i = Qi [~]~ (2) 

The Qi are components of a set of vector fields on PR(M), the Killing 

f l o w s .  T h e  L i e  b r a c k e t s  o f  t h e  K i l l i n g  f l o w s  d e f i n e  t h e  s t r u c t u r e  
* 

constants o f  D i f f  (M) 

PR(M) may be endowed with a gauge invariant metric y . 
~ 

is expressed by 

Gauge invar iance 

£ - 0 (4) 

Any metric that satisfies this equation projects to a metric on 

PR(M)/Diff (M) In the case of quantum gravity Eq.4 has a unique one 

parameter family of local solutions, 

iThe dynamical variables (which in gravity theory are the metric com- 
ponents g v)are denoted by ~i. The index i is to be understood as a 
combined ~iscrete-continuous label. The implicit summation convention 
involves integrals as well as sums. 
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y~O'T' = g½(g~Og~T+g~Tg~O+ig~gOT)~(x,x,) 

1 
# -~ g = -det(g~) (5) 

The dynamics of the gravitational field is described by the clas. 

2 
sical action S, which is a real valued scalar function on PR(M) 

g½Rd4 x ~P-2 S[~] = ~p2f - 16~G = (6) 

The classical action is gauge invariant: 

Q s = 0 (7) 

With g ~ chosen for the basic dynamical variables ~i the action 

of the gauge group on PR(M) is linear. Linearity may be expressed by 

Qi ,jk -= 0 (8) 

where the comma denotes functional differentiation. By repeatedly 

functionally differentiating Eq.7 and making use of Eq.8 one obtains 

the infinite sequence of equations 

Qi 
s i -0 

S . .QJ = -S QJ 
,13 ~ ,j ,i 

Qk Qk -S k 
,ijk ~ = -S,kj ~,i ,ik Q ~,j 

S ijk£Q £ E -S £jk Q£ i-S,i£k Q£ .-S ij£Q£ , ~ , ~, ~,] , ,k, etc. (9) 

These are the bare Ward-Takahashi identities of the theory. 

The classical field equations are 

s .[~] = 0 (i0) 

Given a solution ~ of these equations one is often interested in a 

solution ~ + ~ which differs infinitesimally from ~ . 6~ satisfies 

the equation of small disturbances 

2 
We use units for which ~ = c = i and a spacetime signature - +++ . 
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0 = S i[~+~] = S,i[~]+S,ij [~]~ j = S ij[~]~J (ii) 

The second functional derivative S,ij[~] appearing in this equation 

is effectively a linear differential operator. Because of the gauge 

invariance of the theory this operator is singular. Equation ii has a 

well defined solution for a given set of boundary conditions only if 

one imposes a supplementary condition 

P~.[~]6~ j = 0 (12) 
i 

When condition 12 is satisfied 6~ satisfies 

F..[~]6T o = 0 (13) 
lJ 

where 

def 
P~.P~ (14) Fij = S,ij +n ~ i j 

The functions P~. appearing in Equation 12 are often chosen so 
l 

that small disturbances are ~-orthogonal to gauge variations: 

p~" = n-l~ QJ ~j 
B i 

) QJ B Yji~ i = 0 (15) 

It is convenient to impose the following gauge covariance condition 

on the continuous matrix q~B : 

i --q6 e~ 6 (16) 
n ~,i Q Y 13 y -n ~c y~ 
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The effective action 

Suppose spacetime is such that we can introduce coherent "in" 

and "out" states, lin,vac>, lout,vac>. These states are sometimes 

known as relative vacua, i.e., they are vacua relative to a given 

background. The effective action F is defined by 

ir[~] 
<out,vaclin,vac> = e (17) 

P is a complex valued scalar field on the space CR(M) of complex metrics 

on spacetime M. The field ~ appearing on the right hand side of Eq.17 

is arbitrary. It does not need to be a classical background. 

In what follows it will be convenient to define 

B [ ] = p~i[~]Qis[~] 

~Y[~]~YB [~] = -6~B 

V~Bi[~] = P~ [~]QJ (18) j ~,i 

and to extend the domain of all functionals to CR(M). 

~e is known as the and V~Bi is known as the ghost propagator 

ghost vertex. The vacuum-to-vacuum amplitude (Eq.17) may be expressed 

by the following functional integral 

e iF[~] = const, x feiS[~+~]d# 

= const. × (detn[~])½(det~[~]) -I 

× fei(S[~+~]+~B[~]P~i[~]PBj[~]~i~J) 

× det(l-~[~]V[~]~)-i d~ (19) 

The value (although not in the explicit functional form) of the 

second integral is independent of the choice of PS i and ~ provided 

a regularization is adopted that yields 

B = 0 Qi = 0 (20) 
c ~B , ~,i 
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If the P's and q's are chosen covariantly then the effective action 

is gauge invariant (Q F E O) and satisfies simple Ward-Takahashi 

identities: 

i - 0 
r iQ ~ 

QJ -- -F .QJ 
F,ij ~ ,3 ~,i 

ka k ikQk r ijk Q - -F kjQ - r , , ~,i , ,i 

" F  ijk£Q £ E - r£.kQ£a - r Q£ - r ij£Q£ , ~ , 3 ,i ,i£k ~,j , ,k (21) 

The equations 

F i[~] = 0 (22) 

are called the effective field equations. The solution of these non- 

local equations satisfying the given boundary conditions is called the 

effective field. If the background is chosen to be the effective field 

the 1-particle reducible graphs may be omitted from the loop expansion 

of F: 

f . ~ .  • i i ' 
l[~] = - ~ Zn detn[~] - ~ + id, , 

G .4" ~ ~ C~ i i :° ": - + .... 
(23) 

In these graphs., solid lines denote the Feynman propagator for Fij[~], 

written G13[~]. A dotted line represents ~8[~]. A vertex at which 

a solid line meets two dotted lines represents the vertex function 

V~Bi[~]. Vertices mt which three or more solid lines come together 
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represent functional derivatives of the classical action (the S 
,ijk, 

S ijk% etc.). The solid circle denotes ~n det G[~]. The dotted circle 

denotes ~n det~[~]. 

The effective action has the following important properties: 

i. The functional form of F depends on the P's and ~'s but the 

effective field and the value of r do not. 

2. The tree functions built out of F yield the exact scattering 

amplitudes. 

3. The effective field is an operator average: 

~i = <°ut'vac[~ilin'vac> 

<Out,vacIin,vac> (24) 

4. If ImF = 0 then the "in" and "out" states are nearly identical 

and i becomes (approximately) an expectation value. 

5. F , not S, governs the dynamics of quantized spacetime (e.g., 

near the Big Bang or near classical singularities). 

6. In Yang-Mills theory the use of F simplifies the renormalization 

program. (See Abbot 1981, CERN preprints TH. 2973 and 3113,) and (Hart 

1981, Ph.D. dissertation, University of Texas 
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The general structure of P 

In this section I shall attempt to adduce some plausibility argu- 

ments for the general structure of F . Begin by considering the func- 

tional E[~] which represents the difference between F and the classical 

action, i.e. the radiative corrections to the classical action (Eq.23). 

The functional E, like S and F , is gauge invariant. In quantum gravi 

ty this is expressed by: 

( ~ E / ~ g u g ) ; 9  ~ 0 ( 2 5 )  

Let us assume that the Minkowski metric q~ is a stable solution of 

the effective field equation just as it is of the classical field equa- 

tion ~S/~gp~ = 0. That is, let us assume that Poincar6 group,which is 

relevant for asymetrically flat spacetimes, is not dynamically broken. 

(6El6gvv)g = q = 0 

whence in virtue of 25, 

k ~gu~ 6go, ~, ; = 

D e n o t e  b y  E ! a ' ~ ° ' r ( p )  t h e  F o u r i e r  t r a n s f o r m  o f  - , 
6g~ ~gO'T' ~g = 9 

with the ~ function expressing momentum conservation removed. 

25 is equivalent to 

(26) 

(27) 

Equation 

EP9°T(p)pv = 0 (28) 

of which the general solution, respecting Lorentz invariance and the 

index symmetries of I p~°T, is: 

Xla~°'~ ( p )  

1 
= -- 2 qli~rloz 4[ (nP°nVT+n~Tn vO- ~ )p4 

-(~°p~pT+qVrp~p D v v , e v -~q P P -O P p )p 

4 
+3ppp~pOpT]El(p2) 

1 qiJVrlO~ 4 2_ P v o -~ [ P -(nP~pOpT+qOTpVp~)p .p P P P ]Z2(P 2) 

(29) 
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If X in Equation 5 is chosen to be -i, then the Fourier transform 

of (Fij) $ = is: 

1 2. DO 9T_ ~TgO_~BgDOT (30) 

The full graviton propagator is the i0 x i0 matrix inverse of this: 

-2 
FU~o~ (P) = P 

-2 
+u p 

2 
[n~o~T+n~Tnvo - 3n~v~oT 

(n~oPvPT+nvTP~Po+n~P~Po+n~oP~P~)~I(p2)] 

~[p2+~p-2p4 El(p2) ]-i 

i -2 [p2+~p-2p4Z2 (p2) ]-i 
--~p n~V~OT 

2 -4 - ~ p  [ (n~P~PT+~,TP~Po)p2+2p~P~P~PT] 

X [ Z l ( p 2 ) - Z 2 ( p 2 ) ] [ p 2 + V p - 2 p 4 E i ( p 2 ) ]  - i  

x [p2+~p-2p4Z2(p2)]-I (31) 

As can be seen from the form of this expression the particle spectrum 

is determined by the zeros of the functions [p2+~p-2p4Zl(p2)] and 

[p2+~p-2p4Z2(p2)]. It is not difficult to show that if Z is expanded 

as a functional power series in ~ =g~-~ ~ then the term of lowest 

order is quadratic in ~ and is uniquely determined by Eq.29 to have 

the form 

Z( 2 ) = ~ 4x~ 4 ,Fl ~ 2) 
x L~l((X-X') c(x)C~V°~(x ') 

i- ,) , ] 
-~z2((x-x 2)R(x)R(x ) (32) 

where C is the linearized Weyl tensor, R is the linearized curva- 
~OT 

ture scalar and E 1 and Z 2 are the Fourier transforms of I 1 and Z 2 

respectively. 

In the one-loop approximation without subtraction, the dominant 
~ 

singularities of both E 1 and Z 2 are proportional to i/(x-x') 4. This 

singularity structure, which renders expression (32) logarithmically 

divergent, arises from products of pairs of Green's functions 
2 

i/(x-x') , together with loop factors -i, in typical self-energy graphs 
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How does it get modified in the exact theory? 

A partial answer to this question is known 3,4 in the case of 

ladder graphs in which the free ends at the top of each ladder are 

joined together to make a single line, leaving only the two free ends 

at the bottom. The dominant high-energF contribution to the infinite 

sum of all such graphs can be expressed as the solution of the following 

simple integral equation 

i i f X(k) d4k 
X(p) = ~ (2~)~ J (p-k)2-iO (33) 

Since the integral in this equation is a convolution integral the 

equation is easily solved by taking the Fourier transform: 

X(x) = G(x) [l-i~p-2X(x) ] (34) 

where G(x) is the standard scalar propagator, 

1 ~ e ip'x i I 
G(x) (2~ J ~ d4p = ~ ~ (35) 

yielding 

with 

G(x) i i 
X(x) = l+i~p_2G(x ) (2~) 2 x2_%pZ+i 0 (36) 

1 = 
P 2~p (37) 

The line at the top of the ladder graph contributes a factor 
2 

i/(x-x') as always, but the rungs when summed to all orders, con- 

tribute expression 36 as a factor. The singularity of the rung factor 

lies on a hyperboloid at a distance %p outside the Minkowski light 

cone and implies noncausal propagation relative to Minkowski space-time. 

This is neither surprising nor alarming. When the metric itself under- 

goes quantum fluctuations "real" space-time is Minkowskian only in an 

average sense. 

These results suggest that E 1 and E 2 may be well approximated by 

choosing each to be proportional to 

3 
B. S. DeWitt, Phys. Rev. Lett. 13, 114 (1964). 

4 
I. B. Khriplovich,Yad,Fiz.2,950(1965) [Sov. J.Nucl. Phys.3,415(1966)]. 
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i 1 
iG(x-x')X(x-x') = ~ (x_x,)2[(x_x,)Z_%p2] 

= (2~)~XpZ " ~ - x ' ) Z - X p Z + i o  - ( x _ x , ) Z + i o  

i 11 d$ 
= (2~)Z Bp 2 [(x_x')e.~~2 

0 

(38) 

The final integral gives concrete expression to the old idea that quan- 

tum gravity smears the light cone. A more complete theory, which sums 

other graphs besides ladder graphs, would presumably insert a smearing 

function w(~) in the integrand. 

If E 1 and E2 have the form 38 then their Fourier transforms are 

given by 

, ~i HI (2) ((%p2p2-i0)½) 

ZI,m(p2) = AI,2 -2-- (~F'2p'2_i0 ~ %pzpl-i0~ 39) 

This function is complex for space-like momenta and real for time-like 

momenta. In both cases it tends to zero for Ip2]>>~ 2 With this ap- 
-2 4 

proximation the functions p2+~p p Zi,2(p 2) have no zeros other than 

p2=0 on the real p2axis, provided al, 2 avoid values lying between ap- 

proximately .024 and .054 as well as an infinity of isolated points 

clustering about the origin between -.011 and .009. If al, 2 lies be- 

tween .024 and .054 then the graviton propagator has tlmelike ghosts. 

If al, 2 = one of the discrete values then there are tachyon ghosts. 
-2 

The functions p2 + ~p p~Zi,2(p 2) have an infinity of zeros in the lower 

half p2plane, i.e., in the upper half (p0)2 plane. In the p0 plane 

these zeros are in the first and third quadrants. Let E=~+iy(~>0,y>0) 

be one of the first-quadrant zeros. The corresponding "instability" 
+iEt 

modes have time dependence e The mode that propagates positive 

frequencies into the future is 

e-iEt -i~t + yt (40) 
=e 

The mode that propagates negative frequencies into the past is 

iEt i~t - yt 
e = e (41) 

Both modes are eliminated by the "in" and "out" boundary conditions. 

Therefore they do not lead to real instabilities. However, they make 

Wick rotation impossible. This means that if the above approximation 

has any validity whatever, Euclideanization is not permitted in quantum 
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gravity. 

Equations 32 and 38 admit of immediate generalization to an approxi 

mation for ~ , and hence for F , that is invariant under the full dif- 

feomorphism group: 

r ~ ~p2 Ig½Rd4x 

7 O(x,x')-½lpZ+i0 O(x,x')+i0 

[L- ~' ~8' ~y'gT~' i ] 
x l~Alg g g CU~oTCa,8,7.,8, 12A2 RR' (42) 

Here g is - d e t ( g g ~ ) ,  g ~ '  is  the  p a r a l l e l  d i s p l a c e m e n t  b i v e c t o r ,  5 
5 

O(x,x') is half the square of the geodetic distance between x and x', 

and C and R are the Weyl tensor and curvature scalar of the full 

nonlinear theory. A and A are numerical coefficients whose precise 
1 2 

values depend on the numbers and kinds of matter fields included, but 

whose magnitudes are not vastly different from unity. The i0 in the 

"propagators" specifies how the poles are to be skirted in the double 

integral, and the other factors i remind us that both F and the effec- 

tive field, which is an "in-out" average, are generally complex valued. 

Although expression (42) has been derived by arguments starting 

from flat space-time, I propose that it be taken seriously even under 

conditions of strong curvature (RT > ~p2) and with topologies other 

than~ 4. Efforts are currently underway at the University of Texas to 

test it on Friedmann-Robertson-Walker universes to see whether, under 

generic realistic conditions, it will suppress the initial curvature 

singularity. Among the properties of Friedmann-Robertson-Walker models 

that simplify this investigation is conformal flatness. The Weyl tensor 

disappears from expression (42) taking with it the parallel displacement 

bivectors, leaving o(x,x') as the only difficult geometrical quantity 

to compute and A as the only adjustable constant. 
2 

Before describing these efforts, I wish to make a few comments on 

the reasonableness of expression (42) as an approximation to the true 

effective action. Expression (42), based as it is on a quadratic ap- 

proximation to E that is determined solely by the graviton propagator, 

cannot be expected to yield accurate vertex functions (third functional 

derivatives and higher). Nevertheless it is well known that in regions 

of momentum space where ~ (p2) and E (p2) are slowly varying, e.g., in 
1 2 

5B. S. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach, 
New York, 1965), Chap. 17. 
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the ultrahigh-energy region Ip21>>~p 2 (see comments following Eq. (39)) 

the vertex functions are fully determined by the graviton propagator 

in virtue of the gauge-invariance condition (25). Therefore, if 
1 

and ~ are well approximated by (38) then expression (42) has the cor- 
2 

reet structure as x' + x and will yield qualitatively correct dynamical 

behavior. More accurate vertex functions at lower energies could in 

principle be obtained by adding to expression (42) higher multiple 

integrals in which the curvature appears cubically, quartieally, etc., 

along with factors involving g~' and o(x,x'). 
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Numerical Work 

The effort to solve the effective field equations based on the 

effective action (42) is being carried out by Richard Rohwer at the 

University of Texas. In the case of Friedmann-Robertson-Walker uni- 

verses the line element may be written in the form 

ds 2 = -a2(t)dt2+a2(t)dE 2 (43) 

Here we are specializing to the case in which the spatial sections 

t = constant are flat. This is because we are primarily interested in 

the neighborhood of the Big Bang and in our actual universe the curva- 

ture in time at this epoch is much more important than the curvature in 

space. With this line element Eq.42 takes the form 

F~6V~ p 2 ~ a ~ 2 d t  

-12~VHp2A2I  d t  d t '  s 2 d s ~  - ' - 2 ( ~ a 2 ~ + a a ~ 2 - a 2 ~ )  

x( ~ ' a  ' 2 ~ ' + a ' a ' ~ '  2 - a '  2 ~ ' & '  ) ~ ( t ,  t , ,  s )_~Xp ~ + i 0  

i ] 
o(t,t',s)+i0 

oo 

+6VHp 41~a-ldt 

co 

(44) 

where V is the volume of space and the last term expresses the effect 

of the radiation which is assumed to fill the universe, a choice of 

scale being made so that the energy density is equal to 6~p4when a = i. 

There are two effective field equations for this effective action 

~F 
- -  = 0 

~F 
~-f = 0 (45) 

Because of gauge invariance these two equations are not independent 

but satisfy the identity 

a d t  6~ - a 6a ( 4 6 )  
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&r 
It evidently suffices to work with ~ = 0. 

0 = -(6V~ 2) -1(~r/~e)~= I 

Explicitly one finds 

= a~2-~p 2a -I 

~ - . 
+4 A d t '  2 d s  o ( t ,  t ' ,  s ) - t ~  a ( t , t ' , S ) + i 0  

O 

[ i i 
-a2~o,t(t,t' , s) [$'(t,t',s)-~lpZ+i0] z - [O(t,t',s)+i0] 

×(a,2a,+a'~ '2) 

+4"rrA . d t '  d t "  s 2 d s ( a ' 2 ~ ' + a ' ~ ,  ' 2 )  (a"ea"+a"~i ''z) 
2 

× (t)[O, t',t",s)]2-20(t ',t'',s) 

[ i _~Xp i 0] 
× o(t',t",s) z+i0 - O(t',t",S)+i 

(47) 

The idea of the computation is the following. Begin with a Big 

Crunch followed by a Big Bang, having the form a ~ Itl ~ (which is a 

solution of the classical field equation) but with the Crunch at 

t = 0 smoothed out (by hand) over a region of the order of the Planck 

time. Substitute this value of a into the integrals appearing in 

Eq.47 and obtain new values for a by putting the terms involving no 

integrals on the left hand side of the equation. Then iterate this 

procedure, hoping that the sequence will converge. Unfortunately we 

have been unable as yet to get the program to this stage because we 

have been encountering unforseen difficulties in evaluating the bilinear 

O We began by attempting to compute it from the Hamilton-Jacobi 

equation, 

20 = g~Vo o = +a -2 ,~ ,v -(°, t)2 (°,s)2 (48) 

but discovered subsequently that every reasonable way for converting 

this equation to a set of difference equations leads to unconditional 

instabilities. Another possibility is to solve directly the geodesic 

equations. However a new problem arises, namly that of caustics, which 

indeed occur for these metrics. We are now thinking in terms of 
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computing the scalar propagator in the given metric and inverting it to 

obtain an approximation to o . Note that the presence of the factors 

i and iO in Eq.47 causes a to become complex. This in turn causes o 

to become complex. Complex functions can be handled on the computer 

in a straightforward way but it is important to call attention to the 

added complication. 



Background Field Method of Gauge Theory and the Renormalization Problem 

S. Ichinose and M. Omote 

Institute of Physics, University of Tsukuba, lharaki 305, Japan 

§i. Introduction 

The background field method was proposed by DeWitt (I) and has been discussed 

later in many papers~ 2) This method has an interesting feature that we can quantize 

gauge theories without losing gauge invariance. As a result, in the renormalization 

procedure gauge invariant quantities need to be considered. This is a very important 

advantage in discussing the renormalization problem of non-Abelian gauge theories 

(especially of gravitation). 

In this paper we will discuss a systematic renormalization procedure by using 

the background field method and by generalizing the counter-term formula of 

't Hooft (3) to two loop processes. 

§2. Background Field Method 

In the background field method the generating functional of the S-metrix is 

given by 

W($) = I D~eiS($+~) = I D~exp i{S($) + S i~i + i S ij~i~j + ...}, (2,1) 

where S i , S,i j ... denote functional derivatives of the action S($) with respect to 

~i(x), ~j(y), "'', and S i~i, S,ij~i~ j are abbreviations of 

S,i,i = Id4x ~S(~) ~i(x ) = Id4xd4y ~2S(~) *i(x)~j(y). (2.2) 
~$i (x) ' S,ij ~i~ j ~$i(x) ~$ j (Y) 

In (2.1) the background field $ is defined as a solution of the field equation S,i($) 

= 0. 

If we consider a system which includes gauge fields in this formalism we can 

introduce two kinds of gauge transformations. By taking the Yang-Mills fields as an 

example we define such transformations as follows: 

c-type gauge transformations 

~p ~ gfabcb c ~ a ~a, = ~ a + $~ - 

,a a + ~abc b. c 
~p = ~ gl m ~B , 

(2.3) 
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q-type gauge transformations 

~,a ~ a 

(2.4) 
,a a gfabc b c ~ c) _ ~ a 
~ = ¢~ + (~ + ~ v 

Under the both transformations (2.3) and (2.4) the total field A = ($+~) has 

ordinary gauge transformation properties 

A 'a = A a + gfabc b A c _ ~ a . (2.5) 

The important point is the fact that only $ field (~ field) has the transformation 

properties of gauge field under c-type (q-type) gauge transformations. 

As concerning gauge fixing we have to fix the q-type gauge only in (2.1). Then 

we can choose a gauge fixing condition (the background gauge) such as 

a a ~abc7 b. c. 
D ~M ~ (3 ~ + gr ~M ~ j = 0 . (2.6) 

Since (2.6) transforms covariantly under (2.3) it is evident that W($) is invariant 

under (2.3) even if the gauge fixing has been performed. This important fact 

simplifies the discussion of the renormalization problem of the gauge theories in the 

point that the counter Lagrangian can be expressed in term of gauge invariant 
a2 

combinations such as (F~) . 

§3. Counter-term Formula 

Without loss of generality we can expand the action S(~+~) around ~ as 

S(~+~) - S($) - S,i~ i 

~Jk~i+j ~+k ijk ijk£ 

+ E~Jk£~i#j~k~ ~ £ + @ijk£~i~j~k~ £ + ""} , (3.1) 

and G are functions of the $. In where coefficients W, NM, M, -, = ~, A, F ~, E 

(3.1) we assumed that S($+~) has derivative couplings up to second order. This is 

satisfied both for Einstein gravity and for the Yang-Mills type gauge theories. 

In this paper we will restrict ourselves to the case E = F = E = O, ~J = _6ij. 

under some trans- By introducing a kind of covariant derivatives V~ i = ~i + Nij~j 

formations which will be mentioned later (3.1) can be rewritten by 
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S($+~) - S(S) - S,i~i 

I I 1 +~ + 
= d4x{ - ~ V ~iV ~ i + ~ ~iXij~j + ~ijk~i~jV ~ k Aijk~i~j~ k ~ijk£~i~j~k~£} , (3.2) 

where Xij = Mij " (N~N~)ij, 

"'Aijk = Aijk + l(~ ^~ 3 "" i£~jk£ 
+ ~ ~ + ~ 

Njz~Ik £ Nk£~ij£) • (3,3) 

The action (3.1) is invariant under the following transformations 

, N,~ ~ = - ~  , 
~i ~i + %ij~j ' ij = Nij + %ikN~j - Nik%kJ ~ ij 

, D 
Mij = Mij + %ik~j - Mik%kj - Nik~%kJ - ~%ikN~j ' 

, i 
Aij k = Xi/A/j k + ~ ~ Xi/~jk / + cyclic(i,j,k) , 

@: ^ = + cyclic(i,j,k,Z) (3.4) ~jk£ %imOmjk£ 

By considering dimensions of the coefficient functions and their transformation 

properties under (3.4) which include c-type gauge transformations as a special case, 

one-loop counter-terms for (3.2) are given by (3) 

ALone-loop(s) = _ 1 1 1 .~.~. 
8 2S(~ XijXji +~ijIji) , (3.5) 

where Yij uNij - B~Nij + NikNkj - NikNkj and e = 4 - n. Similarly( ~ we can obtain 

two-loop counter-terms which were given explicitly in our paper ~4~ . 

When we apply these counter-term formula to the pure Yang-Mills type theory as 

an example we find 

ALone-loop + ALtWO-loop { ii g2C2- 17 (g2C2)2 a 2 
= - 96e ~---~+ 3"29~ ---~---}(F ) , (3.6) 

from which the renormalization group function 8(g) can be found to be 

ii g3C2 17 g5C~ 
8 . . . . .  + . . .  . 

3.24 2 3.27 4 
(3.7) 

In the calculation of (3.6) we used the background field gauge condition (2.6) 

i - (D ~ a)2 (3.8) 
Lgauge(~) = ~ D ~ ' 
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where the gauge parameter ~ is fixed to be e = i. In order to cancel all the 

subdivergence it is necessary to be renormalized such that 

2 

= i --~--~ C 2 ~  + "'" D 

4~ e 
(3.9) 

§4. Conclusions and Discussions 

We obtained the counter-term formula up to two-loop by using the background 

field method. Although we did not discuss the cancellation mechanism of 

subdivergences in this formalism, it was examined in detail in our previous paper (4) . 

The generalization of this formula to the gravitational theory is in progress now. 
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SUPERSYMMETRIC GRAND UNIFICATION 
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Abstract: 

After a brief discussion of motivations and prototype models, we 

review recent studies of model building and of proton decay in 

supersymmetric grand unification. A new effect is mentioned for 

AB ~ 0 four-scalar interactions induced by an intermediate scale 

(I0 I0 % 1012 GeV) supersymmetry breaking. 

I. Gauge hierarchy and naturalness 

Up to the highest accelerator energies electroweak interactions 

are now adequately described by the SU(2) x U(1) gauge model. Color 

SU(3) for strong interactions seems to be supported by all the avail- 

able data too. This SU(3) x SU(2) x U(1) gauge model has been beauti- 

fully unified into grand unified theories (GUT) such as SU(5) [I] GUT 

has achieved several nice points: 

i) The unique gauge coupling provides a true unification of ele- 

ctromagnetic, weak, and strong interactions. 

ii) Quantization of charge. The equality of charges of proton 

and positron is a mysterious accident in the SU(3) x SU(2) × 

U(1) gauge model, but it is explained by symmetry reasons in 

grand unified theories. 

sin28w ( iii) A number of quantitative successes such as M W) and 

mb/m T - 

iv) Possibility of proton decay and of explaining the origin of 

the baryon number in the universe. 

On the other hand GUT has left several important problems still un- 

answered: 

i) There are vastly different mass scales of gauge symmetry bre- 

-2,M2 aking for SU(2) × U(1) and GUT (gauge hierarchy), e.g. MW/ GUT 

10 -26 in SU(5). 

ii) How to explain fermion masses and generations? 

iii) How to incorporate gravity? 

and so forth. Among them we now have some hope for a natural solution 
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of the gauge hierarchy problem. 

Some time ago 'tHooft has clarified the concept of naturalness: 

If a theory contains small parameters, it should acquire a larger 

symmetry for vanishing values of the parameters [2] Namely these 

parameters are protected from getting large values by the approximate 

symmetry. In that view gauge hierarchy becomes natural, if there is 

a larger symmetry in the limit of vanishing mass-squared for Higgs 

scalar which is responcible for the SU(2) x U(1) symmetry breaking. 

For particles with spin one-half (one), chiral (local gauge) symmetry 

protects their masslessness. Since no symmetry is known which direct- 

ly guarantees masslessness for spinless particles, we are led to two 

alternatives: 

i) Theories without elementary scalar particles (technicolor 

models) [3] 
ii) Supersymmetry (SUSY) [4] Higgs scalar can be guaranteed to be 

massless if SUSY relates it to a spin 1/2 fermion which is 

massless because of chiral symmetry. 

II. Supersymmetric grand unified models 

i. SU(5) with explicit soft breaking of SUSY [5]' [6] 

i) The standard SU(5) GUT has been successfully made supersymmetric. 

One fine tuning at the tree level is needed for light Higgs doublet, 

but is not disturbed by radiative corrections (nonrenormalization 

theorem[7]). 
ii) Since the naturalness is not spoiled by explicit soft SUSY 

breaking of order 

Am < TeV, superpartners of quarks and leptons can be given small 

masses (< TeV). 

iii) Renormalization-group analysis including many new particles 

showed phenomenologically acceptable values for sin2ew(Mw ) and mb/m T 

[8] , but grand unification scale MGU T tends to be larger than the 

nonsupersymmetric model. 



210 

2. SU(3) x SU(2) × U(1) x ~(i) models 

i) Experimentally scalar partners of charged leptons are found to be 

heavier than 16 GeV [9] . On the other hand spontaneous breakdown of 

SUSY gives a mass sum rule at the tree level [I0] 

2 = ~ g<D> (i) 
~ m g o s o  n - ~ m F e r m i o  n 

U(1) 

where the right-hand side is a measure of SUSY breaking, so-called D- 

terms associated to broken U(1) subgroups. There are only two such 

U(1) generators in the SU(3) × SU(2) × U(1) model: weak hypercharge Y 

and the third component 13 of SU(2). Unfortunately both Y and 13 

vanishes by summing over quarks (leptons). 

Zm 2 . - Zm 2 = 0 (2) 
scalar quark quark 

Therefore we are forced to enlarge the gauge group in order to have a 

scalar partner heavier than quarks and leptons [6] The simplest of 

such possibilities is the SU(3) x SU(2) × U(1) x ~(i) models [II]'[12] 

ii) Irrespective of details of grand unification, one may look for a 

low energy SUSY model with SU(3) x SU(2) × U(1) x ~(i) gauge symmetry. 

The model must satisfy: 

a) Anomaly cancellation for renormalizability. 

b) U(1) and U(1) be traceless for the absence of quadratic 

divergences (this might be unnecessary according to ref. 7). 

c) Spontaneous breaking of supersymmetry. 

Much efforts have been devoted to build such a model [II]-[13] 

but so far their models did not satisfy either one of the above three 

requirements. Recently we succeeded to construct a model with all 

three properties [14] . The result shows, however, a few annoying 

features too: a) Asymptotic nonfree (B-function for SU(3) is zero at 

one loop), b) Too many fields with the same quantum number. There- 

fore it appears difficult to embed the model into a simple group. 

iii) A different viewpoint was proposed by a CERN group [15] They 

take a mass scale in the Lagrangian (8(1) D-term) to be of the order 

of the Planck mass Mpl. Because of that they argued to disregard the 

nonrenormalizability due to anomalies. Their model contains a SUSY 

breaking mass scale ~ much larger than the electroweak mass scale M W. 

However the effect almost decouples from our low energy world of 

quarks, leptons and Higgs doublet except effects of order ~2/Mpl, 
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which is identified as M W. 

3. Intermediate scale SUSY breaking 

i) The mass sum rule (i) was the stumbling block of SUSY model 

building. Recently several people realized that radiative correction~ 

violate the sum rule to give a desirable mass pattern at two loop 

order [16] In this picture the electroweak mass scale arises as a 

radiative correction to the SUSY breaking at higher energy scale. In 

particular if particles affected by the SUSY breaking ~ at the tree 

level are themselves extremely heavy (of order M ~ MGUT), they approx- 

imately decouple from the low energy world. Therefore the effective 

SUSY breaking in quarks, leptons and Higgs doublet supermultiplets is 
2 

of order ~2/M. Identifying ~ /M ~ M W and M ~ MGU_ or Mpl, one 

obtains the SUSY breaking mass scale p as i0 I0 % i0 ~2 GeV, inter- 

mediate between M and M w (geometric hierarchy[17]). 

|SUSY breaking I M >>F 
. ~  sector J 

~.~ radiative corrections 

Mw 
quark, lepton ~2 
Higgs doublet -'- a-M-- 

Fig. i. Particles in the SUSY breaking sector are superheavy. 
Effective SUSY breaking in quark, lepton, and Higgs doublet 
is induced by radiative corrections. 
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ii) A realistic SU(5) model based on the above idea was constructed 

by Dine and Fischler [18] with M % MGU T. Witten's mechanism [19] of 

generating large mass scale as a radiative correction was also imple- 

mented in a SU(5) model [17] but was found to have several severe 

problems [20] Polchinski and Susskind studied decoupling and worked 

out a systematic way to extract the effective low energy theory [21] 

The resulting picture is a theory with explicit soft breakings of 

SUSY, which are derivable from and constrained by the underlying high 

energy theory. 

iii) Most recently a very interesting type of models were proposed 

where an explicit SUSY breaking arises as an effect of embedding SUSY 

GUT models into supergravity. This will be discussed by R. Arnowitt 

in this conference. 

III. Proton decay in supersymmetric models 

1. Model independent analysis in SUSY models 

i) Proton decay offers the most spectacular and important information 

on the grand unification. Possible baryon-number violating effective 

interactions are known to be constrained by low-energy symmetries such 

as SU(3) × SU(2) × U(1) [22] Model-independent operator-analysis has 

also been done for SUSY and SU(3) × SU(2) × U(1) as the low-energy 

symmetry [23]'[12] One finds a dimension-four AB ~ 0 operator, but 

one can easily forbid it, for instance, by imposing a discrete sym- 

metry, "matter parity", namely a sign change of quark and lepton 

superfields. On the other hand in SUSY models, dimension-five opera- 

tors generally exist such as 

= IA A ~ ~^ + . (3) l[q-q-q-i-]F n q_ q_ q_ z_ 

where q_ and £_ are quark and lepton superfields and Aq_and ~q_are 

scalarquark and quark. The GUT mass scale is denoted by M. A typical 

term arises as an interaction between two scalars and two fermions (of 

quarks and a lepton) due to the baryon-number violating Higgs fermion 

exchange in SU(5) model for instance. If there are SUSY breaking 

Majorana masses for gauge fermions, the dominant contribution to 

proton decay comes from a loop diagram containing the dimension-five 
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% 
kw 

% 

Fig. 2. A loop diagram with the dimension-five operator and 
the SUSY breaking Majorana mass for gauge fermion l W. 

A detailed analysis gave the rate consistent with the present 

experimental bound and predicted the dominance of decay modes with 

neutrinos and higher generations [25] 

Since proton decay due to the dimension-five operators is rather 

close to the experimental bound, one may wish to construct models 

which forbid these operators. Discrete symmetries, R-invariance (a 

global symmetry) [23], and local U(1) symmetry [12] were proposed for 

such a purpose. In this case SUSY restricts the dimension-six four- 

fermion operators to those of mixed chirality which can be experi- 

mentally verified from lepton-polarization measurement. 

2. AB ~ 0 four-scalar interaction induced by intermediate scale SUSY 

breaking 

In the case of intermediate scale SUSY breaking, there are addi- 
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tional important operators for proton decay. Using the method of ref. 

21, we performed a systematic operator-analysis with a new superfield 

c± responcible for the SUSY breaking [26] More precisely the F- 
2 

component of c± develops a vacuum expectation value ~ intermediate 

between M ~ MGU T and MW, and hence c± must be singlet of SU(3) x SU(2) 

U(1). For instance we obtain new operators of dimension six which 

give four-scalar interactions after SUSY breaking such as 

2 I 

~---[q q q ,% c ] = M 2 . . . . .  F j A  A A A~ q_ q_ q_ ~_ 
(4) 

where q_ (£) and Aq_ (A£) denote left-handed quark (lepton) super- 

field and its scalar component. It contributes to proton decay through 

two-loop diagrams with Majorana masses of order M W for gauge fermions. 

% 

% 
Xw 

A "\ 

1 \ 
/ \ 

/ Ac 
kw 

% 

% 

Fig. 3. A two-loop diagram with the SUSY breaking four-scalar 
interaction and the SUSY breaking Majorana mass for gauge 
fermion I w . 

Since M W = ~2/M in the geometric hierarchy picture, the contribu- 

tion of the four-scalar interaction to proton decay is of the same 

order as the dimension-five SUSY operator (apart from powers of coup- 
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lings etc.): (~/M) 2. (I/M~) = (I/M)" (I/M W) = i/~ 2. In certain models 

SUSY breaking Majorana masses for gauge fermions are negligible [27] 

and make the above four-scalar interactions and the dimension-five 

SUSY operators unimportant for proton decay. In that case more impor- 

tant operator is another type of four-scalar interactions with mixed 

chirality such as 

M~[q_q_u+e+c+c_l = (~)4A A A A (5) D q_ q_ u+ e+ 

where u+ (e+) and A u (A e ) are right-handed u-quark (electron) super- 
+ + 

field and its scalar component. The operator can contribute to proton 

decay through two-loop diagrams without the Majorana masses for gauge 

fermions. In the geometric hierarchy picture its contribution to the 

proton decay is of the same order as the dimension six SUSY operator 

(u/M) 4- (I/M~)- = I/M 2. Therefore the new AB ~ 0 four-scalar inter- 

actions can contribute to proton decay with comparable order of 

magnitude as the supersymmetric AB ~ 0 operators for both cases with 

or without significant Majorana mass for gauge fermions. 

Existence of a type of four-scalar interactions in a model was 

also noted recently in ref. 28, but a systematic operator-analysis of 

proton decay in intermediate scale SUSY breaking is found in ref. 26. 
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ASPECTS OF GRAND UNIFIED MODELS WITH SOFTLY BROKEN SUPERSYMMETRY 
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Supersymmetric theories have an outstanding property of no-renormalization for 

F-terms. This may give an important key to the solution of the gauge hierarchy 

problem in the grand unified theories (GUTs). 

If nature chooses a supersymmetric theory, the supersymmetry must be broken at 

low energies spontaneously or explicitly. In spontaneously broken supersylr~etric 

theories, however, there is a severe constraint on masses of component fields in a 

given supermultiplet, and in order to construct a realistic model, we must introduce 

disgusting complexity in the model I) . 

On the other hand in the explicit breaking scheme, it is possible to construct 
2) 

a realistic model with minimal set of supermultiplets . The minimal supersyrr~etric 

SU(3)xSU(2)×U(1) model contains the following supermultiplets: 

vector multiplets 

V I : V~ , X 1 , D 1 

~2 D2 V 2 : V 2 , , 

V 3 : V~ , X 3 , D 3 

left-handed Higgs multiplets 

HI : A1 ' ~I ' F1 

H2 : A2 ' ~2 ' F2 

left-handed matter multiplets 

SU(3) SU(2) Y/2 

!, i, 0) 

!, !, o )  

~ ,  Z, 0) 

i , 2 , -1/2) 

! , i , 1/2) 

£r : A(£r)' ~(£r )' F(£r) ( ! , ! , -1/2) 

m r : A(er), ~(er ), F(e r) ( ! , ! , 1 ) 

qr : A(qr)' ~(qr )' F(qr) ( ! , ! , 1/6) 

Ur : A(Ur)' ~(Ur )' F(Ur) ( !*, _I , -2/3) 

dr : A(dr)' ~(dr ), F(d r) ( _3", _i , 1/3) 

where r(=1,2,3) are generation indices. 

In this scheme, gauge fermion masses (MI, M 2 and M 3 for XI, X 2 and X 3 respec- 
2 tively) and all mass terms of the scalar components of matter multiplets (m (~) for 
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- - 2 2 
A(#) with ~ =£r' er' qr' Ur' dr ) and those of Higgs multiplets (m I for A I, m 2 for A 2 

and m~ for AI-A 2 mixing terms) are freely adjustable parameters of the theory. 

If the explicit breaking scheme is the case in nature, the low energy phenomena 

give considerable constraints on the values of these breaking parameters as we will 

see below. 

All m2(~) for ~ =Er, er, qr' Ur' dr must be large (~0((I02 GeV)2))and positive. 

any one of them (except £r ) are negative, U(1) EM or If color SU(3) conservation 

breaks down. 

In order to obtain desirable symmetry breaking SU(2)xU(1) + U(1) EM, Higgs scalars 

A 1 and A 2 must acquire non,vanishing vacuum expectation values through the minimiza- 

tion of the Higgs potential 

T a % ~A2)2 + L8 (A~A 1 % 2 V = (A~ TAI + A 2 - A2A 2) 
2 % 2 % 2 * * 

+ mlAIA 1 + m2A2A 2 - m3(AIA 2 + AIA2). 

The existence of the Higgs vacuum requires the following conditions3): 

2 2 2 4 22 
m I + m 2 > 2]m31, m 3 > mlm 2 , 

that is, m~ must lie between the algebraic and geometrical average of m~ and m~. 

Since we expect that our SU(3)xSU(2)xU(1) model is embedded in some grand unified 

group GGUT, we reject the possible existence of U(1)-D term in the lagrangian. 

Therefore if there are no soft-breaking effects, which implies m~=m~ and m~=0, 

SU(2)xU(1) does not break down. 

The existence of the superpartners of leptons, quarks and gauge bosons induces 

the flavor changing neutral interactions such as s +d ÷ d +s and ~ ÷ ey. In order 

to suppress such effects, the following stringent conditions must be satisfied to 
4) 

validate the super-GIM mechanism : 

[m2(ql ) - m2(q2) l / m2(ql ) < 0(i0-3), 

Im2(£i ) - m2(Z21 ] / m2(Zl) < 0(10-31. 

It is implausible to expect all these conditions are satisfied by accident. 

It may be desirable to find some kind of systematic treatment of breaking parameters 

which guarantees all the requirements. It may well be likely that all soft-breaking 

terms come from the single origin. 

Here we examine the exciting possibility that at the unification energy scale 

(~ m Mx) , the theory is almost supersymmetric and the soft-breaking terms exist only 

in the GGU T invariant mass terms of gauge fermions X's 5) . At lower energies,_ all 

the other soft-breaking terms are generated through radiative corrections 6) . 

In order to clarify whether this "minimal" soft-breaking scheme really gives 

the required soft-breaking parameters at low energy (~ m Mw), we must examine the 
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renormalization group analysis. 

The supersymmetric part of the lagrangian consists of the usual "kinetic" terms 

and the F-component of the super potential 7) 

W = f(£Hle) + h(qHld) + h(qH2u) + m(HiH2). 

The soft-breaking terms are given by 8) 

£break = {-Ml%lll - M2%2%2 - M313~3 + h.c.} - I _ _ _ m2(¢)A(~)%A(¢) 
¢=Z,e,q,u,d 

2% 2% +mA3 + ** - AIAIA 1 - A2A2A 2 (AIA 2 AIA 2) 

+ {fmfA(£lAiA(e ) + hmhA(q)AiA(d) + hm~A(qlA2A(u) + h.c.}. 

2 2 2 2 2 2 
The Higgs scalar mass terms are given as m2=m +A I, m2=m +A 2, m3=mA 3. 

By examining the renormalization group equations for this minimal model, we see 

that all the supersymmetry breaking parameters are generated through radiative 

corrections starting from a boundary condition 5) " 

m ~ 0(102 GeV) 

M I = M 2 = M 3 E M ~ O(102 GeV) 

m(~) = A I = A 2 = A 3 = mf = m h = m~ = 0 at ~ =M X. 

The gauge fermion loop contributions give large positive masses of order 102 

GeV to the scalar partners of leptons and quarks through the following renormaliza- 

tion group equation: 

,,2 82 2 2 
~ ~--fm (4) =-8 giC2(R) iMi + [Yukawa coupling] . 

i=SU(3), SU(2) ,U(1) 

Since the Yukawa coupling contributions are negligibly small for thescalars of the 

first and second generations, those with the same SU(3)xSU(2)xU(1) quantum numbers 

are almost degenerate. Therefore in our scheme the super-GIM mechanism works well 

to suppress the dangerous flavor changing neutral interactions. Combining with the 

renormalization group equations for gauge fermion masses 

(4~) 2p~p~l = 22g'2Ml , (4~) 2~2 2g2M2 , (4~) 2p~-~3 = -6g2cM 3 , 

we get the following mass relations at p =Mw: 

M2/M I = 2.01, 

m(£r)/M 1 = 1.78, 

m(qr)/M I = 6.60, 

m(dr)/M 1 = 6.38, 

M3/M I = 7.19, 

m(er)/M 1 = 0.95, 

m(Ur)/M 1 = 6.40, 

(r = 1,2) 
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where ~=2.37x 1016 GeV and ~i =4~/g2(p =Mx) =24.1 are used. 

In order to obtain desired Higgs vacuum, which is characterized by the condi- 
2 2 ~I 4 2 2 

tions m I +m 2 > Im and m 3 > mlm 2 at p m~, parameters m, M and Yukawa couplings at 

p =~must be in the appropriate domain. If all ¥ukawa couplings are negligibly 

small, Higgs scalars A I and A 2 receive the same renormalization effects and the 
2 2 

relation m l=m 2 follows. Therefore the breakdown of SU(2)xU(1) does not occur. 

It is indispensable in our minimal scheme that at least one of the Yukawa couplings 

is large enough to generate sizable mass difference between m~ and m~. The only 

candidate which can be freely large is the top quark Yukawa coupling h. Therefore 

the occurrence of the spontaneous breakdown SU(2)xU(1) ÷ U(1) EM requires the 

existence of the lower bound of h. The detailed calculation shows h(~ =M X) ~ 0.095. 

This lower bound turns out to be that of top quark mass, 

m t = <A2>h(p =~) > 60 GeV. 

Matter scalars acquire additional mass terms through vacuum expectation values 

<AI> and <A2>. Especially their couplings to the D-components of the gauge multi- 

plets give the following mass terms, 

~ cos28 At[13-Y(tan28w)/2]A 

where e = c0t-l(<Al>/<A2>). Their contributions are not always positive. The most 

dangerous is that for the lightest scalars A(e r) (r=l,2). Their physical masses 

are given by 

m2(er) - ~ cos2e tan28w . 

Since m2(er ) = (0.95)2M~, the positivity of this physical mass requires the lower 

bound of M I. The detailed computation gives 

M I ~ 30 GeV. 

In conclusion, our "minimal" soft-breaking scheme in the minimal supersymmetric 

SU(3)xSU(2)xU(1) model embedded in the standard GUT group works well. The spontane 

ous breakdown SU(2)xU(1) + U(1) EM occurs through radiative corrections. The super- 

GIM mechanism works well to naturally suppress the dangerous flavor changing neutral 

interactions. In order for our scheme to work, following constraints must be 

satisfied: 

m > 60 GeV, 
t ~ 

M 1 = M 2 / 2 . 0 1  = M 3 / 7 . 1 9  > 30 GeV. 
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Supersymmetric Dipole Mechanism and Vacuum Energy 
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Much attention has been paid recently to supersymmetric theories 

in the hope of resolving the gauge hierarchy problem in grand unified 

theories. Quadratic divergences in elementary scalar theories make it 

necessary to adjust a parameter to 38 decimal precision to achieve the 

h i) large hierarc y. The remarkable non-renormalization theorem in 

supersymmetric theories may provide a natural resolution of this 

problem. 2) 

One of major questions in this approach is how to break super- 

symmetry taking the following points into account: 

i) Supersymmetry must be broken in realistic models, 

ii) if supersymmetry is broken spontaneously at the tree level, 

the unrealistic mass formula ~j(-l)2J(2J+l)m~ = 0 always follows, 

iii) Supersymmetry remains unbroken by perturbation if it is so 

at the tree level. 

It then seems more realistic to accept the following explicit breakings 

which are soft in the sense that no quadratic divergences are genera- 

ted. 3) 

a) L = ~(A 2 + B 2 ) 
a 

b) L b = ~(A 2 - B2), 

c) L c = ~3~, (i) 

d) L d = ~4(A 3 - 3AB2), 

3 
e) L = ~5 A, 

e 

*) Fellow of Japan Society for the Promotion of Science. 
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where A and B are the scalar and pseudoscalar fields of a chiral 

multiplet, respectively, while I is the spinor field of a vector multi- 

plet. 

We shall show, however, that all these soft breakings can also be 

derived by the mechanism of spontaneous breaking and discuss the vacuum 

energy in this scheme, 4) which was originally proposed by Slavnov. 5) 

Let L 0 be a supersymmetric Lagrangian of chiral multiplets and/or 

vector multiplets, which are called the matter fields, we also intro- 

duce left handed chiral superfields S- and S-, and consider the addi- 

tional supersymmetric Lagrangian 

AL = ~i (DD) 2(S+~ . . . . .  ) - (DD) (~S+~ + + NS ) + h.c., (2) 

where ~ and n are real constants and ~_ is a left-handed chiral super- 

field made of the matter f i e l d s .  E x p r e s s e d  i n  t e r m s  o f  c o m p o n e n t  f i e l d s  

S = (a_, ~_, f . . . . . . . . .  ), ~ = (~ , ~ , ~ ) and ~ = (A , ~ , F ), eq. (2) 

becomes 

AL = ~ a+~ ÷ ~ i~ + f+~ 

rU 

+ ~{~tft _ ~_ ~C . . . .  + ~+a +} + T]f + h.c., (3) 

where ~'~c = c~ T.~' The first line can be diagonalized by orthogonal 

transformations 

~2 ~2- f2 1 1 a_ ~_ 
(4) 

resulting in 

+ + 
+ + $~2 +~l-i~l -- ~2-i~2 - + flfl f2f2 AL = ~ ~i'~i - ~2" 

- + + + mE +(fl+ f l- i l_- 2 + +hc] 
/y - 

~2 + f2 ) (5) + (fl + f2 + fl + " 
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From eq. (5) we derive the field equations 

[3~i = O~ 2 = - i ~+, 
/2 

=i,c, 
i~l - = i~2_ /~ - 

A_, f2 fl 
q ~ ~+. 
/Y /Y - 

(6a) 

(6b) 

(6c) 

Clearly, the fields ~i and ~i- are fields of positive metric while ~2 

and ~2- are ghosts of negative metric, forming a supersymmetric set of 

dipole fields. We show that these dipole fields are unobservable yet 

break supersymmetry spontaneously. For this reason we call this scheme 

"supersymmetric dipole mechanism." 

It is easy to see that ~i - ~2 and ~I- - ~2- are free fields: 

~(~i - ~2 ) = i~(~l- - ~2 -) = 0, (7) 

which allow us to impose the subsidiary conditions 

(~i ~2 ) (+) Iphys> = (~i- - ~2 -) (+) Iphys> = 0. (8) 

The combinations ~i - ~2 and ~i- - ~2- turn out to be zero-norm fields~ 

while ~i + ~2 and ~i- + ~2- are removed from physical states by eq. 

(8), and the net result is that they produce the breaking term sponta- 

neously 

-~(A_ + A+)_ , (9) 

which is obtained by substituting (6c) into (5). Note that, although 

supersymmetry is broken spontaneously, there appear no physical Goldst- 

ino nor vacuum energy. This situation arises because one of the 

Goldstinos is of negative metric. We can also show that the mass 

splittings between bosons and fermions are generated without contra- 

dicting supercurrent conservation. 

Eq. (8) gives the desired breaking terms Le, Lb, L d and L c in 
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(i) by setting ~_ = ¢_, 92 ,_ 93_ and ~+÷~__, respectively, where ~++ 

and ~ are the spinor superfields of the gauge field strengths. The 

term L a can be obtained essentially in the same way by replacing the 

chiral multiplets S and S by two vector multiplets V and V. 4) 

Now we wish to point out another peculiar feature of this model by 

choosing the Wess-Zumino model for the matter part and # for ¢ . 

1 2 1 ~B)2 ½ 1 2 1 2 
L 0 = ~(~ A) + ~( + ~i~¢ + ~F + ~ 

+ m(AF - BG - ½~¢) + g(A2F - B2F - 2ABG - A~ - B~iYs¢). (9) 

The additional Lagrangian gives a linear A term and thus the scalar 

field A acquires a nonvanishing vacuum expectation value a. The vacuum 

energy is 

= 1 V(a) [(m + ga) 2a 2 + /2~n a, (i0) 

and a is determined by the minimization condition of this potential. 

Obviously V(a) may vanish or become negative, contrary to naive expec- 

tation. This is precisely due to the presence of negative-metric fields 

TO see this, we have only to consider the linear part of the super- 

current 

= iyz[ -I (m + ga)a~ + (--~ + z~-~a)91 + JU n %a)~2] . (ii) 

By using the canonical equal-time anticommutators of ~, ~i and ~2' 

we get 

I<01~{S , ~  S+}I0> = Id3x[{ 1 (m/2 + ga)a}2 + /2(~-q-+ ~)2- (q/2 %a) 2}, 

(12) 

where the negative sign in the last term is due to the negative metric 

of ~2" Eq. (12) agrees with (i0), implying that the naive argument for 

positive vacuum energy must be modified in the presence of negative- 

metric fields. 
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In conclusion, we have shown that all the explicit soft breakings 

of supersymmetry may be regarded as spontaneous, providing with a 

theoretical basis for their softness. This model is a first nontrivial 

example with supersymmetry broken spontaneously but with not necessarily 

positive vacuum energy owing to an unobservable Goldstino of negative 

metric. Finally, from our results, we conjecture that the absence of 

quadratice divergences may lead to supersymmetry either unbroken or 

broken spontaneously. Some results in this direction have been obtained 

6) 
recently. 

The author wishes to thank Professor Y. Fujii for useful advices 

and careful reading of the manuscript. 
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NOSONOMY OF AN INVERTED HIERARCHY MODEL 
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Israel 

This is a report of an unsuccessful attempt to build a realistic 
1 

Grand Unified model based on Witten's inverted hierarchy mechanism. 

The work was a collaboration with Vadim Kaplunovsky 2. Witten's pheno- 

menon is a common property of supersymmetric gauge theories in which 

supersymmetry (SUSY) is spontaneously broken by the vacuum expectation 

value of an F term. 

Details of the mechanism: 
8W 

i) ~--~i ~ 0 for all ~i and W = Cijk~i~j#k+Cij~i#j+Ci@i 

2 
18W has a line of degenerate minima imply that the potential V = ~i 

extending to ~. Call this flat direction X. 

2) The one loop radiative corrections to the potential V(X) for large X 

have the form 

M4C%nX/M (M is the Lagrangian mass scale). 
• 2 

In a gauge theory C can be negative. Renormalization group analysls 

shows that in many cases V(X) develops a minimum at X = 0 Me I/g2) 

with g a small coupling and M the SUSY breaking scale. 
~2W 

3) Since = 0 the partner of X is the Goldstone fermion. 
8X 2 

4) When X>>M some particles get mass of 0(X). 
M 

particles which couple to X (to order ~). 

matrix is 

<X>Cxij~i~ j 

So the couplings of particles of mass <_M to the Goldstone fermion 

are 0(M/X). This implies that supersymmetry breaking in the spectum 

has the pattern 

Supersymmetric mass 

0(X) 

0(S) 

0 (M2/X) 

so only particles of mass ~ 0(M2/X) 

world. 

These are precisely those 

The large part of the mass 

breaking 

0 (S) 

0 (S2/X) 

0 (M2/X) 

can be identified with the real 
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The model: 

Fields A,Y in 24 of SU 5 

X,Z in 1 of SU 5 

H,H in 5,5 of SU 5 

+ quarks-lepton superfields 

W = ItrA2y + l' (tr(A2)-M2)X 

+ BHAH + yZHH 

+ quark lepton couplings to H+H 

When X, Y get large expectation values all chiral superfields except 

AI,I' Y8,1' YI,3' X, Z, H, H+quarks and leptons get masses of 0(X) 

(indices refer to SU3×SU 2 transformation properties). Also 

SU 5 ÷ SU3xSU2×UI 

Coset gauge boson masses are 0(X). AI, 1 gets mass of 0(M). The other 

masses are 0(M2/X) or 0. 

Diseases of the Model 

I. Renormalization 

With 3 generations of quarks and leptons color is not asymptotica- 

lly free above 10 TeV and becomes strong before the GUT scale is reach- 

ed. (2 loop terms ~ 1 loop) 

Most realistic model has 2 generations but 

1 
e.m 137 

AQC D % 100 MeV 

= 1024 MGU T GeV 

Best we can do with MGU T ! 1018 GeV is 

= 1018 
MGU T GeV 

AQC D ~ 100 MeV 

1 
e.m. 113 

1 
choosing ee.m i-~ forces AQC D % i0 keY 

The problem is caused by the light M~I0 TeV color octet superfield Y8,1 

which is essential to the inverse hierarchy mechanism. We have not been 

able to construct a model without this field. 

II. Gravitational Problems 

i) Gravitino mass density of the Universe 

Pagels,Primack~ -- Weinberg 4 bounds on the SUSY breaking scale 

M < 2x106 GeV or M > i0" GeV 

(actually the lower bound on M may be higher depending on the details 

of R symmetry breaking. We make the o~timistic assumption that our 
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model's R symmetry can be arranged so that this mimimal bound is satisfied). 

In an inverse hierarchy model 

M 2 ~ 1014 1018 ~ ~-- i00 GeV and GeV ~ X ~ GeV 

The first estimate is due to the fact that SU2×U 1 breaking in these models is a~loop 

radiative correction 2 . So 

109 GeV ~ M 4 i0 II GeV 

The model is barely compatible with the minimal bound. Factors of 72 could be 

important. Note compatibility ~ X ~ 1018 GeV. 

2) Gravitational corrections to the effective potential classical coupling to super- 

gravity i m p l i e s  5 

v ~w 2 ~ w  + - * - -  w 1 e 2 
= ÷ [ |3~ M 2 - ~-~ W Mp 

P P 

In Witten's original scenario M = O(M) in the fundamental gravitational Lagrangian 
P 

and the physical Planck mass arises from a non-minimal gravitational coupling ~g X R 

to the X field. But in this case the above gravitational correction completely 

swamps the radiative corrections which create the inverse hierarchy effect. So we 

must give up Witten's attractive explanation of the ratio between the supersymmetry 

breaking scale M and the Planck scale (this problem was pointed out to me by Ed 

Witten). 

III. The Revenge of Hierarchy 

SU2×U 1 breaking must be a radiative effect since tree level scales M, X are 

both > > I00 GeV. To obtain a nontrivial effective potential for H, H we must couple 

them to SUSY breaking. There are two (?) possibilities 

~W = ~H.yiHJ ~ wrong SU 5 breaking 
~J 

1 
(l~Ktten) 

~w = Bg.A}H J 
1 j 

<A~ ~ 222_3_3 

gives mass of O(M) to all components of H, H. Solution by fine tuning 

tune y (accuract I0 -I0 ~ I0 -II) to cancel doublet mass. Brilliant solution of fine 
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tuning problem - the sliding scalar: 

~'W = yZHH 

(proposed independently by Witten, T.B. and Kaplunovsky, Dine + Fischler, Dimopoulos 

+ Raby) 6'2 

If the radiative effective potential favors parallel expectation values of the 

doublet components of H, H (and it does for some values of parameters) 2'6 z will 

adjust itself to exactly cancel the doublet mass. 

Unfortunately there are radiative corrections to the effective potential for 

Z which are much bigger than this term, so <Z> will probably not sit at the right 

point. We still have a fine tuning problem of 0(I0-i0). This problem is more 

serious than the others but it may be curable by a change in the treatment of 

H, H. The other problems seem to be quite general features of inverse hierarchy 

models at least for an SU 5 gauge group. We have not been able to find models 

based on SO10 , Thus we conclude that Witten's inverted hierarchy does not work. 
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Abstract 

The properties of local supersymmetric (LS) grand un i f ied  models based on the 

gauge group (N=I supergravity)xSU(5) are described. The grav i ta t iona l  in teract ions 

of supergravity cause a dynamical symmetry breaking of both SU(2)xU(1) and super- 

grav i ty  at the mass m s = Km 2 ~ 300 GeV where m is the scale of supersymmetry 

breaking. These resul ts  are maintained at the one loop leve l .  The models described 

are r e a l i s t i c  in that they are in accord with low energy phenomenology. 

I .  Introduct ion 

Over the past year, supersymmetry has played an increasingly important role in 

model bui ld ing in grand un i f ied  theory. The i n t r i n s i c  appeal of a symmetry which 

combines fermions and bosons into i r reduc ib le  mu l t ip le ts ,  along with the fact  that 

r e a l i s t i c  supersymmetric (SUSY) GUT models now ex is t  ( I )  has great ly  stimulated in te r -  

est in such theories. Thus SUSY models can cor rec t ly  account for  the b quark to T 

lepton mass ra t io  mb/m m, the electro-weak mixing parameter sin20 w, and y ie ld  proton 

l i fe t imes Tp~1031 years. Perhaps most remarkable is the fact  that  supersymmetry 

of fers a ~ossible way of maintaining a mass hierarchy without the necessity of f ine 

tuning the parameters of the theory in each order Of perturbat ion theory t2).' " Of 

course, supersymmetry must be broken in the real world, and i f  the mass hierarchy 

is to be maintained in the presence of th is  breaking, the scale of supersymmetry 

breaking m s must obey m s ~ I TeV, so that Higgs masses remain small. I t  has been 

pointed out, however, that cosmological considerations require that the actual scale 

of su~ersymmetry breaking occur at a much higher mass (3),  i . e . ,  at m ~ i0 I I  GeV, and 

a number of models have recent ly been proposed (4) where the low energy phenomena are 

"protected" aqainst seeing d i r ec t l y  the ef fects of the suoersymmetry breaking phen- 

omena at the intermediate mass scale m. 

The above SUSY models are a l l  based on global supersymmetry. For most of these 

theories, the GUT mass M is quite large, i . e . ,  M ~ 1016 GeV and hence KM ~ 10 -2 

(where the Newtonian constant is G : K2/8~). Thus grav i ta t iona l  ef fects may no 

lonqer be nea l ia ib le .  We present in th is  report a descr ipt ion of some of the prop- 

er t ies  of a new class of GUT models based on local supersymmetry (5 '6 '7)  (LS) con- 

structed by coupling N:I at supergravity (8) to a set of scalar l e f t  

mu l t ip le ts ,  and a gauge vector mul t iD le t .  The gauge group of the theory is thus 
(N=I supergravity)xG. ~le w i l l  choose G to be SU(5) here (though other p o s s i b i l i t i e s  



232 

can be considered). Gravity is thus included into the grand un i f i ca t i on ,  and gravi-  

ta t ional  af fects are indeed found to be important. Some of the material presented 

here overlaps with other work in th is  area. Thus the idea that local supersymmetry 

should be incorporated in GUT models has also been suggested by Weinberg £9)" " and by 

Ovrut and Wess (~0) The coupling of supergravity to an a rb i t ra ry  number of ch i ra l  

mul t ip le ts  and a gauge mu l t ip le t  has independently been worked out by Cremmer et 
a l . ( l l  ) 

2. Survey of Results 

Before describing the deta i ls  of LS GUT models, we l i s t  here b r i e f l y  some of 

the resul ts  obtained, and how LS GUT d i f fe rs  from the global SUSY GUT: ( I )  I fsupeF 

symmetry is not spontaneously broken in SUSY models, the d i f fe ren t  vacua ar is ing 

from the breaking of G [e.g.,SU(5),SU(4)xU(1) and SU(3)xSU(2)xU(1)] remain degener- 

ate. IN LS GUT, however, the grav i ta t iona l  in teract ions produce a s p l i t t i n g  of 

these vacua (5 '9 ' I0 )  of size ~2H6 (enerqy/vol) .  Thus one of the problems of SUSY 

models is automatical ly overcome (without introducing any ad hoc terms in the super- 

potent ia l  to break supersymmetry). (2) I f  one introduces a super-Higgs potent- 

t i a l  (12'13) with mass scale m, into the superootent ial ,  

gS-H ~ m2(Z+b) ( I )  

(where Z is a scalar superf ie ld and b is chosen to adjust the cosmological constant 

to zero) then one can construct LS models where there is simultaneous spontaneous 

breaking of both supersymmetry and SU(2)xU(1) at the same mass scale m s where (5) 

m = Km 2 (2) 
s 

Since experimental ly,  electroweak breaking occurs at m_ ~ 300 GeV one has m ~ i0 I0 

- I0 I I  GeV in agreement with the cosmological bounds(3)~on m. Eq. (2) is a remark- 

able resu l t  in that i t  is the f i r s t  known example o f_f oraVi tat ion ef fect ing low 

energy phenomena. I t  can occur because supergravity allows "semi-gravi tat ional"  

phenomena. (Recall that K ~ G ! /2 . )  The LS model thus relates supersymmetry break- 

ing to electro-weak breaking, the low energy regime being dynamically "protected" 

from the r e l a t i v e l y  high super-Higgs mass scale m by the factor  Km in Eq. (2). I t  

is in terest ing to note that Eq. (2) represents a form of "geometric hierarchy" 

(ar is ing here at the tree leve l )  in that m ~ ~ w h e r e  m is the Planck mass. 

(3) As discussed in ( I )  above LS GUT automatical ly producesPo(K 2) s p l i t t i n g  of the 

d i f fe ren t  gauge vacua even before supersymmetry breaking. I f  one arranges the phy- 

s i ca l l y  in terest ing vacuum [e .g . ,  SU(3)xSU(2)xU(1)] to have zero cosmological cons- 

tant ,  then unfortunately i t  w i l l  l i e  highest. While Weinberg (9) has pointed out 

that th is  vacuum is most l i k e l y  stable against f i n i t e  bubble formation leading 

to decay into the lower vacua (since they are in an t i -deSi t te r  spaces) i t  is of 

in terest  to ask whether one may circumvent th is  problem more d i r ec t l y .  When the 

super-Higgs potent ia l  is included, th is  is indeed the case, and one may construct 
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LS models where the SU(3)xSU(2)xU(1) vacuum is the absolute minimum(6). In these 

models the 0(K 2) corrections to the s p l i t t i n g  cancels, and the degeneracy is l i f t e d  

in the K 4 order by the super-Higgs e f fec t .  One f inds that the vacuum s p l i t t i n g  is 

now ~m s4 = <4m8 (instead of ~K2H 6). Hodels of th is  type may have in terest ing cosmo- 

logical  consequences since the smallness of m s implies that the Universe w i l l  not 

choose the physical vacuum un t i l  r e l a t i v e l y  late in i t s  development. (4) A key fea- 

ture of the above tree resul ts is that those f ie lds  whose vacuum expectation values 

(VEV) vanish in the olobal l i m i t ,  K÷0 (e.Q., the electro-weak Higgs f i e l ds )  grow 

VEV's of size ~fn s = ~m 2 (rather than ~m or KM2). I t  is c lea r l y  important that these 

features be maintained when loop corrections are included for  the theory to be physi- 

ca l l y  v iable.  We have examined the one loop terms (7) and have established the 

fo l lowing:  

( i )  As is well-known in 91obal supersymmetry (14) i f  supersymmetry is not spon- 

taneously broken at the tree leve l ,  i t  does not break per turbat ive ly  at the loop 

leve l .  A s imi lar  theorem holds at least to one loop in LS GUT models: i f  the super- 

Higgs potent ia l  is set to zero (so no tree spontaneous symmetry breaking of super- 

symmetry occurs) and i f  the cosmological constant is set to zero, there is no pertur-  

bative dynamical symmetry breaking at one loop to a rb i t ra ry  order in ~. The resu l t  

fol lows from a remarkable set of cancelations of K-deoendent terms (over and above 

the global cancel lat ions) in the loop expression and may in fact  hold also at higher 

order. 

( i i )  When the suDer-Higgs potent ial  is present, the one loop contr ibut ions pro- 

duce non-vanishing contr ibut ions to the e f fec t ive  potent ial  of size ~4ms4 = X4K4m8 

where ~ is a character is t ic  dimensionless coupling constant. The tree e f fec t ive  

potent ia l  is of s i z e ~ m s  4 A  and so the loop corrections do not destabi l ize the tree 

resul ts  (provided the couoling constants are small enough so that the looD expansion 

is va l i d ) .  The s i gn i f i can t  phenomena here is the cancel lat ion of terms of size 

Kr13m 2 and K2M2m4 which would have swamped the tree resul ts and hence negated the pre- 

vious resul ts .  Thus, even in the presence of grav i ta t iona l  e f fec ts ,  the loop correc- 

t ions shield the low energy regime from the large mass m, and produce supersymmetry 

breaking ef fects of size m s = Km 2. 

3. Supergravity Couplings 

Standard grand un i f ied  models are based on a set of left-handed spinors XL a, 

I . . .N  describing quarks and lentons, aauqe vector mesons V ~ in the adjo int  re- a 

presentation of the grouD G (~ is the group index), and a set of scalar Higgs mesons. 

For ~lobal SUSY models, each of these f i e lds  must become members of a supersymmetry 

mu l t ip le t .  The two basic mul t ip le ts  for  construct ing supersymmetric theories are the 

scalar l e f t  handed ch i ra l  (F-type) mu l t i p le t ,  

Z = (z, X L, h) (3) 
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and the vector (D-type) multiplet with components 

(C, ~, H, K, V , ~, D) (4) 

In Eq. (3), z = A+iB is a complex scalar f ie ld and h = F+iG are auxil l iary (con- 

straint) f ields. In Eq. (4), ~ and ~ are Majorana spinors, C,H,K,D are scalar 

fields with D also an auxil l iary f ield. In constructing models, both the matter 

spinors ×L a and the Hiags mesons are placed in le f t  handed scalar multiplets. Thus, 

the quarks and leptons gain supersymmetric scalar partners ("squarks" and "sleptons") 

and the Higqs mesons gain spinor partners ("higgsinos"). The oauae vector mesons are 

placed in a vector multiplet. In the Wess-Zumino aauge (15) only the last three com- 

oonents of Eq. (4) are non-zero: 

V ~ (V ~, ~ ,  D °) (5) 

Thus, the gauge mesons gain spinor oartners ("gauginos"). A convenient tensor calcu- 

lus of multiolets exists whose rules follow naturally using superspace methods (16). 

We now discuss the coupling of these multiplets to superaravity. The coupling 

of a single chiral multiplet and of the vector multiplet to supergravity had previous- 

ly been obtained (17'18) For GUT models, i t  is necessary to generalize this to an 

arbitrary number of chiral multiplets with simultaneously a gauge vector multiplet 

beino present k5'll)'' We brief ly summarize the analysis and some of the results. 

The basic rules for coupling F and D type multiplets of Eqs. (3) and (4) to super- 

gravity maintaining superoravity gauge invarianceare aiven in Refs. (17,18). To 

construct the most generally allowed Lagrangian then, one forms the most general F 

and D type multiplets [of Eqs. (3) and (4)] out of the matter and Higgs chiralmulti~ 

lets Z a and the pauge multiplet V~introducedin Eq. (5) which are also invariant 

under the gauge group G. One then couple's these to supergravity according torules~f 

Refs. (18,19). A convenient way of carrying out the calculation is to f i r s t  couple 

the gauae multiplet V to the chiral multiplets Z a (according to how the Z a transform 
• ( 5 )  under G) and then couple the resultant structure to supergravity . 

Using the rules for multiplet multiplication, computing the F and D contribu- 

tions to the Lagrangian, eliminatin~ all auxil l iary variables, and making various 

simplifyina point transformations, one obtains after much labor the final form for 

the Lagranqian £5'II)'" I t  is, of course, too long to record here! We give now the 

tree effectige potential of the theory which arises from the non-derivative couplings 

of the scalar fields Za: 2 
+ _ 3 V(z, z +) ½ E[GaGa 2 2gg+] +g3--~- [Za+(T~Z)a ]2 (6) 

where (T~)ab are the group generators, 
2 

G a g(z), a + ~- + ½ K2Za + = z a g(z); E = exp Za; and g~ ~ ~g/~z a (7) 

Here g(z a) is the superpotential whose specification describes the specific model. 

(We have also chosen for simolicity interactions that normalize the spin zero kinetic 

energy to unity.) We wil l  give below the fermion mass matrices of the Lagrangian, 
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after the question of spontaneous breaking of supersymmetry is discussed. 

4. Spontaneous Symmetry Breaking 

Eq. (6) ,  of course, correctly reduces to the global supersymmetry effect ive 

potential in the l imi t  ~÷0,  and exhibits the gravitat ional clothing produced by 
supergravity. In al l  spontaneous symmetry breaking solutions that we wi l l  discuss, 
the second (T ~) term of Eq. (6) vanishes, and so we wi l l  neglect i t  in the fol low- 
ing. The extremum condition, V,a = O, yields on the real manifold the relat ion 

TabG b : 0 (8) 
where 2 4 

Tab = g,ab +~-  (Zag'b +zbg,a ) +~4-ZaZb g - <2~abg (9) 

If det Tab # O, then Eq. (8) requires that G a = O. These conditions imply that 
supersymmetry is not broken (since the supersymmetry transformation reads (17) 

6X La = _ ~v~-Gal +~L + " and so<a×~> vanishes at the minimum). The gauge group. G, 
however, would in general be broken. The requirement G a = 0 leads to a set of solu- 
tions z a = Za(i) at which the effective potential becomes 

"z ( i ) )  = - ~  K2E(z ( i ) ) I g ( z ( i ) ) I 2_O  (i0) Vmin[ < 

Thus the gravitat ional interactions remove the degeneracy in O(K 2) of the di f ferent 
gauge vacua found in SUSY models even before supersymmetry is broken (5 '9 ' I0)  (The 

spacing of the vacua are generally of size K2M 6, where M is the GUT mass, for most 

models.) However, i t  may turn out that G a cannot vanish for some channels, implying 

that Tab has at least one zero eigenvalue at the minimum. Under this circumstance, 
supersymmetry wi l l  have broken spontaneously. This, of course, is the interesting 

case, and what happens depends in part on the model chosen. 
As an interesting case we consider a model based on the global SU(5) SUSY GUT 

of Sakai and Georgi and Dimopoulos ( I )  where g : gl + g2 with 

gl = ~I(½ Tr Z3 + ~ TrZ2 ) + %2Hx.(ZXy + 3M~Xy)HY + ~3UH.xHX 

+ CuvwxyHUMVWml Mxy + H'xMXYM'y g2 = m2(Z + B) (11) 

where ZXy is in the adjoint 24 representation, H" x and H x are 5 and 5 Higgs multip- 
le ts ,  U is a singlet and M xy and My are the matter I0 and 5 representations, g2 is 
the super-Higgs potential (12'13) of Eq. ( I ) .  I f  g2 is set to zero, one finds to 

lowest order three global solutions (1) , i . e . ,  H x, Hx', U, M xy and M'y vanish and 

6 x _ 56x5~5y]; ( i )  ZXy (0) : O; ( i i )  ZXy(O) = ~ [ Y 

( i i i )  ZXy(O) = M[2aXy _ 5(6x5~Y 5 + 6x4~Y4) ] (12) 

These solutions preserve SU(5), SU(4)xU(1) and SU(3)xSU(2)xU(1) respectively as well 

as supersymmetry. I f  we set gl = 0 then g2 breaks supersymmetry and Eq. (8) yields 
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Z (0) : a(~2--  ~6~)IK ; B (°) = -a(2 v~--  J~- ) IK ;  a : ±1 (13) 

where B (O) has been chosen to set the cosmological constant to zero. The general 

so lu t ion  of Eq. (8) fo r  the f u l l  g = gl + g2 can be obtained as a per tu rbat ion  

(5) e o t rat d ( i i i )  around Eqs. (12) and (13). We find that th s lu ion gene e out of case 

of Eq. (12) 

SU(3)Cxu(1) 

H x" and HX: 

U = -a x ms/(V~-~3); H x = H" x = y ms/(~2-X3)~x5 (14) 

where x and y obey the a lgebra ic  equations 

x 2 + x(3 - J3--  6~) + y2 + ( I - 3 X )  2 = 0 (15) 

y2(3 - v T -  6X) + 2xy 2 + x = O; X z X2/X I 

Eq. (14) impl ies 

m s = ~(246 GeV); ~ ~ X3/y ~ I (16) 

and hence the super-Higgs mass scale is 

m = ~-~ (2.4 x i0 I0 GeV) (17) 

which is cons is tent  w i th  the cosmological estimates (3) .  The grav i t inomass is 
m 

s exp(2 - v~J - )  = ~(228 GeV) (18) 
m3/2 42 

I t  should be stressed tha t  re la t i ons  such as Eqs. (16)-(18) are obta inable only 

because the theory cor re la tes  the supersymmetry breaking wi th  the SU(2)xU(1) break- 

ing.  Otherwise one would not be able to t h e o r e t i c a l l y  estimate m3/2. 

The above theory is " r e a l i s t i c "  in the sense tha t  the breaking of SU(2)xU(1) 

occuring al lows one to recover a l l  the usual low energy phenomenology. Flavor 

changing neutral  currents are suppressed and there are no l i g h t  scalar  bosons (since 

they gain a common mass ~ ms). The g lu ino and phot ino are massless at the tree 

leve l  but presumably grow mass ~ I0~100 GeV at the loop l eve l .  

simultaneously breaks SU(3)xSU(2)xU(1) down to the physical vacuum 

and supersymmetry at the same mass scale m s ~ Km 2 by growing VEV's for U, 

5. Ground State In LS GUT 

As was pointed out in Sec. IV, even i f  supersymmetry is not broken, the degen- 

eracy of the different gauge vacua is generally l i f ted  in 0(K2). The different 

solutions wi l l  in general have large cosmological constants, however. One can, by 

adding a constant to the superpotential g(z) cancel the cosmological constant in any 

one solution ( i .e . ,  choose the constant so that g(z ( I ) )  vanishes). Eq. (10), howeveG 

shows that al l  other solutions wi l l  l ie  lower in anti-deSitter spaces (5'9'10) 

Weinberq has pointed out that most l ike ly  the Minkowski solution is stable against 

decay into anti-deSitter spaces by f in i te  size bubble formation (9). However, i t  is 

important to note that the above result that the Minkowski solution l ie  highest is 
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actual ly  model dependent and not a aeneral property of LS GUT. 

TO see th is ,  we again wri te g(z) : g l (z)  + g2(z) where g2 is the super-Higgs 

g1(z ( i )  potent ia l .  Then one may evade the above resul t  i f  we choose gl(z)  such that ) 

a l l  vanish at least in the global l im i t  K÷0,  re-establ ishing the degeneracy to 

0(K2). Further, the existance of the super-Higgs potent ial  implies that super- 

symmetry has broken and so that one l inear combination of the G a, cal l  i t  G o , is non- 

zero. Thus Eq. (10) is modified to read 

Vmi n = ½ E(z( i ) ) [Go2(z( i ) )  - ~ K21g(z(i))12] ~ 0(K4m8) (19) 

I t  is clear that the r .h .s ,  of Eq. (19) is no longer negative de f in i te ,  and which 

state l ies lowest depends on the model. I t  is indeed possible to construct a 

gl(z) for which the SU(3)xSU(2)xU(1) is the absolute minimum (with SU(4)xU(1) lying 

higher). In models of th is type, the d i f fe ren t  vacua are separated by 0(m s) ~ ITeV. 

Thus the cosmology of such models may have interest ing new features. 

6. LOo P Corrections 

When loop corrections to the e f fec t ive potential  are included, Eq. ( 8 )  is 

modified to read 

E TabG b + L a = 0 (20) 

where at the one loop level L a has the form 

= (- l )2J(2J + 1)TrMj2Mj2, a ~nMj2/!J 2 (21) La 

In Eq. (21) M2j is the mass matrix for  the par t ic les of spin J. One may obtain the 

spin 0 mass matrix by d i f fe ren t ia t ing  Eq. ( 6 ) .  Writing z a = A a + iB a, and evaluat- 

ing a l l  VEV's on the real manifold we f ind 

3 
(M2)a~ = g'ac ~'bc + ~'abcg'c - 2 <2(g'ab ~ + g'a "~'b ) (22) 

B ~ ~ I K2(~ g - ~'a g'b ) 
(M2)ab = g'ac g'bc - g'abc g'c - 2 'ab 

+ K26ab(~'c g'c - K_~2) (23) 

where we have introduced the notation 

2 
= exp(~ 4- Za2)g(z) (24) 

The fermion mass matrices are defined by 

-L F 1--a mab×b --a ~ (25) 
mass = 2 × + ge X ~a~ ~ 

The formulation of Sec. (3) yields the values 

2 
= - -~- ; = (T~)abZb (26) mab g'ab 5ab ~ - ~ ~'a ~'b/~ ~ a  
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We note the mass matrices contain K dependence both i m p l i c i t l y  in the funct ion ~ and 

e x p l i c i t l y .  Since 

K 2 + 
g'b = ( e x p ~ z a  Za)Gb (27) 

the vanishing of g'a is equivalent to no supersymmetry breaking. For th is  solut ion 

the vanishing of the cosmological constant then implies ~ = 0 at the minimum. 

We f i r s t  consider the s i tua t ion  where g(z) does not contain a super-Higgs. 

One may then show (7) that  i f  at the tree level there ex is t  solut ions with zero 

cosmological constant and no breaking of supersymmetry (g'a = 0 = ~) then perturba- 

t i v e l y  th is  s i tua t ion  is maintained at the one loop level to a l l  orders in K. This 

resu l t  fol lows from the fact  that  Eqs. (22), (23) and (26) imply that  L a has the 

form 

L a = Tab(1)~,b + Ta(1)~ (28) 

Tab(1) (1) are regular in the l i m i t  ~,a, ~ ÷ 0. The special structure of where and T a 

Eq. (28) arises from the fact  that there is a remarkable cancel lat ion of K dependent 

terms in L a that do not have e i ther  one factor  of g'b or ~. Eq. (20) now c lear ly  has 

the solut ion g'a = 0 = ~ maintaining the tree s i tua t ion .  A l l  other possible solu- 

t ions with zero cosmological constant would have to be non-perturbative ( i . e . ,  with 

loop corrections cancel l ing the tree pieces). 

We next include in the super-Higgs potent ia l .  We saw in Sec. (4) that super- 

symmetry then spontaneously breaks at the tree level with the Higgs mesons growing 

= ~ = ~2m4 (except in the super- vacuum expectation values ~Jm s Km 2 and a l l  g'a ~ms2 

Hiqgs channel i t s e l f ) .  There is again a cancel lat ion of a l l  the large terms of 

order KMm 3 and K2M m 4 in L a y ie ld ing  a remaining part L a 14K3m6 = ~4ms3 where 
• ( 7 )  is one of the dimensionless coupling constants . This is to be compared with the 

tree terms where TabG b ~ 12ms3. Thus the loop correct ions again "protect" the low 

energy phenomena from both the GUT mass M ~ 1016 GeV and the intermediate mass scale 

m ~ i0 I I  GeV and preserve the general structure of the tree resu l t s l  

F ina l l y ,  one might ask i f  i t  is possible to grow the super-Higgs term dynami- 

ca l l y  and deduce the size of the mass m rather than inser t ing i t  by hand. The above 

discussion shows that th i s  can only be achieved non-perturbat ively and i t  is in fact  

possible to construct models that do th i s  (7). In th is  case one f inds 

m ~ K2M3[~nM2/~2] I /2  ~ 1011 GeV (29) 

Theories of th is  kind contain only two mass scales: the Planck mass K - I  and the 

GUT mass M, both m and m s being deduced from these. 
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THE AUXILIARY FIELD / ULTRAVIOLET FINITENESS CONNECTION 
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24, rue Lhomond, 75231 PARIS CEDEX 05, FRANCE 

ABSTRACT : 

The status of the aux i l i a r y  f i e l d  program for supersymmetric f i e l d  theories is 

reviewed, with emphasis on the implicat ions for  improved u l t r a v i o l e t  behaviour, and 

conversely on the impl icat ions of u l t r a v i o l e t  behaviour for  aux i l i a r y  f i e l ds .  

1. INTRODUCTION 

For many years one of the central problems of supersymmetric f i e l d  theories has 

been that of aux i l i a ry  f i e lds .  Generally, supersymmetry transformations that leave 

invar iant  a given action w i l l  close to form the usual supersymmetry algebra only when 

the f i e l d  equations are used. This is cal led "on-shell supersymmetry". I f  f i e l d  equa- 

t ions are not needed to close the algebra then the supersymmetry is " o f f - she l l " .  For 

this to happen we must have equal numbers of boson and fermion f i e l d  components as 

well as equal numbers of boson and fermion propagating modes ( i .e .  states). Since 

fermions always have more components than they propagate modes, a balance in the 

number of boson and fermion states w i l l  usually mean an imbalance in the number of 

boson and fermion f i e l d  components. Hence the need for  boson "auxi l iary ' ,  i . e .  non- 

propagating, f ie lds  to balance the number of boson and fermion f i e l d  components o f f -  

shell while not disturbing the balance of states. Of course equal i ty  of the numbers 

of bosons and fermions is only a necessary condit ion for  o f f -she l l  supersymmetry, not 

a su f f i c ien t  one. In general, a solut ion to an aux i l i a ry  f i e l d  problem w i l l  require 

fermion as well as boson aux i l i a r y  f i e lds .  

There are several reasons why we should want aux i l i a r y  f i e lds .  The most obvious 

one is that i f  the algebra of transformations includes f i e l d  equations then these 

transformations are t ied to the par t icu lar  action that y ie lds these equations. The 

introduct ion of aux i l i a r y  f ie lds  frees the transformation rule of reference to a 

par t icu lar  action. This allows, in te r  a l i a ,  the addit ion of invar iant  actions to 

produce new invar iant  actions. Without aux i l i a r y  f ie lds  this involves a laborious 

procedure in which terms are added order by order to the action and transformation 

rules to obtain a new invar iant  action with new transformation rules. 

A second, and more important, motivation for  aux i l i a r y  f ie lds  is that they 

allow us to consider superf ield perturbation theory in which component f i e l d  Feynman 

graph calculat ions can be done together, and with more ease, as supergraph calculationm 
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This formalism allows us to deduce immediately, j us t  from the form of the Feynman rules, 

many "non-renormalization theorems" which have remarkable consequences for  the u l t r a -  

v i o l e t  behaviour of the N-extended supersymmetric ~heories. 

Many of the authors that have contributed to our understanding of aux i l i a r y  f i e lds  

have advanced as one of t he i r  motivations a better understanding of u l t r a v i o l e t  

behaviour whi le ,  at the same time, most of the real progress in th is  f i e l d  has been 

technical .  Given some recent advances the time now seems r ipe fo r  a survey of what we 

can expect aux i l i a r y  f ie lds  to say about the quantum theory, and vice versa. 

2. AUXILIARY FIELDS 

Consider the simplest example of an on-shell  supersymmetric theory, the Wess- 
1 Zumino model , 

- 

(2.1) 

wi th scalar A, pseudoscalar B and spinor ~w . One eas i ly  establishes that the algebra 

of supersymmetry transformation rules that leaves I = " 1Z d4x invar ian t ,  closes to give 

the usual supersymmetry algebra only i f  the ~ f i e l d  equation, ~ = O, is used. To 

extend (2.1) to an o f f - she l l  supersymmetric model we require aux i l i a r y  f i e l ds ,  and a 

count of components shows that  two aux i l i a r y  scalar bosons would be the simplest 

solut ion.  To f ind  these aux i l i a r y  f i e lds  we can invest igate the various i r reduc ib le  

representations of supersymmetry on f i e lds  for  ~ = I ,  which can be found by, e.g. 

superf ie ld methods. One eas i ly  f inds a representation with maximum spin 1/2 with the 

f i e lds  (A, B , ~ ,  F, G), corresponding to an N = i ch i ra l  super f ie ld) .  F and G are 

obviously the wanted dimension two aux i l i a r y  f i e lds  and they w i l l  occur in the action 

as F 2 + G 2. The new, F and G dependent, transformation rules w i l l  close o f f - s h e l l ,  i . e .  

without the use of f i e l d  equations. 

What makes th is  example so simple is the fact  that  the highest propagated spin, 

i . e .  1/2, is  also the highest spin of the o f f - she l l  mu l t ip le t  of f i e l ds .  In general, 

for  massless theories the maximum (propagating) spin, s, is bounded from below by 

s (propagat ing)~  N__ (2.2) 
4 

where N is the number of supersymmetries. For massive on-shel l  mu l t ip le t~ ,o r  o f f - she l l  

mul t ip le ts  of f i e l ds ,  the bound is 

s ( o f f - she l l )  ~ N__ (2.3) 
2 

which is more st r ingent .  I f  s (propagating) ~ N/2 we can always f ind  an o f f - she l l  

mu l t ip le t  of f i e lds  with maximum spin s, and th i s  w i l l  give a set of a u x i l i a r y  f i e l ds .  

For those models for  which N/4 ~ s(propagating) < N/2 the a u x i l i a r y  f i e l d  problem 

is much harder, and probably without a so lut ion for  most cases. At any rate,  i t  is 

clear that in such cases the o f f - she l l  mu l t i p le t  of f i e lds  must contain spins higher 
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than the maximum propagated spin. This can happen in two ways. 

( i )  We may have unconventional f i e l d  representations with spin "d iscont inu i t ies"  

in the massless l im i t .  The simplest case is the gauge antisymmetric tensor ~krv 

which is spin 1 o f f -she l l  but which propagates a massless spin-zero mode ( i f  the 

kinetic term is the usual ~ h ~  ~ J  one). 

( i i )  We may have high spin (i.e. higher than the physical propagated spin), non- 

gauge auxiliary fields. 

For those cases for which s(propagating) ~ N/2 there is a systematic way to 

construct the relevant off-shell representations by means of "supercurrents ''2. The 

best known example is the N = I spin 2 conformal supercurrent multiplet, containing 

the (traceless) energy momentum tensor, T~ , the supersymmetry current St, and the 

axial current }~ . For the model of (2.1), for example, these currents are biiinea~ 

in the fields A, B, ~ and they are conserved as a consequence of the A, B,~ field 

equations. The currents themselves (T~v , S~ , }/.~ ) are not subject to field 

equations, however, and therefore form an off-shell multiplet. The corresponding 

"contragredient" mul t ip le t  of f i e l d s I ~ r v  , __q~ , ~ r l  is  also an o f f -she l l  

representation with gauge transformations determined by the conservation conditions 

on the currents via the Noether coupling l ( i n t  I= I ~ ' T  . That is ,  ~ is whatever 

leaves l ( i n ~ i n v a r i a n t .  The mul t ip le t  [ ~rv , --~r ' ~r  I is that of N = I conformal 

supergravity. 

Given a maximum desired spin, s, e.g. 2 in the above case, the supercurrent 

construction y ie lds an o f f -she l l  mul t ip le t  with th is  spin provided there is a"matter" 

mul t ip le t  of maximum spin s/2 that can be used to form i t .  Since th is maximum spin 

is bounded by (2.2) we again ar r ive at the bound s ~ N/2 for  the o f f -she l l  mul t ip le t  

of currents, or f i e lds .  Thus we can say that the rea l l y  d i f f i c u l t  aux i l i a ry  f i e l d  

problems s tar t  when there is no lower spin "matter" to which the given o f f -she l l  model 

could couple. Precisely, systematic methods, such as supercurrents , y ie ld  aux i l i a ry  

f ie lds  for  : 

( i )  matter theories (sp in~  1/2) for  N = 1 only 

( i i )  gauge theories (spin ~ I )  for  N#  2 

( i i i )  conformal supergravity (spin~2) for  N ~ 4  

The res t r i c t ion  to conformal supergravity in ( i i i )  is because the supercurrent method 

y ie lds an i r reducib le mul t ip le t  which is what is needed for  conformal supergravity. 

The Poincar~ supergravity theories are based on reducible ( p a r t i a l l y  l oca l l y  reducible) 

because such theories couple to a t racefu l l  energy momentum tensor ;Tp~ O. mul t ip le ts  

To f ind the Poincar6 supergravity theories we must add addit ional mul t ip le ts .  For 

N = I and N = 2 these addit ional mul t ip lets have spin<2 and the passage from conformal 

to Poincar~ supergravity is r e l a t i v e l y  straightforward. For N~3 there are no lower 

spin mul t ip le ts .  Any mul t ip le t  added to the spin 2 conformal mu l t ip le t  would i t s e l f  

have at least spin 2. This is a problem because these higher spin f ie lds  w i l l  generally 

be gauge f ie lds  and so could not appear eas i ly  as aux i l i a ry  f i e lds  and even i f  they 

could they would probably not allow consistent interact ions. Because of th is we can 
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add to the l i s t  of o f f - she l l  theories construct ib le  by systematic methods, only 

( iv )  Poincar~ supergravity (spin # 2) for  N~  2. 

There have been recent ly two addit ional  successful constructions of o f f - she l l  

supersymmetric theories that f a l l  outside the scope of the above mentioned methods. 

They both are aux i l i a r y  f i e l d  solut ions with high spin (non gauge) aux i l i a r i es .  The 

f i r s t  is  a set of aux i l i a r y  f i e lds  for  l inear ized lO-dimensional supergravity 3 which 

impl ies, by dimensional reduction, a so lut ion of the a u x i l i a r y  f i e l d  problem for  

l inear ized N = 4 Poincar~ supergravity coupled to 6 N : 4 super-Maxwell mu l t ip le ts .  

The maximum spin of the o f f - she l l  mu l t i p le t  is 4. The construct ion makes essential 

use of the lO-dimensional supercurrent obtained as a bi I i near of on-shel I lO-dimensional super- 

Yang-Mi I I s f ie l  d~, but the f i  nal set of f i  el ds is more than those of the supercu r rent  al one. The 

second 5 is a set of aux i l ia ry  f ields for the N=2 matter theorywith spins 1/2 ~ometimes called the 

hypermul t i  pl et). The problem with a previous off-sh~l version of tHs model 6i s that ~ required one 

of the spin zero states to be represented by a gauge antisymmetric tensor, or equiva- 

l en t l y  a conserved vector. In in teract ion with Y-M f i e lds  th is  becomes a covar iant ly  

conserved vector, which is a constra int  that  cannot be solved in a useful way. The 

new solut ion has only conventional f i e l d  assignments and can be cons is tent ly  coupled 

to N : 2 super Y-M theory. The maximum spin of the o f f - she l l  mu l t i p le t  is I .  

Another approach to the aux i l i a r y  f i e l d  problem is to al low o f f - she l l  central 

charges 7. Here one allows f i e l d  equations to remain in the supersymmetry algebra i f  

they can be interpreted as new central charge transformations. For massless theories 

these transformations must vanish on-shel l ,  but need not o f f - s h e l l .  This approach is 

less r e s t r i c t i v e ,  al lowing for  example a set of a u x i l i a r y  f i e lds  fo r  the N = 4 

Maxwell ( i . e .  non- interact ing) theory, and general methods have been developed for  

f ind ing  such a u x i l i a r y  f i e l d  sets 7'8. But for  superspace perturbat ion theory such 

a u x i l i a r y  f i e l d  solut ions are not useful because they cannot be used to develop an 

unconstrained superf ie ld formalism. The importance of th is  point is what concerns us 

next. 

3. ULTRAVIOLET FINITENESS 

A set of aux i l i a r y  f i e l ds ,  wi thout an o f f - she l l  central charge, is the f i r s t  and 

c r i t i c a l  step towards an unconstrained superf ie ld formulat ion.  One proceeds f i r s t  to 

a constrained superf ie ld formulat ion according to one of several well established 

techniques. For example, each f i e l d ,  or f i e l d  strength in the case of a gauge f i e l d ,  

can be considered as the B = 0 component of a super f ie ld .  The transformation rules 

can then be used to determine the higher B-components of these superf ie lds.  Of 

course only the lowest dimension f i e l d  strength superf ie lds constructed in th is  way 

w i l l  be independent. The higher dimension f i e l d  strengths w i l l  occur in the B - e x p -  

ansion of the lower dimension f i e l d  strength superf ie lds.  These superf ie lds are subject 

to various constra ints ,  or rather i den t i t i e s  i f  one arr ives at them in the above 

fashion, analogous to the constra int  ~ F  ~V = 0 fo r  the Maxwell f i e l d  strength. 



244 

I f  these constraints are solved, e.g. Fr, v = ~ v - ' ~ # ~  in the above i l l u s t r a t i o n ,  

one obtains an unconstrained superf ie ld formulation in terms o fa "p repo ten t i a l "  (the 

analogue of ~ ). Thus, in the simplest well-known case of the N = I ( i ,  1/2) 

mu l t i p le t  the lowest dimension covariant f i e l d  is the spinor ~ which becomes the 

= 0 component of the f i e l d  strength superf ie ld bJ~(× , 8). These constraints on 

~w are solved by ~w = ~2~wV , thereby introducing the unconstrained prepotential 

V. 

These constraints can eas i ly  be solved for  the free theory but wi th more d i f f i c u l -  

ty  for  the in teract ing theory, pa r t i cu l a r l y  for  N> I .  For N = 1 the solut ions to both 

the Yang-Hil ls and the supergravity constraints are known, but for  N = 2 nei ther is 

yet known in supersymmetric form. This is probably not a serious problem in p r inc ip le .  

One can obtain a so lut ion to the constraints of the in terac t ing  theory as a perturbation 

series about the known solut ion to the free theory constra ints.  By solving these 

constraints e i ther  in closed form or per turbat ive ly  we arr ive f i n a l l y  at an uncons- 

trained superf ie ld formulat ion of the in teract ing theory. This is the s tar t ing point 

for  the development of superf ie ld perturbat ion theory. 

There is one exception to the need for  unconstrained superf ie lds to do superf ie ld 

perturbat ion theory, and that is the N = i chi ra l  f i e l d  ~ , sa t is fy ing  ~ = 0 

(two component spinor notat ion) .  The solut ion to th is  const ra in t ,  for  the free f i e l d ,  

is  ~ = ~ X  , introducing a complex scalar prepotential  X . The c h i r a l i t y  constra int  

is s u f f i c i e n t l y  simple that with a few modif icat ions to the usual methods of extract ing 

Feynman rules one can deal d i r ec t l y  with ~ without having to use )< Indeed the 

in t roduct ion of the prepotent ial  X i l l u s t r a t e s  a problem that can be avoided for  

N = 1 but is  endemic to N> I  theories 9, The prepotent ial  ~< has a gauge transforma- 

t ion X - ~  X ~ ~ a ~  ~ , but the parameter ~ is only determined up to a t ransfor-  

mation ~ - ~  ÷ ~ ~ ( ~  because th i s  transformation leaves ~ invar ian t .  Hence, 

the ghosts associated with the gauge transformation of ~ jthemselves have a gauge 

transformation with parameter ~ :  ~ . But the secondary ghosts associated with 

th is  gauge transformation w i l l  again have an even larger invar iance, wi th a symmetric 

t r i - s p i n o r  parameter, and so on ad in f in i tum.  This is analogous to the series of 

ghosts associated with gauge antisymmetric tensors. In that case, however, the series 

involves an increasing or decreasing number of antisymmetrized vector indices and so 

terminates. 

An i n f i n i t e  series of ghosts, apparently unavoidable for  N > i ,  presents a problem 

because the e f fec t ive  act ion from which Feynman rules are read o f f  cannot be wr i t ten 

down in closed form. However, one can arrange for  a l l  but a f i n i t e  number of ghosts 

to decouple, or, in a background f i e l d  approach, for  a l l  but a f i n i t e  number to couple 

only to the background f i e l d  10. In th is  case the i n f i n i t e  series of ghosts can only 

contr ibute at one loop. This makes one loop a special case that must be dealt  with 

separately in the background f i e l d  method. I t  can then be shown, with the exception 

of one loop and on the assumption that an N-extended unconstrained superf ie ld formalism 
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ex is ts ,  that  a l l  counterterms in N-extended superf ie ld form must be such that  

( i )  they are f u l l  superspace integrals I = IdD× ~r~G ~ (counterterm) 

( i i )  ~(counterterm) is a local product of superf ie lds 

( i i i )  Only "covar iant"superf ie lds occur in ~ and in such a way that ~. is back- 

ground gauge invar iant .  

The f i r s t  two c r i t e r i a  11 fo l low d i r ec t l y  from the Feynman rules and the usual properties 

of counterterms. The th i rd  c r i t e r i on  10 is more subtle and depends on the deployment 

of the background f i e l d  method. The precise formulat ion of th is  method is what deter- 

mines the meaning of "covar iant" .  I t  means pre-gauge invar ian t ,  which means that  the 

superspace dimension 1/2 potent ial  --~w; for  super-Yang-Mills theor ies,  or the v ie lbe in  

EMA and super-connect ions-~-~ s for  supergravi ty,  may appear in gauge covariant 

quant i t ies ,  but not the unconstrained prepotent ia ls .  _ t.~ ,_ ~ 

I f  we choose the Y-M action in D dimensions to be ~-~I ~ x ~ r ~ )  such that 

d im(kr~ = 1 then d i m ~  = 4 - D ( in uni ts  of mass). The counterterm at ~ loops 

has the form 

and the same resu l t  holds for  both super-matter (sp inS~ 1/2) and conformal super- 
-2 

grav i t ies  i f  the coupling constant is again chosen to appear as a ~ factor  mu l t i -  

p ly ing a g-independent ~ . For Poincar~ supergravity at ~ loops we have a coun- 

terterm of the form 

(3.2) 

where ~ is the grav i ta t iona l  constant of dimension (1 - D/2). The minimum dimension 

for  ~. in (3.1) is 2 for  super Y-H theor ies,  corresponding to the choice ~ = ] ~ # ~ d  ; 

2 fo r  super-matter, corresponding to ~. = (physical scalar) 2 ; zero for  conformal 

supergravi ty,  corresponding to ~ = E = ~Q~(EM~-  S im i la r l y ,  the minimum dimension 

fo r  ~ in (3.2) is zero. 

Since counterterms have dimension zero, (a f te r  account is taken of the integra-  

t ion  measure and factors of coupling constants), the minimal dimensions of ~ imply 

the absence of allowed counterterms at 4 loops in D dimensions i f  

D < 4 + .12N - 2) for  super-Y-M and super-matter (3.3a) 

D < 2 + (2N - 2) for  Poincar~ supergravity (3.3b) 

D < 4 + (2N - 4) for  conformal supergravity (3.3c) 

N is the number of supersy~Imetries and ~ the loop order. This is  meant to hold beyond 

one loop. These resul ts would imply I0 that both N = 2 and N = 4 super Y-H theories in 

D = 4 are f i n i t e  beyond one loop, which appears to be the case up to three loops 12'13. 

The N = 4 theory happens to be also one loop f i n i t e ,  whi le the N = 2 theory is  not. 
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For Poincar~ supergravity (3.3b) would imply 10 f in i teness through 6 loops in 

D : 4. For conformal supergravity (3.3c) would imply 14 f in i teness of the N~3 theories 

in D = 4 beyond one loop (and i t  appears that the N = 4 theory is f i n i t e  also at one 

loop 15. In fact ,  we can do somewhat better for  conformal supergravity because the 

counterterm avai lab le for  N = 2 is i~x-- ~ t ~  E which vanishes 16, so the N = 2 

conformal supergravity should also be f i n i t e  beyond one loop. 

Al l  these res t r ic t ions  on counterterms assume that an N-extended unconstrained 

superf ield formalism exists.  This c r i t i c a l  assumption is very probably true for the 

conformal supergravity theories because the i r  aux i l i a r y  f i e lds  are a l l  known 17, but 

appears to be false 18'19, apart from a few exceptions, for  the N>2 super Y-M and 

(Poincar6) supergravity theories. In this case, we may make a weaker assumption : 

(A) There exists an unconstrained M-extended superf ield formalism (and hence M- 

extended aux i l i a ry  f ie lds )  for  N-extended super Y-M or Poincar~ supergravity, with 

M ~N to be determined. 

With th is assumption the formulae (3.3) are replaced, in the relevant cases, by 

D < 4 + (2M - 2) for  N-extended super Y-M (3.4a) 

D < 2 + (2M - 2) for  N-extended Poincar~ supergravity (3.4b) ( 
But what is the correct value of M ? For super-matter and conformal supergravity we 

have, or expect, M = N, and the same is true for  N = 2 Y-M theory. Given the res t r i c -  

t ions on aux i l i a r y  f ie lds  found in refs.{18, 191and given the recent progress in the 

aux i l i a r y  f i e l d  search of refs.13, 5~it  would appear that we already have aux i l i a r y  

f i e lds  for  almost a l l  those cases for  which they can be found, and that M is restr ic ted 

by 

M ~ N/2 for  N = 4 Y-M, N = 4 pure Poincar~ supergravity 

N = 8 Poincar~ supergravity (3.5) 

(By "pure" supergravity I mean with no matter mul t ip le ts ) .  I say "almost" because in 

order to have an M = 4 formulation of N = 8 Poincar~ supergravity one needs an o f f -  

shell version of the N = 4 "spin 3/2 mul t ip le t "  which is not yet known. But l e t  us be 

opt imis t ic  and assume that the bound of (3.5) is saturated. Then we arr ive at the 

conclusion that,  fo r  ~ > I there is no allowed counterterm in D dimensions at ( loops 

i f  

D < 4 + 2 N = 4 Y-M theory (3.6a) 

D ~ 2 + ~ N = 8 Poincar~ supergravity (3.6b) 

We observe that (3.6a) is s t i l l  su f f i c ien t  to ensure f in i teness 5. I t  is in terest ing 

to compare (3.6) with s imi lar  results obtained from the superstring approach 20 by 

extrapolat ion from one loop : 
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D < 4 + 4 N = 4 V-tl theory (3.7a) ( 

6 N = 8 Poincar~ supergravity (3.7b) D< 2 +-~-  

The resul ts  (3.6b) and (3.7b) agree. They also agree with the resu l t  of yet another 

approach 21 and imply that an u l t r a v i o l e t  divergence can be expected to appear at 

three loops. The relevant three loop counterterm is also known 22, so a ca lcu la t ion 

for  supergravity at three loops remains the c r i t i c a l  test  of whether we can expect 

fu r ther  "miraculous" cancel lat ions in these theories. 

There is a discrepancy between (3.6a) and (3.7a). This is not necessari ly a 

contradict ion because (3,6a) is  va l id  only beyond one loop whi le (3.7a) is known to 

be va l id  only a_tt one loop. I f  (3.7a) is  va l id  beyond one loop also then i t  would appear 

that divergence cancel lat ions are s l i g h t l y  better than one has a r i gh t  to expect from 

superspace perturbation theory. I remark that  i f  rl = 3 were possible for  the N = 4 

Y-N theory, then (3.4a) would y ie ld  a formula in agreement with (3.7a), but th is  possi- 

b i l i t y  is  ruled out according to re f .  19. 

In a l l  of the above discussion some kind of supersymmetric regu lar iza t ion has 

been assumed. But is  th is  reasonable ? The scheme used successful ly in pract ice is 

dimensional regu lar izat ion by dimensional reduction but i t s  in ternal  consistency is 

questionable 23. For general arguments ( i f  not e x p l i c i t  ca lcu lat ions)  i t  is  preferable 

to avoid i t .  There is an a l te rnat ive  scheme ; higher der ivat ive regu lar iza t ion .  For 

gauge theories th is  f a i l s  at one loop but Slavnov has shown 24 how a two stage regular-  

iza t ion method can be devised in which one loop is regulated separately and supersym- 

met r i ca l l y .  When th is  method is appl icable i t s  consistency is not in question, but the 

trouble is that i t  is not applicable unless we have aux i l i a r y  f i e l ds .  The reason is 

that  the higher der ivat ive terms used to regulate the theory propagate addi t ional  

massive ghost modes (whose mass goes to i n f i n i t y  as the regulator is switched o f f ) ,  

and these modes w i l l  be in supermult iplets only i f  a u x i l i a r y  f i e lds  were i n i t i a l l y  

present. This may seem to crush hopes of applying th is  method to N = 4 Y-M and N = 8 

supergravity theor ies,  but fo r tunate ly  a u x i l i a r y  f i e lds  for  M = N/2 is jus t  s u f f i c i e n t  

to al low the method to work. The point is that  in th i s  case the ghost modes of the 

regulated theory w i l l  be in N-supersymmetric mu l t ip le ts  wi th a central charge equal 

to the mass, and so the N-extended supersymmetry w i l l  not be broken by the regulator.  

I t  has been checked that the ghost modes fo r  the N = 4 theory wi th M = 2 do indeed 

form N = 4 mul t ip le ts  wi th a central charge 5. 
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§i. Introduction 

Gauge principle is nowadays the most elegant and successful scheme 

in grand unifications of three kinds of interactions other than the grav- 

itational interaction. The recent hierarchy problem of grand unification 

theories motivates us to consider their supersymmetric extensions (super- 

unifications). Once supersymmetry is introduced into the description of 

nature, there is no theory other than supergravity [i], which is consist- 

ent with the gravitational interaction. 

On the other hand, there has been another approach to the gravita- 

tional interaction, i.e. Poincar4 gauge theory [2,3]. This theory is a 

kind of gauge theory of Poincar4 group (Pm,Jrs), where the generators 

Pm and Jrs are treated as equally as possible. In particular, the Lo- 

rentz connexion gauge field ~ rs is treated as an independent propagating 

field. 

With these developments in mind, we have tried in our previous pa- 

pers [4~6] to unify these two approaches, i.e. supergravity theory and 

Poincar4 gauge theory. In other words, we attempted to present "a super 

Poincar4 gauge theory", or "a supergravity theory with propagating Lo- 

rentz connexion" [4~6]. 

This kind of theory is relevant to the problem of hidden symmetry in 

extended supergravity theories. Consider for example the recent result 

of N=8 extended supergravity showing the appearance of the hidden local 

SU(8) symmetry from the original local Lorentz group S0(I,10) in the ll- 

dimensional space-time before the dimensional reduction [7]. The study 

of the propagation mechanism of SO(I,10) Lorentz connexion may be hence 

as important as that of SU(8) gauge fields. 
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Our supergravity theory with propagating Lorentz connexion is based 

on the nonminimal and reducible multiplet of Breitenlohner (126 Breiten- 

lohner potentials) [8]. It consists of two multiplets: the supergravity 

multiplet (SG) and the Lorentz connexion multiplet (LC) . In our previous 

papers [4%6], we have presented the Lagrangians for these multiplets: 

~SGa and ~ LCa" The former is a supersymmetric extension of the 

"massless case" of Poincar~ gauge theory [3] and the latter contains the 

kinetic terms of LC. 

simplest example of ~LCa was already proposed The by Breitenlohner 
rs 

which contains the YM-type kinetic term of ~ re, i.e. -(i/4)eR 9 (~)x 

R~rs(~) [8]. We named this Lagrangian~Lca I _  in our papers [4~6]. 

As was noticed in our paper [4], theories with the Lagrangian of the 

"massless case" in Poincar~ gauge theory may generally have the problem 

of inconsistent couplings of ers to spinor fields. In our theory, the 
tu coupling of mrs to its spinor partner % is shown to be consistent to 

all orders in the total Lagrangian ~ = SGa +~LCal in spite of the 
J %  

"masslessness" of the Lagrangian~ SGa. We regard this as an important 

result of supersymmetry of our theory. 

The Lagrangian ~ LCaI,__ however, has the problem of negative energy 

ghosts reflecting noncompactness of the Lorentz group. To circumvent 

difficulty we have presented two new Lagrangians named ~LCa2 this and 

Z LCa3' which are written in local forms in superspace as [4] 

Lea3 (z) = T6 V(z) (R(z))2, (I.i) 

LCa3(Z) = - V(z) (R(z))2 , 
(1.2) 

with R(Z)H(I/24)e vm~(z)vn~(z)R rS(z) in the notation of Ref. [9]. 
mnrs ~_~ [01 

By examining the free Lagrangians ~LCa2~X) and Z LC~x) in component 

fields, we have shown the absence of negative energy ghosts. The physi- 

(~ v~(0+), cal helicity states of these Lagrangians are ypBalPo(±I/2), 
+~ 

DP°(0-)) and (~ aP(0-), yp~o%P°'(±i/2), DPO~(0 )), respectively, where 

v~(a ~) is the vector (axial vector) component of ~ PO, and ipo.(~po~) is 
rs_~ tu 

the dual component of ~0~(D0~)[4,6]. The consistency check of ~ 

is very difficult, since interaction terms in/ couplings, however, LCa2 
and fLCa 3 ~  are far complicated than those in~ LCa I _ ~  [4,6]. 

In order obtain at least trilinear couplings in~Lca2, we to 

have set up a local tensor calculus for the Breitenlohner potentials. It 

consists of a multiplication rule of two scalar multiplets, a D-type Lag- 

rangian and a correspondence rule between a scalar curvature superfield 

R(z) and a scalar multiplet. These rules are established up to the first 

correction terms (required by local supersymmetry) to the global rules 
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[5]. By using these results, we derived the interaction terms necessary 

rs_l tu trilinear couplings in ~ [5] for consistency check of up e LCa2 " 

The consistency check of trilinear couplings of ~ rs to its spinor 

partner ~ tu is to show that there is a nontrivial solution satisfying 

the simultaneous equations: T[P~] (I) = 0 and the free field equation of 

I rs [4,6] . Intuitively the former originates from the absence of the 

antisymmetric part of the Einstein tensor in the "massless case" in Poin- 

car4 gauge theory. In the next section we perform this consistency check 

by using the explicit form of T[~] (I) from trilinear terms in ~LCa2" 

§2. Consistency of Couplings 

Our check of coupling consistency of ~ rs to I tu is to show the ex- 
p 

istence of nontrivial and propagating solutions of the simultaneous equa~ 

tions: T[~V] (~) = 0 and the free field equation ~y ~ I p~ = 0 [6]. The 
• ., m ~s u tu 

form of T[~] (~) is obtained from trzlznear ep -I -I 8 terms in~Lca 2 

In order to simplify the caluculation, we decompose ~ pa into the fol- 

lowing three components: 

pa = ~pa + 1 
~ ~ (~p~ - ya~p) + l~ (~p~)~ ,  (2.1) 
@p 1 = y ~ d P  - ~ yP¢,  ~ ~ - i a  lP~ ,  

P~ (2.2) 

(ypCP ~ O, ypCP~ ~ 0). 

The field equation of ~ pa then takes the form 

~(yp~a~ pa) = ~(~pCP + ~ )  = O, (2.3) 

which is invariant under the following gauge transformation with the pa- 

ramater sPa: 

6tP~ = 6¢P~ = eP~ (ypeP~ E 0). (2.4) 

This implies that the ~P~ component of tP~ is unphysical and can be al- 

~.Tays gauged away. We then obtain 

T <X) = t - 

+(terms containing ~PO or vanishing by the use of 

the free field equation ~p~ t P~ = 0)] - (~÷÷~). (2.5) 
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The simultaneous equations for our consistency check are now 

~P - ¼~¢) = 0 
~Y5°~9~(Bp (2.6) 

~(~p#P + ~ )  = 0 
(2.7) 

We can find nontrivial solutions of (2.6) and (2.7) satisfying 

~Sp~P = 0 (2.8) 

~ = 0 
(2.9) 

Since these equations give nontrivial propagating solutions, we conclude 

that the trilinear ~ rs-I tu couplings in ou~ theory are indeed consist- 

ent couplings [6]. 

§3. Physical Helicity States and Global Supersymmetry 

~ component (but not ~) of I po describes We show here that the ~ 

the physical helicity states J=±I/2 by studying global supersymmetric co- 

variances. 

Under global supersymmetry, the left hand side of ~p~ = 0 (2 8) is 

transformed into 

1 1 [p~ 6(~Sp~P) = ~ S p V  p + ~(Y5~p~)8 TO o]T 

i i pTU~, , -~(~P~e)~pV - ~e ~pae)~°~T~u~ (3.1) 

The first line contains the left sides of the free field equations of v ~ 

and ~po, while the second line contains the terms removed by appropriate 

gauge conditions [6]. In a similar way, the left sides of the free field 

equations of v p and ~PO are transformed into that of I po [6]. These 

facts imply that ~p~P describes the physical helicity states J=±I/2, that 

are transformed into 3 v~(0 +) and oPO(0-) under global supersymmetry. 

§4. Concluding Remarks 

We summarize here our main conclusions: 
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no negative energy ghost in ~LCa 2~__ and -v~LCa3" (1) There is 

(2) Although ~SGa is a supersymmetric extension of the "massless 

case" Lagrangian of Poincar~ gauge theory, the ~ rs_l tu couplings 

are consistent up to the trilinear interaction order. 

As far as we know, no other theory of supergravity with propagating Lo- 

rentz connexion possesses both of these two properties (i) and (2). 

Future studies include 

(i) Checking coupling consistency of other interactions and to high- 

er orders. 

(2) Quantizing fields and discussing renormalizability. 

(3) Making our theory more realistic. 
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Phase t rans i t ions  in cosmology whether f i r s t  or second order, spontaneous or 

dynamic were f i r s t  studied by methods which ignore or exclude grav i ta t ional  ef fects 

(Linde, 1974). The basis for  the exclusion was the assumption that the ef fects are 

loca l ,  and that since the relevant times are much la te r  than Planck times quantum 

grav i ty  is unimportant and thus grav i ty  enters only as a background metric which can 

be removed by studying resul ts  in a local i ne r t i a l  frame. Gradually various grav i -  

ta t ional  ef fects have been added: the ef fect  of curvature in addit ion or instead of 

the Higgs mass for symmetry breaking (Grib, Mostepanenko andFrolov, 1977), topo- 

logical  ef fects (Avis and Isham, 1978), grav i ta t iona l  ef fects  in growth rate of 

bubbles (Coleman and De Luccia, 1980). 

In the present work we introduce a completely new element: reasonably r e a l i s t i c  

models in which there ex is ts  a nonquantum grav i ta t ional  contr ibut ion to the entropy 

based on a microcanonical (MCE) rather than grandcanonical treatment of the s ta t i s -  

t i ca l  mechanics. The Hawking thermal states of de S i t t e r  cosmology (Gibbons and 

Hawking, 1977) is an example of such grav i ta t iona l  entropy, but the l a t t e r  is  not a 

relevant model for phase t rans i t ions .  Horwitz and Weil (1982) have developed a 

se l f -cons is tent  general izat ion of such thermal states for a closed FRW universe with 

a pos i t ive  cosmological constant A which has both scalar " radiat ion"  and grav i ta-  

t ional  entropy. The dynamics is that of the usual classical models except that A 

and the invar ian t  temperature are not independent parameters. In the present work 

we apply th is  method to a hyperbolic universe with A < 0 and a conformally coupled 

scalar f i e l d  with a ~" se l f  in teract ion.  Such systems have been found to have a 

ground state with broken symmetry due to negative curvature even without mass. 

The basis of our approach is the use of a Gibbsian de f i n i t i on  for  a thermo- 

dynamic equi l ibr ium (TDE)MCE, generalized to apply to appropriate cosmological 

mocels and extended to include gravi ty .  The standard Gibbs entropy is based on 

equal weight sums over states in a shell of (nearly) f ixed constants of motion (COM) 

including energy, angular momentum, etc. For cosmological models, the energy which 

is not conserved can be replaced by the so-cal led d i l a ta t i on  operator D. Projecting 

the stress energy tensor T on the conformal t ime- l ike K i l l i n g  vector ~ character- 

iz ing FRW universes, a conserved quant i ty  is obtained giv ing the COM D. This also 

requires a vanishing trace, hence invariance to Weyl transformations of the action. 

Thus instead of the standard de f in i t i on  for  s ta t i c  systems, we have (un i ts :  c = ~ = 

G = I )  expS/k = T r~ (D-D o) ( I )  

where D = i dS~ -~-g T~V ~c ~ (2) 

0 
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with ~o a space-like hypersurface, T ~ the functional derivative of the action with 

respect to the metric, the conformal time-like Ki l l ing vector satisfying 

~c~;~ + ~c~;~ = f gp~ where in appropriate coordinates f depends only on time. 

D is then a COM provided the action I(@,~,g~) is invariant to Weyl transformations 

by an arbitrary local scale function ~(x~):¢ ÷ @/~, ~ ÷ ~I~, g~ ÷~2 gp . For the 

purposes of our model, we have included two scalar bosons, in addition to the metric. 

For a FRW universe, with gravity appearing only as a background metric, and 

considering two alternative coordinate systems: one involving cosmic time ds 2 = 

dt 2 - a 2 do 2 and the other conformal time: ds 2 = a2(dq 2 - d~2), where do 2 is a given 

time-independent element depending only on a parameter k which is +l for closed, -l 

for open and 0 for spatial ly f l a t  spaces. Applying our entropy definit ion (1) we 

readily find the Tolman-Ehrenfest result for entropy: 

S = 8~/3a sT3(q) = 8~/3a sT3(t)a3(t) (3) 

their condition for TDE being 

T(t)a(t) = const. = T(q) . (4) 

We wish to stress the interpretation of this situation as a state of global and not 

only local (in time) equilibrium. This is a maximum entropy, collisions preserving 

the state which is homogeneous and isotropic, but temperatures and various densities 

as functions of proper (cosmic) time vary with the expansion; the fixed entropy is 

stretched over growing proper volume elements in a self similar fashion. The truly 

new element of our analysis which goes beyond the above rederivation and reinterpre- 

tation of known results involves the inclusion of gravitational contributions with 

the use of a MCE and not based on quantum gravity. 

Thus in the above mentioned work of Horwitz and Weil (1982) for a k = +l and 

A > 0 FRW universe with conformally coupled massless bosons or in the presently dis- 

cussed k = - l ,  A < 0 FRW universe with massless conformally coupled bosons having a 

@" self interaction, the microcanonical TDE state found includes gravitational con- 

tributions. In both cases, these are self-consistent analogues of the TDE states of 

a BH in a radiation cavity (Hawking, 1976; Gibbons and Perry, 1978). Thermal fluctu- 

ations of the quantum radiation f ie ld  couple to the classical fields of gravity 

through the microcanonical constraint, leaving an overall gravitational contribution 

to the entropy unrelated to quantum gravity or Planck times. In order to define such 

a TDE state which includes gravity one requires a Weyl invariant gravitational theory 

defined with an extra scalar f ie ld  ~ in which the gravitational action 

= (8~) - i [d  4x - ~  [½R-A] + sur f .  terms (5) 
J 

is  replaced by 

= -3(8~)-Zld"_ x(-g)½ [g~V~,~,~ - ~ R~ 2 + ~ A ~ 4 ]  . (6) 
P 

I G 

This leads to an expression fo r  an action including the scalar ,  massive bosons con- 

formal ly  coupled with se l f  i n te rac t ion .  The act ion is  Weyl i nva r ian t  even with the 

mass, but we shal l  t r ea t  here only m 2 = O. 
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I = ½ d x(-g)  [g R - -X  ] - 3(4~)'~[g1~V~,. R + ~ " ]  

where the l i n e  element fo r  k = - I  FRW is  (7) 

ds 2 = a 2(rI) [dn z - dx 2 - sinhZx(dO z + sin20 d~ 2)] . (8) 

The standard choice o f  conformal gauge Q = ~- i  reduces I to the standard form (5) 

wi th the mass term -mZ~b 2. Instead, a f t e r  l i m i t i n g  our discussion to the case where 

glJv re ta ins  the form (8) wi th a r b i t r a r y  a(n) ,  we now choose our conformal gauge wi th 

= a(n) ,  which then reduces the background metr ic  to a S ta t i c  one - tha t  in (8) 

wi th  the a(rl) deleted. In the quantized version o f  th is  theory,  th i s  means we shal l  

neglect  spin-2 exc i t a t i ons  (g rav i tons) ,  al though the method can read i l y  be extended 

to include them. ( I t  is a pecu l ia r  s i t ua t i on  that  present ly  to carry  out c lass ica l  

SM fo r  g rav i t y  one must introduce quantum g r a v i t y . )  We subsequently i n t e r p r e t  the 

transformed @ to be the dynamic fac to r  o f  the cosmic scale func t ion ,  in our quasi-  

c lass ica l  theory. Not ice,  in such a s ta t i c  background metr ic ,  there are no con- 

formal trace anomalies although mass generat ion can be reta ined wi th a m2d#2~ 2 term. 

This choice also leads to a s ta t i c  energy operator ,  and the resu l t  that  the Hamil- 

tonian def ined by (2) is  equ iva lent  to the canonical d e f i n i t i o n .  

We now ou t l i ne  our ca l cu la t i on  using ( I ) ,  (2) and (7) ,  choosing D = 0 cor-  

responding to E ins te in ' s  equations when ~ is  i d e n t i f i e d  as the scale func t ion ,  and 

tak ing a Fourier-Laplace transform of  the de l ta  funct ion ( I )  becomes 

exp S/k = TrId6/2~i exp - 6D (9) 

(lO) 

where the Eucl ideanized act ion I E 

= F du[~ 2 * " /R 2] ( I I )  I E ½F u[$= + d#,iqb'i + ~ qb"] 3/8~ .@2+ 

w~th the boundary condi t ions ~(0) = #(~) = #o; ~(0) = ~(~) = ~o and v is  the ( i n -  

f i n i t e )  spat ia l  3-surface o f  the hyperbol ic  universe, and we have assumed that  

depends only  on the ( imaginary) t ime. Since we seek on ly  extremal values o f  @, 

which remain homogeneous and i so t rop ic  o f  course, s i g n i f i c a n t  f l uc tua t i ons  depend on 

x i ,  but we ignore them fo r  the present. We have wr i t ten  our  cosmological constant 

A = -3/Roand R/6 = -I f o r  the s t a t i c  hyperbol ic  universe o f  scale length uni ty .  

This kind o f  model is  known to lead to a ground state wi th broken symmetry even 

wi thout  a Higgs mass. The extremal so lu t ion  o f  the ~ and ~ sa t i s f y  the equations 

~c 3 = 0 (12) 1 + qbcl - 2~dPcl 

"~'cl + ~cl - 2/R~ @3 = 0 (13) 

respect ive ly .  The funct iona l  i n teg ra l s  for  f i xed  boundary values o f  ~o and ~o are 

expanded about these c lass ica l  so lu t ions .  The quadrat ic  quantum f l uc tua t i ons  o f  the 

~'s are dropped as we seek only  c lass ica l  g rav i t y  con t r ibu t ions .  The quadrat ic  ex- 

pansion o f  the @'s is  the one-loop term fo r  the sca lar  conformal bosons, and we w i l l  
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take here the crudest high temperature approximat ion, tha t  i t s  con t r i bu t i on  to the 

entropy is  A/~ s where A = ~2/45. Properly one should ca lcu la te  i t  s e l f - c o n s i s t e n t l y ,  

but we are here only looking fo r  the q u a l i t a t i v e  mod i f i ca t ion  of  standard treatment 

by our g rav i t a t i ona l  i nc lus i ve  MCE formalism. There remain the i n teg ra l s  over ~n, @o 

and 6B: where we also require a quadrat ic  expansion around the extremum of  B. The 

f i r s t  i n t eg ra l s  o f  (12) and (13) y i e l d  

3[$2 + @2 _ ,I @"] = ½ [$2 + VI ] = ~ (14) 

½[~2 + ~D~ _ ~D,IR 2] = ½[~2 + V2 ] = ~ (15) 

The se l f - cons i s t en t  so lu t ion  i f  obtained by so lv ing 

3A/B" = m - 3/4~E = ~/~ - 3R2o/8~E (16) f,- 
g = 4 d y [ ~ , y 2  +y4]-½ = 4K( t2 ) /y+  (17) 

B = 211:-dx[E x 2 + x " ]  -½ = 2KCs2)/x+ (18) 

where the K are complete e l l i p t i c  i n teg ra l s  o f  the f i r s t  kind and ~ = ~ 2 + y e _ y 4  

½ ~2 . x 4 2 = 311 .-+ ( l  - 4 ~ ]  and wi th  y = ~ @; and E = +x 2 wi th  X = ~/R~. Furthermore, x+ 
_ 1 

y~ : ½[I_+(I -4m)~].  

We then f i nd  two kinds o f  so lu t ions  which are shown to be local  entropy maxima 

for  appropr iate values o f  ,R . One preserves the symmetry f o r  the i n t e r a c t i n g  

bosons (Fig.  la and Fig. Ib ) .  

v, v2 

h - -  - -  | 

Y x_ x+ 

b 
Figure 1 

~s represents a so lu t ion  which preserves symmetry and ~a = I / 4  the 
broken symmetry so lu t ion .  The { so lu t ion  is  s i m i l a r  f o r  both cases. 

X 

is  pos i t i ve  since i t  represents the scale func t ion .  The other  i s  the broken sym- 

metry so lu t ion  shown in Fig. la .  The entropy fo r  the two so lu t ions  are respec t i ve l y ,  

(E, e l l i p t i c  in tegra l  o f  second kind) 

2 i 4y+ /3 [K( t2 )  - E( t~) ]  (19) Ssym/TZ = -3Ro/8~[~ x+ ] [K(s2) ]  + 

Sasym/IZ = B/8~ - [R~/8~] x + [ K ( t  2) - E ( t2 ) ]  . ( 2 0 )  
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There is no second-order phase t rans i t ion  possible since the temperature B -~ is  

a constant, for  given (~,Ro). Both symmetric and broken symmetry solut ions can be 

l oca l l y  stable in certain cases for  equal values of ~ and R o. The symmetric solut ion 

is general ly of  lower entropy than the broken symmetry so lut ion,  so that i t  would 

appear that a f i r s t - o rde r  phase t rans i t ion  is  possible, although the deta i ls  Of the 

thermodynamic analysis have yet to be carr ied out. 

The cosmological solut ion is found by ana ly t ic  continuation to real time 
½ 

a( t )  = 2- R o (I -¥  cos 2 2t/R o)~ (21) 

with Y = ~ I - 4~  (22) 

range x_ ~ a/R o ~ x+ 

period 0 ~ t < ~/2R o 

Thus we have evaluated the MCE entropy of th is  model and found i t s  dynamical 

so lu t ion,  f ind ing a possible f i r s t - o rde r  phase t rans i t i on .  This method is capable 

of wide general izat ion and the study of i t s  consequences is being pursued. 
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DIMENSIONAL REDUCTION 

Peter G. O. Ereund 

The Enrico Fermi Institute and the Department of Physics 

The University of Chicago, Chicago, Illinois 60637 

Higher dimensional unified theories (i.e., generalized Kaluza-Klein ~heories) 1 have 

been considered for quite some time now. What is a simple gravity (or supergravity 2) 

theory in a N+4-dimensional space-time becomes a theory involving gravity, and lower 

spin Bose (and Fermi) fields in four dimensions, upon the compactification of N space- 

like dimensions. Besides the number N of these extra dimensions, 4-dimensional Physics 

depends on the nature of the compact (and very small) N-dimensional manifold M N. De- 

pending on M N we can envisage the low energy gauge group GLE =SH(3)ColorX(SU(2)X' 

U(1) as the isometry group GKK of M N. Then the simplest possibility 3 is electroweak ^ . 
N=7 with MN=CP2XSzXS i. In this case there is no grand unification of the usual kind 4 

whatsoever, GKK ~ GLE. Grand unification can be included by choosing a manifold M N 

with isometry group GKK larger than GLE, e.g., GKK = SU(5), or by acquiring in the pro- 

cess of dimensional reduction gauge symmetries beyond those corresponding to GKK (this 

happens when reducing ll-dimensional supergravity S to 4-dimensions when an additional 
6 

Cremmer-Julia gauged SU(8) symmetry is nonlinearly realized by the scalar fields). If 

the 4-dimensional theory possesses more gauged symmetry than GLE, the question is at what 

scale this symmetry is restored. Standard renormalization group reasoning claims 7 this 
_lS _1 _IB _1 

to occur at a length scale of ~GUT ~ I0 GeV or ZSUSY ~ i0 GeV in the minimal 

supersymmetric case. These scales being very far from present-day "physical" scales, 

the question can be asked as to whether at such scales 4-dimensional Physics is still 

applicable. 

To answer this question we have to estimate the size of the small dimensions. 1 Requir- 

ing the Yang-Mills piece of the reduced 4-dimensional lagrangian to have the correct 

normalization relative to the Einstein piece and to have the proper minimal coupling 

say to charged Scalar fields determines the size of the small dimension 

Z = 4~ G1 /2 (g2 /4~ )  - 1 / 2  (1) 

where G is Newton's gravitational constant and g the Yang-Mills coupling constant. 

Equation (I) yields ~ ~ 10-17GeV -I, very close to ~SUSY" It thus appears that in gen- 

eralized Kaluza-Klein theories by the time the grand Unification scale is reached 

(4+N)-rather than 4-dimensional Physics applies. 8 In particular, dimensionality is 

increased even before quantum gravity effects become large. This has prompted me 9 and 

also Ramond I0 to consider cosmologies in which the "effective" space-dimensionality is 
ii 

time dependent. Earlier work on such cosmologies is due to Chodos and Detweiler. 
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Specific~lly we start from ll-dimensional supergravity 5 in which case supersymmetry 

requires an antisymmetric tensor Bose-matter field A which is known 12 to produce 

preferential compactification of either 7 or 4 space-like dimensions. The first case 

is of course interesting and we generalize the Ansatz of reference 12) to include a 

cosmological time-dependence. The splitting of space-time into a 4-dimensional physi- 

cal space-time and a 7-dimensional manifold M 7 is then automatic. A solution in which 

the cosmological scale of ordinary (3-dimensional) space increases linearly with cosmo- 

logical time t, whereas the scale of M7 increases only as t I/7 is found. The 4-dimen- 
13 

sional gravitational constant turns out to decrease at I/t as proposed by Dirac. 

An alternative solution has M 7 a sphere of small time-independent radius, and 4-dimen- 

sional space time, an anti-de-Sitter universe with cosmological factor R(t)=R(0)cos~t 

where ~ is determined by the ll-dimensional gravitational constant and by the, here 

time-independent, scale of the antisymmetric tensor field. 

These solutions do not involve the Fermi-matter fields and as such should not be valid 

in the matter dominated era. They also break down at too early times where quantum 

gravity matters, but they can reasonably be expected to be relevant in some time inter- 

val around the dimensional transition where the ll-dimensional manifold splitsinto 

M 4 x M 7. Other cosmological solutions along similar lines have been discussed in ref- 

erences 9)-11), New scales are introduced in these solutions: the time t at which 
s 

all d-dimensions have comparable sizes, the actual size ~(ts) of the dimensions at 

time t and the strength of gravity at that time. Depending on the details of the evo- 
s 

lution, these scales can considerably exceed the present day Planck (10 -19 GeV -I) and 
_17 _I 

Kaluza-Klein (i0 GeV ) scales. The cosmology of the very early universe is thus 

seriously affected. 

The preferential compactification of 7 space dimensions has been achieved here at the 

classical level as in reference 12). The alternative could be entertained that the 

choice of 4 large dimensions occurs at the quantum level, by somehow summing over all 

possible dimensionalities and for dynamical reasons ending up with four large physical 

dimensions in some approximation. Such a possibility was considered by others as 
14 

well. 

This work was supported in part by the U. S. National Science Foundation. 
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KALUZA-KLEIN TYPE THEORY 

H. Sugawara 

KEK, Tsukuba, Japan 

I would like to discuss two problems related to the recently proposed unified 

theory of Kaluza-Klein (I)-~ type by T. Kaneko and myself (2) . One is Mach's principle 

and the other is a classical solution to Einstein's equation which has a [~(X)] 2 

singularity. 

Let us start with Mach's principle. Mach stated this principle rather vaguely 

implying that the inertial mass may be determined by the distant matter or by the 

entire matter in the universe. I would like to show in this talk that this situa- 

tion can be realized in a very simple model. I am aware of the existence of the 

long history of discussions on Mach's principle, mostly within the framework of 

Einstein theory (3) . I ask this learned audience to forget about these discussions 

for the time being and listen to may naive approach. 

Suppose that our universe is composed of only two particles. How can we write 

down an action which incorporates Mach's principle in this simplified case? The 

conventional classical action which describes two particle system is; 

L = L(t)dt = [~ml(Xl )2 + ~m2(X 2) - V(XI, X2)]dt (I) 

Here the masses m I and m 2 are free parameters and there is no way to relate 

these parameters to the motion of the particles. Let us consider, therefore, the 

following action which might look weird to most of you. 

L = Ll(ql, ql' q2 )dt x L2(q2' ql' q2 )dr ' (2) 

where the form of L I and L 2 will be fixed later. Here we restrict ourselves to 

one space dimension for simplicity. We also assume that there exists a natural 

mass unit which we take to be I. We get the following set of Euler's equations 

from equation (2): 

~LI ~L2 -- 3 3LI 
3ql L2 + ~ LI - "~-(--C-) L2 = 0 , (3a) 

3ql 
and 

~L 2 3L 1 _ 8 3L 2 

q2 + L2 :0 (3b 
~q2 

where 
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and 

I ! 
~i = Ll(ql' ql' q2 )dt 

I '  
L2 = L2(q2' ql '  q2 )dt 

(4a) 

(4b) 

Let us now write down an explicit form of L I and L2: 

and 

i '2 
L1 = ~ ql - V(ql-q2) 

1 '2 
L2 = 2 q2 - V(q2-ql) 

(5a) 

(Sb) 

Then equations (3a) and (3b) reduce to the following forms respectively: 

and 

where 

_ ,, 3V I 
L2q I ~ql ' (6a) 

_ ,, ~V 2 
Llq 2 ~q2 ' (6b) 

V 1 = V 2 = (LI+L2)V (7) 

The meaning of equations (6a) and (6b) is clear: The mass of particle i is equal 

to L2 and the mass of particle 2 is equal to L I implying that the mass of a particle 

is determined by the motion of the other particle which is interacting with it. 

By adding equation (6a) to equation (6b) and taking equation (7) into account we 

obtain 

L2 41 + TI 42 = constant , (8) 

which is nothing but momentum conservation. Equations (6a) and (6b) reduce to the 

following equation in terms of the relative coordinate q = ql - q2: 

where 

and 

" ~V(q) 
mq = - ~q 

m = L ' l~2/ (~ l+L"2 )2 

V(q) = V I = V 2 

(9) 

(i0) 

(ii) 

We obtain from equation (9) the following energy integral: 

i '2 
mq + V(q) = E (12) 

From equation (12) and the definition of L I we get 



i ~I ' 2 
L1 = ~ (_--_ q) - V(q) 

LI+L 2 

= (LI)E- (i + Ll)v(q) 

L 2 L 2 

we have, therefore, 
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(13) 

da 
±~ = l-+k [kE - (l+k)V] - -  , (14a) 

/~(E-V) 
and 

I dq (14b) L2 = ~ [E - (l+k)V] l+k 
/~(E-V) 

with 

k = Ll/L 2 (15) 

We get from equations (14a), (14b) and (15); 

k = i (16) 

Let us now consider the special case when 

i 
V(q) - lq I _ a (17) 

Two particles start separating from each other after the 'big bang' at t = 0 

(q(t=0) = 0) and reach the largest separation distance at t = ~ (q(t =~) = a). From 

equation (14a) and (14b) we obtain 

! [a 2~aa _ i ~ d q  (18) 
ml = m2 = ~i = L2 = 2/~)o[~q(a,q) ~a 

We, therefore, conclude that the mass of a particle is directly related to the 

size of the universe. To show that the form given in equation (2) is not too 

peculiar I will prove that the ordinary Maxwell's theory with an unspecified value 

of the electric charge can be written in this form. We take scalar electrodynamics 

as an example: 

1 I I[(D ~)J'(D~) L = [- ~ d4X ' F F ~] x - V(]¢I)]d4X , (19) 

z LA-L ~ , 

= ~ - iA where ~ is the usual vector potential multiplied by the charge with D 

e. ~ is a complex scalar field. 

The equation of motion we get for A~ is: 

L A 
~ F ~ +~ J~(x) = 0 , (20) 

where 

Jr(x) = i(~#D~ - (D~)#~) (21) 
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The equation for scalar field is conventional. Multiplying A~(X) to equation (20) 

and integrating over the whole 4-dimensional space, we obtain 

2L~ = - IJ v A d4X (22) 

The equation (20), therefore, can be rewritten as 

2L A 
F p~ - - J~ = 0 (23) 

P ~J~ A d4x 
J 

This equation shows that we have 

2 -2LA 
(24) 

e = I J ~ A d4x 
J 

2 . 
We can easily check that the value of e is completely arbitrary just like the 

boundary values to equation (23). We conclude that the action (19) is equivalent 

to scalar electrodynamics at least at the classical level with an arbitrary value 

for the fine structure constant. We do not discuss the quantum version in this talk. 

paper  (2) The action we considered in our is the same kind of action as in equation 

(2) or in equation (19). It is the product of Kaluza's action and the action for the 

minimal 4-dimensional surface in the n-dimensional Riemannian space. For the detail 

see paper (2). 

Let me now turn to the next topic which is the solution to Einstein's equation 

with a [~(x)] 2 singularity. Although our task is to obtain a solution to the 

Kaluza-Klein equation (2) I will show in this talk that the usual 4-dimensional 

Einstein equation with a single particle as the source has a solution with a 

[6(x)] 2 singularity. 

Einstein's equation in this case reads 

with 

i 
R ]J9 - ~ gP~R + 8~GT ~ = 0 

T ~ = mfd~64(x-x(T)) 

dx p dx V 

d'r dT I 
i 

dx p dx ~ ]2 /{ 
[-g~dT dT 

(25) 

, (26) 

where g = det(gp~). For X 0 = f(T) and X i = 0 we have 

and 

TOO = m63(x) 1 1 
i ' (27) 

[-g00]~/~ 

T ij = T i° = 0. We now make the ansatz 
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=I (x I) 
g~ b(t) ~ 2 ~ (x3) 7/ 

(28) 

to solve equation (25). We then have 

3 

T °o = m/{a(t)b(t) 2} , 

and 
1 

~gg = [a(t)b3(t)]26(Xl)6(x2)6(x 3) • 

(29) 

(30) 

After some calculations we can rewrite equation (25) in the following form with the 

ansatz (28): 

! ! v v , v 

d b b b ) b a 3b b 8~Gm] 
- ~(~a) + 2( )(~- ~a(~a +~-~) + [i+ /~ 3 = 0, (31) 

and 

v v ! ! 

d b 3(b)2 a .3b. ~[X- 8~Gm] 
3~(~) + 2~a~2-b } - /~3 = 0, (32) 

where we have added the cosmological term % for the sake of completeness. We can 

easily see that a = a0t 4 and b = b0 t4 give a solution to equations (31) and (32) 

when % = 0 if the following condition is satisfied: 

3 

4~Gma0/b ~ = 6 (33) 

For this solution we have 

IT OO~gg d3x m 1 

~aa 0 t 2 . 

The physical meaning of this solution in the above 4-dimensional case is not 

very clear but it is rather straight forward in the Kaluza-Klein case as has been 

extensively discussed by T. Kaneko and myself in reference (2). 

(references) 

i. T~ Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin, Math.-Phys. KI, 966(1921) 
2. T. Kaneko & H. Sugawara, to be published in Prog. Theor. Phys. 
3. See, for example, paper by N. Rosen in "To Fulfill a Vision', Jerusalem Einstein 

Centennial Symposium, Edited by Y. Ne'eman and published by Addison-Wesley, Inc., 
(1981) 
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All  t h e  e x i s t i n g  e x p e r i m e n t a l  e v i d e n c e s ,  though  no t  so many, c l e a r l y  s u p p o r t  

t h e  g e n e r a l  r e l a t i v i t y  o f  E i n s t e i n  as  a t h e o r y  o f  g r a v i t a t i o n .  So f a r ,  ex t ended  

i n v e s t i g a t i o n s  have  been made, based  on t h e  p r e m i s e  o f  g e n e r a l  r e l a t i v i t y .  Even 

t h e  t h e o r i e s  o f  induced  g r a v i t y ,  1 or  p r e g e o m e t r y ,  where t h e  E i n s t e i n  a c t i o n  i s  

d e r i v e d  from a more fundamen ta l  s t a g e ,  a re  no t  f r e e  o f  t h i s  p r e m i s e .  However, i f  

t h e  p r i n c i p l e  of  g e n e r a l  r e l a t i v i t y  i s  t r u e ,  i t  s hou ld  be a m a n i f e s t a t i o n  o f  some 

u n d e r l y i n g  dynamics~ j u s t  l i k e  t he  K e p l e r ' s  law f o r  t h e  Newtonian g r a v i t y ,  or  l i k e  

t h e  law o f  d e f i n i t e  p r o p o r t i o n  i n  chemica l  r e a c t i o n s  f o r  a toms ,  e t c .  So we would 

l i k e  t o  ask h e r e  why t he  p h y s i c a l  laws a re  g e n e r a l l y  r e l a t i v e ,  i n s t e a d  we p r e m i s e  

i t .  The p u rp o se  o f  t h i s  t a l k  i s  to  p ropose  a model t o  g ive  a p o s s i b l e  answer  to  

t he  q u e s t i o n .  By g e n e r a l  r e l a t i v i t y ,  we mean t h e  g e n e r a l  c o v a r i a n c e  o f  p h y s i c a l  

laws in  t h e  curved  s p a c e t i m e .  Our s o l u t i o n ,  in  s h o r t ,  i s  t h a t  i t  i s  b e c a u s e  our  

f o u r - s p a c e t i m e  i s  a f o u r - d i m e n s i o n a l  v o r t e x - l i k e  o b j e c t  in  a h i g h e r - d i m e n s i o n a l  

f l a t  s p a c e t i m e ,  where on ly  t h e  s p e c i a l  r e l a t i v i t y  i s  assumed.  To be s p e c i f i c ,  we 

adopt  t h e  dynamics  o f  t h e  N i e l s e n - 0 1 e s e n  v o r t e x  2 in  a s i x - d i m e n s i o n a l  f l a t  s p a c e -  

t ime ,  and show t h a t  g e n e r a l  r e l a t i v i t y  a c t u a l l y  h o l d s  in  t h e  f o u r - s p a c e t i m e .  

Fu r the rmore  we w i l l  show t h a t  t he  E i n s t e i n  e q u a t i o n  in  t h e  f o u r - s p a c e t i m e  i s  

e f f e c t i v e l y  induced  t h r o u g h  vacuum f l u c t u a t i o n s ,  j u s t  as  i n  S a k h a r o v ' s  p r e g e o -  

merry .  1 

We s t a r t  w i th  t h e  Higgs Lag rang ian  in  a s i x - d i m e n s i o n a l  f l a t  s p a c e t i m e  

I ~M~ 

where F . ~  = 9 . 4 ~ - a ~ A .  and D . ~  = 9 m +  c e A .  
This has the 'vortex' solution 2 

A = Ac , x r, ¢ = e ' 

( pz = (X¢)z+ ( X6)z ) , where A ( r )  and ~ ( r )  
d i f fe rent ia l  equations, 

(3) 
_A + ~ = 

The ' v o r t e x '  is  l o c a l i z e d  w i th in  the reg ion of  O Ce)  ( e  = ' / V - - E )  
the space dimensions ( ~ 
(xO--x 3) inside it. 

(2) 

a r e  t h e  s o l u t i o n s  o f  t h e  

in two of  

X 6 ) , leaving a four-dimensional subspacetime 

For large 0~ , the curved 'vortices' with curvature R<< 
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become approximate solutions, 3 which we denote by AM and . Let the center 

of the 'vortex' be /~H ~) _ = yM(~ (~--- 0 9) , and take the curvilinear 

coordinate 2G ~ such that, near the 'vortex', 

M ~.~ (tn.=O-9 5-,g, p=O-3, rtt=5", 6) (4) X~= y ~  (:rt ') + n , , ,  , 

where X ~4 is  the Cartesian coordinate ,  and 92Mm are the normal vec tors  of the 

' v o r t e x ' .  (Hereafter  Greek su f f i c e s  stand for  0-3, small Latin,  5, 6, and 

c a p i t a l ,  0-3, 5, 6). Then, the so lu t ion  is  

The S-matrix element between the s t a t e s  ~ and ~ =  i s  given by 

We assume that the path-integration is dominated by the field configurations of the 

approximate solutions (5) and small quantum fluctuations around it. To estimate it, 

we first extract the collective coordinate by inserting 

I - - /~  d~ '~  ~ ~ ( Y ~ b  - C'~'~) (7) 
x,/ 

where C * ( ~ / ~ )  is the center of the distr ibut ion of I~1C ( ~ =  ~ -  0 / ~ - ~  ) 
in the normal plane ~r~ ~M) of the 'vortex' at 2~= ~F , 

By ]7 we mean the product over the four parameters ~ with the invariant , 

measure. Then, we transform them into the representation in the curvilinear 

coordinate 2(~ ~ , and we change the path-integration variables m ~ and 

to their quantum fluctuations ~--~ / q ~ - / ~ - -  and (3--- ¢ -  4b ° , retaining 

the terms up to quadratic in them. 

with 

%o = L (4--¢ °, A . - - A , / )  (in) 

+ 9-'-" ( ~,." a-)tC z:;,~ ¢ )  - 4,,e V ~ B~- .;'~ ( ~ ~  ¢ ° )  (11) 

+~I~I ~ b[eI~°~l ~+ 2-~(o-t¢°)~) , 
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I 

and C P ~ - 0  , where the  bar red  s u f f i c e s  stand for  the loca l  Lorentz frame 

ind ices ,  U ~ , the v i e l b e i n ,  ~Lrl,  the  metr ic  t ensor ,  ~ ,  the covar ian t  

d i f f e r e n t i a t i o n ,  D~=V~ + £ e A ~  , and Jo=f[~°i ~d:X--~'d:Z~6 The 

Lagrangian f-~2~ indicates that, outside the 'vortex', any low energy fields are 

suppressed because of the high barrier of I~"[ ~ Inside the 'vortex', ~ 

=0(~'/~) << ~ , ~r~ =- 6~ + 0(~/~) and B-pr reduces to the 

four-vector ~fi and the two scalors 8~ . Thus, the spacetime looks like 

four-dimensional and curved to observers with large scale. It is easily checked 

that the action is invariant under the general coordinate transformation of the 

curved four-spacetime, i.e. the physical laws are generally relative[ 

Now we see that the Einstein action is induced through vacuum polarizations. 

The effective action ~e~ for it is given by 

Exponentiat ing the  argument of  the ~ - func t ions  by ~ ( ~ )  = ; ~  ~ z ~  , we get  

J,~p 9CM I 

with (~)l" = ~ ~ 04 ' 0-)  (16) 

~=~ 

(½~V ~ + e~l@°l ~) ~ @  -~D~@ 
/ 

_ ~ p o , 0  ~ P~P~-;~I~+6,, ~'-, -b(¢)~*s,~',,, (is) 

where ~m i s  the  nonlocal  opera tor  in 5-6 p lane ,  

. , ~ , , ( ~ . ~ , . ) F ~ ' ~ ' l ~ ° .  , ,  ~o(~,,] ( 19 )  

Performing the path-integration in ~ - ,  o ~, o '~  and ~ , we get (with 

~ g  in (20) is estimated perturbatively in ~M"= ~HW ~med 

( ~M"= d(a~ ( l ,  - I  - I , - I , - I ,  - I  ) )  and ~ . The propagator  i s  given by the 

inverse  of  Z~lh'"=o, ~=o ~ /ko  /%0 can be separa ted  in to  two p a r t s  

A ~ "  and Z ~ V  which oporato~ on four-spaco variablos  Z "  , ~ d  tho oxtra 
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space variables ~ , respectively. Furthermore, these / ~ o ' s  are block- 

diagonalized into two parts ~ /  and ~ :  , which operate on the four-vector 

S ~  and the coupled scalars ( g c o  ~ ,  ~ ~(~) = ( ~ ~ 0" Cr ~) , res- 

pectively. They are given by 

[(21) 

Hu 
where [] = ~ Ot, O ~ Then, the propagators for each class are given by 

' (22) 

[ A~ _,~}¢o,,, _ , ,~,  

where V~ ~ ~ > "Yrl.~ and ~- are the solutions and the 

eigenvalues of the differential equations in the extraspace. 

/'2 ~ '  ¢a4 

The argument of the logarithms in (20) is expanded as follows 

(24) 

/ 

where ~ ~¢ and ~i are the interaction parts including ~v and 

~tr , and 

(26) 

We expand the logarithms in (20), and get series of one-loop diagrams with external 

~w and ~ lines attached. These diagrams diverge quartically in the ultra- 

violet region. We introduce the momentum cutoff /I much larger than ~ , and 

calculate the divergent contributions. The diagrams with vertices which involve 

extra-space operators are less divergent. 

After this, the same argument as in the pregeometry I leads to the Einstein 

action in the four-dimensional curved space. Namely, the divergent contributions 

are 
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.- C~f= /~  [(g~o~4~,~ uJA~+(g~o + ~ , * ~ ) A ~ : ]  ~% 
(27) 

p lus  l e s s  d i v e r g e n t  t e rms ,  where ~o and ~ are  the  numbers o f  t he  s c a l a r  and 

the  v e c t o r  b o u n d - s t a t e s  in  (23),  r e s p e c t i v e l y ,  and ~ o ) ~  ~o~ ~1 a re  c a l c u l a b l e  

c o n s t a n t s  o f  C ) ( ± )  The va lues  are  found in  l i t e r a t u r e s ,  1,~ though we should 

be c a r e f u l ,  s i n c e  t h e y  depend on t h e  c u t o f f - m e t h o d  and even on the  gauge. 

~ and ~ c  are  the  c o n t r i b u t i o n s  from the  continuum S t a t e s  in  (23).  Now, 

t o g e t h e r  wi th  t he  c o n t r i b u t i o n s  from ~ 0  , we f i n a l l y  get  the  E i n s t e i n  a c t i o n  

I 

where 

A = ~ . L o d z ~ d ~ % ( ~ o ~ , ~ , * ~ ) A  ~ (29) 

I 
- -  = ( ~ o  + M ~ , * & ) A  ~ J b ~  

In conclusion, in this model: 

i) The principle of general relativity is induced, instead it is premised. 

2) The Einstein equation is induced just as in Sakharov's pregeometry. 

3) Two kinds of internal symmetries are induced, those of the transformation and 

the excitation in the extra-space. The former is somewhat like isospin, while 

the latter, generation. This suggests a new mechanism for unification of the 

interactions. 

4) When the gravitational field is quantized, the ultraviolet divergences should be 

cut off at the inverse of the size of the 'vortex', which may be much smaller 

than the Planck mass. If this is the case, we can by-pass the problems of re- 

normalizability of gravity. 

5) Particles with sufficiently high energy can penetrate into the extra dimensions. 

6) At very high temperatures, 5 or high densities, the 'vortex' is spread out over 

the extra-space revealing the higher dimensional spacetime. 
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Scalar-tensor theory seems to offer a natural alternative to the 

standard theory of gravitation, especially when one tries to unify the 

theory of gravitation and the theory of elementary particles. It also 

seems inevitable that any scalar-tensor theory results in a variable-G 

theory. This is, however, not always true. We present a simple viable 

scalar-tensor theory the result of which is not a variable-G theory in 

the usual sense. We suggest that the next simplest model will give a 

true variable-G theory. 
i) 

We consider the fundamental Lagrangian 

L.  + L I )  , ) 

where ~ is the scalar gravitational field; ~=~l depending on whether ~is 

a normal or ghost field, L M and L I being the matter and interaction 

Lagrangians, respectively. The coupling constant f~ is dimensionless, 

expected to be of the order of unity. (We use the unit with c=~=l.) For 

L H we assume the Lagrangian of massless matter fields with dimensionless 

coupling constants, as in any of gauge theories. We also choose 

= - - -  , 

where ~is a typical spinorial matter field. The Lagrangian (i) is 

characterized by the absence of dimensional constants, and is invariant 

under global scale transformation. 

We assume a decomposition 

,:/,Zc,.) - -  u.(.e) + ~ ¢ ~ . )  (3) 

where ~(x) is a usual spacetime-dependent field, while u(t), called the 

cosmological background value (BGV), may depend only on the cosmic time 

t. The BGV u(t) may change so slowly that it may be viewed as a constant 

in most physical phenomena except those that take place on a cosmological 
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time scale. 

time-dependent gravitational constant G(t) is given by 

The second term of (2) gives the effective mass 

~fi~) __ $~ffz(~). (5) 

From (4) and (5) we obtain the relation 

~t@) ~t2(¢)= const. (6) 

This is a crucial consequence of this simplest model in which there is 

only one scalar field that plays a dual role ("single-scalar model"). 

We derive the field equations as given by 

We then find from the first term of (I) that the effective 

(7b) 

together with other matter field equations, where T~v is the symmetric 

energy-momentum tensor of the matter as well as 4. We must impose 

~Fr7 ~v= O, (8) 

in order to be consistent with LHS of (Ta). The scalar field equation 

(Yb) can be put into a simpler form 

5-' ~ ~= O, (9) 

with Z-1=~+6f 2,- where we have used the trace of (7a) and the matter 

field equations. On RHS of (9) we have the trace of the matter energy- 

momentum tensor which vanishes due to the scale invariance. The scalar 

field has now no direct matter source. No scalar long-range force occur~ 

in the limit of weak gravitational field, thus leaving the experimental 

tests of general relativity unaffected. In this sense the theory is 

completely viable for any value of f~.2) This is in sharp contrast with 

Brans-Dicke theory; 3) in order to meet observational constraints, their 
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coupling constant ~ (= ~f~/4) is severely bounded almost to the extent 

that the theory does not make much sense. (~60.) 

The factor Z -~ would vanish if one chooses a conformal coupling, fa 

=6, e=-l, as in conformally invariant theories. Then, however, we have 

no field equation of ~. The scalar field no longer has a dynamical 

degree of freedom, and thus making the theory viable again. This is the 

way Dirac and other authors formulated their variable-G theories. 4) This 

approach is not satisfactory, however, because the theory has no built- 

in principle to determine the scalar field, and eventually G(t).5) One 

has to appeal to some outside principle, like Dirac's Large Numbers Hypo- 

thesis. We insist that any physical quantity which develops with time 

must be dynamical. From this point of view we avoid the conformal cou- 

pling and assume Z-~0. We hence obtain 

D ÷~=o. (io) 

We reiterate that requiring scale invariance and conformal noninvariance 

is an almost unique choice if we want a viable scalar-tensor theory 

maintaining a dynamical degree of freedom of the scalar field. 2) 

We now assume the spatially flat Robertson-Walker metric with the 

pressureless matter. In accordance with the decomposition in (3), the 

BGV parts of (7a), (8) and (i0) are calculated to be 

( l l b )  

a (~3A)= o, (llc) 

respectively, where H=~/a with a(t) the scale factor of the universe, 

u=v 2, and ~ the density of the matter and ~(x). We solve (llc) to obtain 

~( t )  "-- K &  ( ~ ) .  (12) 

Substituting this into (lla) and (llb), and eliminating~, we obtain 

• -. a~ a ~. 

2. g~  .?. f& u. 2, 
(13) 

A solution u(t) of this third-order nonlinear differential equation will 
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determine simultaneously G(t), m(t) and a(t) through (4), (5) and (12), 

respectively, being in conformity with Mach's principle. 

In solving (13) we must give integration constants in the form of 

initial or boundary conditions. In this way we derive dimensional quan- 

tities in nature starting from the Lagrangian that has no dimensional 

constants. The same situation is typical in any spontaneous symmetry 

breaking. 

Ignoring RHS of (13), for the moment, we solve (13) in a systematic 

way. Among the solutions, we find "asymptotically standard solutions" in 

which u(t) approaches a finite constant as t~. This implies that G(t) 

and m(t) also approach constant values and a(t) tends to the standard 

Einstein-de Sitter solution t ~3 . We may propose an interesting conjec- 

ture that the standard theory gives an accurate description of the pre- 

sent or recent universe just because we are already in the asymptotic re- 

gion of t. 

On the other hand, we may not be in the asymptotic epoch, or one of 

other solutions may be a true solution. Corresponding to Dirac's atomic 

gauge, we then apply a conformal transformation which brings ~(x) into a 

constant v~, so that the particle mass m~=gv~ is also a constant. In 

this "microscopic unit system" in which the time is measured by using 

atomic clocks, the gravitational constant G~ is also a true constant due 

to (6). For this reason our theory is not a variable-G theory in the 

usual sense. 

In spite of a truiy constant G~ our theory is certainly different 

from the standard theory because the scalar field is still present, show- 

ing itself through a time-dependent cosmological term. We find that the 

Lagrangian after the conformal transformation is given by 

where the stars indicate the quantities in the microscopic unit system, 

and the effective cosmological term /k is found to be 

MY 

,.,., ( 5 / ~ ) a  -,., t - a  . ( ~ 4 b )  

The relation (6) from which G~= const follows may be avoided to give 

a true variable-G theory, if we include another scalar field ("two-sca- 

lar model"). As still another consequence of this next simplest model of 

a viable scalar-tensor theory, one of the scalar fields may acquire a 
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non-zero mass ~ , giving a finite,range Yukawa potential which is added 

to the Newtonian potential "2). 

v c o  = c M  ( t  + 
~c 

A plausibility argument gives ~2~(Gm~)m; where m is a typical particle 

mass. For a choice m~l GeV, we find the force-range ~-r~lO~cm = 1 km. 

Experimental searches for any deviation from the purely Newtonian behav- 
6) 

iors in this distance range are now under way. 
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U S A 

I. I think it is quite fitting for Professor Utiyama to have organ- 

ized this symposium on gauge theory and gravitation, for he is one of 

the pioneers who recognized in gauge theory a principle that could 

conceptually unify the various forces in nature, including gravity and 

electromagnetism. 

The idea of the unification of forces of course dates back to 

earlier times. Following Einstein's theory of gravitation (1915), 

people like Weyl (1918) and Kaluza (1921) made an attempt to combine 

electromagnetic and gravitational forces in a geometrical principle, 

and supplied many of the key concepts that are being used by the 

physicists today. Einstein also devoted all his scientific efforts 

in his later years to the search for a correct unified theory. All 

these noble efforts, however, failed. Because of theoretical diffi- 

culties or lack of experimental support, the unification of forces 

remained the theorists' dream while the progress in particle physics 

uncovered more and more new particles and new phenomena. Thus, Nature 

seemed to be moving away farther and farther from the simple and 
, 

elegant ideals of unification . 

This, I think, had been the state of affairs prevailing until the 

1960's. Faced with the unexpected new s£ructures of matter, physicists 

*) There is an interesting article by Y. Fujii in Kagaku 7, 431 
(1982). He relates that Professor Utiyama, who regarded himself a 
particle physicist, had to study gravity in secrecy. Actually, 
Utiyama developed a general gauge principle independently of Yang and 
Mills. 
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were kept busy trying to find a semblance of order in a chaos, building 

more or less ad hoc models in order to account for what they saw. 

What the physicists learned during this period is that Nature is much 

richer and more complex than had been thought previously. But they 

were also able to accumulate more knowledge, both experimental and 

theoretical, which eventually gave them confidence to try a renewed 

attack on the goals of unification. 

One of the important theoretical concepts acquired in this period 

is that of non-Abelian gauge fields. When Yang and Mills discovered 

in 1954 the generalization of Maxwell's electromagnetic theory to a 

non-Abelian (SU(2)) variety, it was not seriously thought to be 

relevant to physics, because perfect non-Abelian internal symmetries 

or conserved quantum numbers did not exist. The only candidate for 

strictly conserved quantity other than energy-momentum and electric 

charge was baryon number, but there did not seem to be an associated 

baryon number gauge field, as was pointed out by Lee and Yang (1955). 

Indeed, our current belief is: no gauge field, no symmetry; hence 

baryon number should not be conserved in spite of the extremely high 

stability of matter. The gauge principle has become a pervasive dogma. 

Professor Utiyama's contribution in 1956 was to recognize the 

value of Yang and Mills' ideas as a potential guiding principle in 

physics and to show that Einstein's gravity was also subject to a 

similar interpretation. He called the interactions that naturally 

follow from the gauge principle "the interactions of the first class", 

as opposed to "the interactions of the second class" like the Yukawa 

type interactions which do not follow from such a principle. Clearly 

the implication was that the latter was more arbitrary and less 

desirable, and should be gotten rid of if possible. The same attitude 

prevails now. It is true that we have replaced the Yukawa theory of 

strong interactions with the more fundamental gauge theory of color, 

but we have not succeeded in eliminating the second class interactions 
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from the weak interactions. They are with us in the form of Higgs 

fields and couplings. Personally, I share with some of the theorists 

the view or expectation that the Higgs fields will eventually go the 

way of Yukawa's meson. 

The persistence of the second class interactions, however, is 

because they are there. Even if they may not be the primary source 

of dynamics among truly elementary particles, they appear as secondary 

effects among composite systems. In principle they should be derivable 

from the former, but at the phenomenological level they are the ones 

responsible for the complexity of the real world. It is thus obvious 

that the gauge principle alone cannot explain everything. The world 

would look too simple and too symmetric if the gauge principle had to 

manifest itself in a straightforward manner. 

II. This brings me to a brie,f discussion of some other theoretical 

ingredients out of which our current theoretical system of particle 

physics is made. Since this is not a detailed survey, I will pick 

only the ones directly relevant to the question raised above: How can 

the gauge principle be made to work in the real world? I would say 

there are two basic elements. One is renormalization, and the other 

is spontaneous symmetry breaking. 

The renormalization theory removed the difficulties inherent in 

quantum field theory, and turned quantum electrodynamics into one of 

the most successful theories in physics. I suspect, however, that 

there are many physicists, especially of the older generation like 

myself, who regard renormalization theory as an imperfect and 

temporary measure. Although this may be so, I cannot help but be 

impressed by the extent of its successes. The discovery of the 

asymptotic freedom, or the antiscreening property in non-Abelian gauge 

theories is another milestone in this regard. It made the gauge 
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principle really relevant to strong interactions. It demonstrated how 

quantized non-Abelian gauge fields behave very differently from the 

naive classical picture. I have no doubt about the basic correctness 

of the color gauge theory of strong interactions. 

Turning now to the weak interactions, a different mechanism was 

necessary to make the gauge theory work in this realm, too. Such a 

mechanism has been found to be the spontaneous breakdown of symmetries, 

a phenomenon already familiar in condensed matter physics but not 

recognized as such until particle physicists started to use them. In 

any case, this gave us for the first time at least a theoretical 

possibility that Nature does not exhibit all the symmetries built into 

its fundamental laws. The Weinberg-Salam theory is a concrete 

realization of these ideas, and its validity has already been confirmed 

overwhelmingly, if not completely. However, Utiyama's second class 

interactions are still there, as I have mentioned before. 

Weak interactions are the ones that cause the most trouble for 

us. They do not seem to rigorously observe any symmetry at all. Why 

de they look so irregular and arbitrary? Probably spontaneous 

breakdown alone is not enough to explain or derive everything. 

Specifically, I have in mind, for example, the problems of mass 

spectrum, CP violation, etc. In fact there exist already a few other 

mechanisms of symmetry breaking built into quantum field theory. The 

appearance of a renormalization mass scale and running coupling 

constants, the chiral anomaly, and the instanton and monopole effects 

belong to this category. The first of these gave physicists a real 

hope for a unification of forces, thereby starting the modern revival 

of unified theories. However, the other effects are yet to be fully 

exploited. 

I am gradually turning my eyes toward the future. Most theorists 

are already busily working on the GUTS (grand unified theories). The 

SU(5) theory is their prototype which has a great deal of theoretical 
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appeal and a few pieces of supporting evidence. Hopefully within the 

next few years, decisive events will take place which will confirm the 

basic tenets of the GUTS. One such event might be the proton decay, 

and another might be the detection of monopoles (or a confirmation of 

Cabrera's results). If either one should happen, physicists can 

peacefully sleep at night (at least for a day or two). But the GUTS 

are still leaving a lot of questions unanswered. Prominent among them 

are the problem of hierarchy and that of generation. The hierarchy 

problem is a product of the very successes of renormalization theory. 

Becauses of its logarithmic scale dependence, we have been able to 

extrapolate renormalization theory to enormous energies where true 

unification of forces is realized. At the same time, however, this 

created the problem of explaining why several vastly different mass 

scales exist. As for the existence of generations, most of the GUTS 

remain silent about it. We are not sure whether it is a manifestation 

of another broken symmetry or something else. 

TIT. All these unanswered questions seem like minor ones in comparison 

to the grandeur and beauty of a unified theory. After all the GUTS 

have brought us to within a shouting distance from the Planck scale, 

the scale where the final unification of forces would take place. 

This connection of renormalization theory to gravity was anticipated 

by Landau in the 1950's but we now have its as a real possibility. 

We must be cautious, though, because such a rosy prospect is also 

fraught with dangers and pitfalls. Physicists should always keep one 

foot on the ground even when they are daydreaming. 

At any rate, we are right now witnessing quite a bit of theoreti- 

cal activity in GUTS and beyond. The basic principle underlying the 

gauge theories is a geometrical view of dynamics. The Maxwell-Yang- 

Mills type gauge theories embodying internal symmetries have been so 
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interpreted in an abstract geometrical sense. It may be natural, 

however, to try to interpret these abstract geometries as something 

more concrete and akin to the real space-time, like in the attempts 

of Kaluza and Klein and their more recent followers. On the other 

hand, perhaps we need not try to carry the similarities too far. Only 

broad analogies may suffice. 

Actually, the real problem we are facing at the moment is that 

the paradigms of the current particle physics, including among others 

the gauge principle, have worked, but not well enough to answer all 

important questions, nor badly enough to expose glaring contraditions. 

I am tempted to compare the situation with that of the early 1930's 

when particle physics was just being born. At that time the nature 

of nuclear forces was unknown and the validity of relativistic quantum 

theory uncertain. Some physicists like Heisenberg speculated that 

quantum mechanics would break down at nuclear scales. As it turned 

out, however, real progress was made by saving quantum theory through 

renormalization, but at the same time taking the radical step of 

postulating new particles. This strategy has worked so well that we 

are still following it today. 

But now we are beginning to see the old problem again. 

Heisenberg's fundamental lenght is replaced by the Planck length. 

There is a slight difference of attitude, though, in that we are more 

preoccupied with the glorious outlook on this side of the limit than 

with the uncertainties on the other side. Will our strategy continue 

to carry us beyond the limit? Or will we have to squarely face up to 

the problem this time? Whatever the outcome, we certainly need new 

ideas. The supersymmetry and supergravity may very well play such 

r61es as those played by the renormalization theory before. The 

current frustrations we are having with regard to supersymmetry may 

be because we have not found the right way to use it. 

To elaborate a little further, supersymmetry is subject to an 
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abstract geometrical interpretation, and thus fits into the general 

spirit of unifying geometry and dynamics. It offers the possibility 

of unifying for the first time both fermions and bosons, or the 

conventional matter and the conventional forces. It also renders the 

self-energy divergences less severe, and may eventually help in 

solving such problems as hierarchy and quantum gravity. On the other 

hand, we do not know what supersymmetry means in simple physical terms 

We do not have familiar examPles to guide us. In this respect, 

however, I have a little observation to make. 

Recently it has been pointed out by several people that monopoles 

can catalyze proton decay. This amounts to a violation of baryon 

number without recourse to the conventional mechanisms in the GUTS. 

Its enormous implications are of course obvious, but that is not the 

point here. The reason for such an effect is that fermions can form 

zero-energy bound states (binding energy equals the mass) with a 

monopole. So the distinction between particles and holes becomes 

obscured, and all fermions of different masses become equal in such 

an environment. Since fermions can be added to a monopole without 

changing total energy, a kind of supersymmetry is thus created. 

Such a phenomenon seems to happen generally in topological 

excitations, as was first found by Jackiw and others. Occurrence of 

zero energy bound states are somehow related to spontaneous breaking, 

because their quantum numbers are similar to those of the Goldstone 

modes. The Abrikosov flux tube in a superconductor admits such 

(almost) zero energy states. The empirical supersymmetry in nuclear 

physics observed by Iachello may also have a similar origin. Although 

I have not emphasized it before, topology is one of the most interest- 

ing aspects of the geometrical principle. 
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I .  Introduction 

It is now generall~ believed that the N =c~ QCD is equivalent 

to some string model (see e.g. [1,2] ). This equivalence is under- 
n 

stood in the sense of the string ~satz for the Wilson loop averageA 

However the main question about the ~pe of this string is still 

open. But suppose we have solved the Makeenko-Migdal equation and 

thus know the string action __~r~,~w~(which can be an effective one 

obtained after integrating out some internal string variables).Then 

the natural problem is how to calculate mesons Green's functions 

(and thus their spectrum and scattering amplitudes). One ms~ naivel~ 

think that the old "dual string" approach (see e.g. E3J ) ms2 be 

useful: start with the known string action and define the amplitudes 

tr~ing to mimic the dual string definitions. However, we will show 

that the knowledge of fsi~ is not sufficient - one must first calcu- 
late ~CJ as a functional and then sum over closed paths with 

sppropriate measure. The point is that the QCD string is not s free 

one but has quarks at the ends (let us stress that onl~ open strings 

naturall~ appear from the QCD field formalism if the st~ing ansatz 

(I) is assumed). In sect. 4 we work ou~ the definition of the mesons 

scattering amplitudes starting with the QCD path integral and assum- 

ing (I). We illustrate our definition on the example of the 2-dimen- 

sional QCD. 

Lacking the final form for the string snsatz in (I) one can tr~ 

to stu~ the properties of various possible string models in attempt 

to establish their common featu~Ss~wtO find some distinguished one. 

This is the topic of sect. 2 where/that the Brink-Di Vecchia-Howe- 

Pol~akov (BDHP) model ~5,6 ] seems to be the most simple and tract- 

able one among other known bose string ansatze. Sect.3 is devoted 

to the formal BDHP string theory: we temporaril2 forget about QCD 

applications and explicitl2 calculate the free BDHP string scatter- 

ing amplitudes, defining them in analog~ with the dual string case. 

The results seem not to support the conjecture that substituting the 
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Nambu action b~ the BDHP one we get tach~ons free string theo~ in 

d=4. A realistic QCD motivated strin~ theor~ should be the result 

of the proper account of the qua~k end point terms as stressed in 

Sect. 4. 

2. Strin~ ansatze 

Let us list the following three bose string models which ms3 be 

considered in connection with QCD according to (1): 

~amb~ model r~]  = ~ a = , ~ . .  , = ~ ~ ~ % , ~ = ~ t d ~ <  

L = l ~ f / - # ' d ~ .  #/-t ##--~;,-iV.r<J: f r O . J  e -z,v (,) 

~" (+9 = {'~ v - '  ) ,  4 

., 0 X/a.D .= C " ~ " 
BDHP or gravitatlonal"model ~5,6J : 

: . 4e I~ = M .~ ' (31 

The stud~ of these models gave the following results ~01 : (I) The~ 

are equivalent not onl~ at the classical level (minimal surfaces 

~V ~" ~x~(- ~4 ~ ~ Ec]) ) but also in the semiclassical approxima- 

tion near a minimal surface and thus predict the same long-range ~ 

for C= ~-~)x (~-.~) ; (2) The~ are equivalent in the leading 

~/d approximation f o r  the static potential (of.J91 ): VCd')o o) --- 

= # ~ l ~ (  l -  ~21~') ,`z ' ~ 2 - -  2 # ' W / f 2 # 4 "  ; ( 3 ) t h e s e  mode ls  a r e  
not equivalent as exact functional integrals (e.g. beyond the semi- 

classical approximation) being different quantum analogs of the same 

classical theor3| (4) the BDHP model is the most simple and tract- 

able at the quantum level. The main fact is that in order to preser- 

ve the O(~ (Lorentz) s3mmetr~ of ]~/[C] one is to use ~/~}- 

invsriant and thus incomplete gauges on X2. (or ~d 6, ). Then 

additional We~l s3mmetr3 of the BDHP action and its polinomialit3 

in X 2- are essential simplifications. Pot example, if we consider 

(instead of ~/ ) the formal BDHP string p,,~rtition function 

(with ~.X/~j -~0 boundar3 conditions) then it is eas~ to obtain 

the effective action, integrating the conformal anomal~ K6] ; 

(5) However, one cannot establish th analogous local representati~ 
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for W[ c] due to the nontrivial boundsr~ condition X/ = C 

in the gauge ~ =  ea6~ we get ~ -- Id~ ~_1"#,([[- AT'~iC 
" A. n , , ~ ' = non-local functional of 

*tl;. % ' Th~  no 
(~(-d) -coefficient arize. As for the formal partition function, 

it can be evaluated through the anomaly also for locall~ supersymmet- 

tic fermi string models, as was shown for the spinor string in [11] 

and for the string with spin and charge in [12] , In the latter ca- 

se one has 

- "  J 

2,, pt'S~,~ q {~ ,c % 
(4) 

~ , ,  _ ~ - I  r:, ; , " - i 0~}" ~ z a a  ] ,  

where ( ~  = ~ + [ y / .  , ~ )  fo:m d comple, matte~ mult ip lets,  
interacting with N = 2 two-dimensional supergravitl fields ( ~6~ , 

a~ I v ,2fie , Aa ) end we used the gauges ~¢.e ~ & -- a ~ , 

Am = { ~'Q¢ ~8' ~ . Three te~ms in (4) s re  due to the conformal ,  
a x i a l  and superconfo~mal anomalies  r e s p e c t i v e l y .  As was s t r e s s e d  in 
~12.1 and ~0] the Lio~ville non-linea~ities (~ ~ ) do not ari- 

ze in supersymmetrical cases due to the absence of quadratic (~) 

divergences. (Even fo~ the bose BDHP case one can formally neglect 

~z-terms or put the renormalized value of the cosmological cons- 

tant ~ to zero). However, it is instructive to show how the 
2~-term can be introduced in the fermi s~ing theo~2 on the example 

of quantization of the N=I 2-dimensional supergravity. This is a 

non-trivial theory with the compact spaces partition functinn given 

= (5) 
( ~.pa,%~.~,~, (#, , , . , /  
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where ~ is the auxiliar~ scalar field (cf. E13]) and ~= 
= f- /~6d/~ is the ~ler numbe~ while the/ -term is the ana- 

lo(//of the@~ -term (cf. E14] ). O~l~ taking in account the gauge 

measure (in the gauge @,~=gz$~, ~;~/~ ~ ) we get the cor- 

Iect counting of degrees of freedom _~ 

2" ( A~e423 (~) 

Integration over A gives the super-LioUville theor~ withA=/~' 
(which probabl~ leads to some space-time foam picture as the corres- 

poinding 2-dim gravi%~ model E15~ ). 

3. Free BDHP strinK amplitudes 

Here we forget about the connection with QCD and stud.7 the for- 

mal BDHP string theor~ assuming the Neumann boundar~ condition 

]@,~=0 in the path integral. This theor2 has ~ecentl~ attrac- 

ted much attention due to a hope that the proper account of the 

J, anomalous degree of freedom ~ (with the action I= ,Z~-~' I J T2M 

help to avoid tach~ons and d=26 ~estriction in loops. As a simplest 

test of this hope one can put p =O and stud~ the corresponding 

scattering amplitudes. Still the main problem is the absence of a 

natural definition of the BDHP strings amplitudes. Thus we are to 

follow the old dual string definition or tr~ to invent some new 

one. The realization of this program gave the following results 

L - l o ]  • 

I Open strings ( ~ = 6 + , 3~ = R ), on-shell defini- 

tion ala ref. [4] : , a -~ 

v O, , ,.. , - /7  / - / z : z  ] , 
6~0 ) 

4 

is the Koba-Nielsen , where k~. 
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measure and the averaging is made with the help of the .BDHP string 

path in tegral .  We ~et: d = ~  ;Z~=ITI~I ~i .e .  the 

the G ~ - ~ i /  ' ~ = •  ~ p ~ ,  .-~n~ ~ =  ~ d/moY/(~Band poles are given by 
~(o) = - ~ o ~ + - - - - ~  =~ --~ = ~ a  = 15.6 or -0.94. Thus there is 
the non-tach~onic ground state solution; the amplitude is dual onL7 

for d = 26. Analogous results follow [10] if we start with 

the heuristic off-shell definition [6, 16] 

J'=O ! 

Here for d ~ 26 we get the ph2aical trajectory ~/~o*--~'63h- ~ 

(along with the tach2onic one). However, (8) does not lead to the 

Venezisno amplitude for d=26 and thus is probably consistent only 

for closed st~ing case. 

II Closed strings, ( 9= ~ .  ) 

Starting with (8)we get for d--26: ~ has poles at ~--~ ~ , 

ie describes only the ground state tachyon scattering in the Shapiro- 
z o~°  i - 

¥ i r a s o r o  model E173 . For d < 26= P-. JOGS. ~ l g  zJ  ~f, "~ 
~ ; = ~ - ~ 6 - Z ~ , ) O -  v ~$) and thus the spectrum contains the old 
tachyon ~_ ~./ &.z_ 0 along wlth s new physical state ~- ~ ~ = 

2. ~- " V i ~  - -  -T --(' 6-dy~F . It remains to be seen if the inclusion of 

the Liouville term ms2 eliminate tach~ons and give unitary and facto- 

rizable loop diagrams. However it should be understood that a priori 

they will have no relation to QCD, where the expression for scatter- 

ing amplitudes turns to be different from (7) or (8) even if the 

BDHP ansatz in assumed in (I). 

4. N -~ QCD strin~ scatterin~ amplitudes 

Trying to derive the string amplitudes from QCD we are to start 

with the field theoretic definition for meson Green's functions 

=- . . .  ( q P , .  = 

T'o~(x,)... fo~n (,,-,),)~,.,.~ > 

Z[ 2 -,- / z :m] )  , 
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With the he lp  of the prope~ time r e p r e s e n t a t i o n  for  the  qua~k d e t e r -  
minant and taking the large N limit (of.I-2] ) we finally get 

¢ c~,, . .. , ~ ) = ,+" - ~'~ 7 ~  ~ .~ c, ~ ~) U~; w ~ .  <~o> 
o 7" 

. r I, Coo) = C ( T )  

- ! 7  / ~ ' 5 .  ~<'~/5.-e(S.)J d=l o ) [ ( / _  7" 
where ~ ,s  given b, (1)and :EC] = f , ,~7]"  ~4g. / O e X / O / , "  d d Z "  

"" Y¢ 

f~T~(Xr÷ *) --./~3 } i the quark end point factor. 
d "covariantizing" the using'" t; --he momentum represent a t'zon an closed 

path integral we have ._~/~/~¢ ¢?D.  CC~; ) 

G (?. , . . . ,? . )  : S z < , ~  S < ~ < r , )  . ~ G . )  e . <,~, 

, ~rc ,  e ]  w r y . e ]  
where e z is a one-dimensional metric on C (in the proper time 

• ' l~d gauge e =O , J'edl~ = ~ ). Suppose now that the string ansatz 
(I) is valid for" ~/ , which can be convinientl2 written as 

C &,/~; e~c,J> (.,'4~,:cr,,J) 

d z  ') dZ g 
where ~e =~4g_~ ~ and I is some effective action (e°g. 
the BDEP one).[ It is interesting to note that the final result (11~ 
(12) prompts the open-string analog of the off-shell-closed string 
amplitude definition (B) for the f~ee BDEP string: 

~(/:,...,t,) = ~ P S:/~,- e c~,.) ~ "~<',J > . - , . :°  <...>: 
J=# ;)~3 =.~ 

: f.o,~ f . ~  sf~,,l~;-e J f.ox <r&~-o].  :~ ~ this ( z . . -  
r e p a r a m e t r i z a t i o n  i n v a r i a n t )  d e f i n i t i o n  t h a t  should  probably abe used 
in the future studies of the BDHP string J . AS for ~V= )it can be 

expressed as follows (of. ~18~ ) 

z,. :<,~] = f-~,~ (<'~ S ~ , ' ~ , , ' - ~ ? < " , / " ' l l ' ! : ' < "  < . ,  

4 _ _ _ _ . - , , )  

o. :o:<,<0 : ~.~,{- fw+ H c ~  '+ .., , . j  ~. .0 ,,e,..o, ,,,e 
spins of quarks. The important consequence of (11) and (12) is that 
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we cannot explicitly integrate over X~[~) because of the non- 

trivial end point factor ~= (or ~ --). Real~, if this factor was 

absent, we could rewrite two integrals :~C/~ over the 

"boundary and interiaur" as one integral over the whole domain and 

then assume the Neumann boundary conditions on X/~ , providing the 

possibility to obtain the explicit expression for the amplitude 

analogous to those of sect.3 (with 4 playing the role of Koba-Niel- 

sen variables). The conclusion is that contrary to the free string 

case (sect.3) here we first need ~o find ~ J  as a functional 

then integrate over C~ and e . However, the expression for Pie 

difficult to obtain even for the simplest BDHP string case (see 

sect. 2). In this situation some approximations are needed, for 

example, the semiclassical one for ~ ( ~- ~ ~-/~,n £~J)) 
or the semiclassical approximation for the total (string + "ends") 

action. The second approach was alread~ initiated in a number of 

papers ~19, 20~ where it was shown that "ends" are essential to ob- 

tain a reasonable spectrum of hadrons. However, these attempts are 

to be improved (if trying to go be2ond the semiclassical approxima- 

tion) b2 changing the Nambu action, e.g., by the BDH? (or some fermi 

string) one and also by using the proper quark end point term (13) 

instead of the"phenomenological" Bars-Hsnson's one (used also in 

E20] ), which actual~ not follow, from @ ¢ 

(note that (13) and (14) ma~ again/consldered as providing different 

quantum extensions of the same classical theor2). 

Finall~ let us illustrate our result for the amplitude (11) on 

the example of the ~ -dimensional QCD, where the expression for 

is explicitl3 known for the simple curve C ~1,21] : (~'=~ 

~C~ -- ~ (- ~/~ ~: ~ ~ ,C~ C ~ .Using the proper time gauge 
in (11) and assuming that quarks are spinless and have equal masses, 

we get the following expression for the ~ - mesons off shell 
scattering amplitude 

/ 7" g=, (15) T o 

. F- e} ÷ E,,., 2 t )  ¢ (sol 
Calculating @the path integral we are left with #=t 

( = a, " - :'"¢4:,) : "" : ": ] • -s--g :--,. 
o ,S,'~ $ 
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!(pCe;A.<c,)- 

A=< : co~ , . <  0 (~-#e) + <-s ~ e . . 0  ( 6 - & )  , 

This ampl i tude resembles the d u a l - l i k e  ones w i t h  "cos"  and " s i n "  
ins tead  of  " l o t ' s " .  The spectrum o£ mesons i s  g iven by the poles o£ 

the propagator (c.f. with the approach of ref.[22] ) 

" "  ( 7 )  • Ls,'.~ / ! 

It can probabl~ be connected with the longitudina I spectrum of the 

string with masses at the ends [ 23] or the t'Hooft spectrum[1~. 
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1. Introduction 

S u p e r g r a v i t y  ( S G )  was i n v e n t e d  w i t h  a hope  t o  s o l v e  t h e  p ~ o b l -  

em of  i n f i n i t i e s  in  t h e  E i n s t e i n  t h e o r y ,  Now came t h e  t i m e  of  e x p l i -  

c i t e  c a l c u l a t i o n s  ( o f  c o u n t e r - t e r m s ,  ~ - f u n c t i o n s ,  o f f  s h e l l  and 

asymptotic behsviour) which are to reveal the structure and the sta- 

tus of quantum SG. Several new results on this wa~ are the topic of 

this report. 

Let us first remind a number of kn~vn facts about the infinities 

in ungauged 0(N) SG's (for refs. see [I] ): (I) N = I,...,8 SG's 

are on=shell finite in L=1,2-order (L is the number of loops): 

L=I - diagram calculations of infinities of the S-matrix elements; 

L=1,2 - general argument of the absence of an on-shell non-vanishing 

superinvariant; (2) L ~ 3: there exist superinvvriants - candidates 

for on-shell divergences; (3) N-extended SG's are (off shell) finite 

(in d-dimensions) for L <~(~-I)/#~-2~, e.g. the N=8, d=4 theory 

is infinite for L ~ 7 (some plaQsable argument based on supergrsph 

power counting rules [2] ); (4) N = 8 SG is divergent for L ~ 3 

(implicite argument treating NfB SG as s ~/--~ O, d=10 --~4 limit 

of the superstring theory [ 3] ). Thus different approaches seem 

to leave the onl~ possibillt2 for finiteness if the actual coeffi- 

cient of an admissable superinvarlant in the (e.g. L=3) infinities 

is zero. Two examples of such kind of "zeroes" were 81read~ found 

in SG at L=I order: the absence of topological and gauge field ac- 

tion counter-terms for N ~ 3 and N~5 respectivel~ (cf. [lJ ). A 

new one - the absence of the off shell L=I We~l tensor squared t~pe 

infinities in the Nf8 end N=I, d=10 --b 4 theories - will be re- 

ported in sect.2, where we discuss the L=I off shell infinities in 

gauged 0(N) supergravitiee [4] • Here we make a conjecture that 

the Nffi8 SG ma~ be L=I off-shell finite (cf. [2~) which, if true, ms~ 

impl~ an improvement of higher loop behaviour. 

Suppose, however, that N=8 SG fails to be finite st 3-loop or- 

der. At least two possible modifications of the approach can then be 
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suggested: (i) consider the N=8 SG to be onl~ a low energ~ manifes- 

tation of some fun4amentsl ultraviolet finite superstring theor~ in 

d=10 space-time (with six compact dimensions) [3~ ; (ii) change the 

S~ lagrangisn b2 adding super-extensions of the curvature s~uared 

invariants in order to get a power counting renormalizsble theor~ 

(just like it can be done alread~ the Einstein theory, see e.g. ~ 5]). 

It is the second secnnd possibilit~ that we propose here (see sect.~). 

~,~devoted to the discussion of the one-loop 8-function E 6] ~sect. 

3) in conformal supergrsvities, i.e. the superextensions of 

the Wexl tensor s~uared invariant. 

2. Off shell one-loop divergences in ~au~ed 0(N) supergravities [4] 

In order to get a realistic theor~ one should consider the 

~au~ed version of the 0(N)-Poincare supergravit~ (and also try to 

invent some viable mechanism for a spontaneous supers~mmetr~ break- 

ing), For example, the simplest gauged SG-theor~-the 0(2)-one-has 

the f o l l o w i n g  lagrangian [7] (~ = -3/~ a, ~ = o?~/6 ) 
÷ ~ a ÷ y p~/o--, ,'.,L 

+~" ~,,V',j .zz,, ~" F ,. P,, .. 
where /" ~ , / "  ,2' , 

Q" ,:," , • 

meusionless gauge coupling). Th~a theor~ is one-loop on-shell renor- 

mslizable and one can ask about the value o~ the S-function for ~ . 

I n the first calculation 68] done in the background gravitational 

sector ~ (~) was implicitl~ obtained b2 establishing the n-term 

renormslization and then using the relation A~- - - I ~  a . The 

results 

(2) 
_~6 _#- _~ o 0 0 0 

were then rederived by a "heuristic" calculation in the background 
gauge field sector~].The reasoning of [93 contained a number of un- 

Justified assumptions like the validit~ of the formula fo 65) ~- 

--- ~.~. _ .~.)(_~a,.~ C z (fOr the cnntribution of spin S field 

in the gauge field ~-function) for the g~avitino ( S-- ~ ) and 

the possibilit~ to obtain the total result by simple summation of 

contributions of all spins of the SG multiplet, 

To provide understandi~ of the agreement of these two calcula- 

tions of ~ (~) one should stud~ the off shell divergences in the 

combined gravitational-gau~e field background sector of the effective 
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aotlou C @.. + ~ ,  . ,C ~ 0  . ~ :O ). ~he one-loop 
(:1.ivergenoes for  va r ious  ~ i e ld s  can be eva ' luated us ing  the formul8  

Z-=-)oo  ) 

~ W'-:a W lt- ~..:j ~.Z+:y ~j.. + ~$..~.. + (4) 

The central point is establishing the gravitino contribution (in the 

s tandaEt backgmound gsu~le 

z ,  =C , ,,:,, = 

• -,/,.r~ /,p v ' " 

"Squarins" the A%,L-operator we get 

~dditional Fa-infinities due to m~ing of the "mass" oncl the non- 

minimal coupling terms. We found that it is this mixing that is es- 

sential for the correctness of the :0 (~) -formula for • = ~/a 

used in [ 9] • The results for different spins contributlous in the 

grevitational snd gauge infinities are the following (we also uti- 

lize the old off-shell results for th~ Einstein-Msxwell s~stem [10]): 

s ~ Po A A f, 

¢': 1o Y 

- 2 .  - ~ - ~ - '~/  i 
3 ,*.~0 60 5 

£ 2 ~ ,~ I 0 

-i _ a ~ "I 0 

_ ~  i _  ~ ~ . . . .  
i 6 ~8o 60 i.Ty 

i 
;L 

0 

_/9 _ .231 2 0  
_ a ~  2 0  T~  3 3 

9 -9-  g-~ c, 

¢ ; ; 2  
0 0 Io T 0 

0 0 ~ ! 0 6--~ 6 

, -9- 36 6 Y 
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The important fact is the negative "sign" of the gravitino contribu- 

tion ( ~ ) in the "1~e~l" infinities, which can be contrasted to the 

positive ones for S = 0,1/2, I fields. It should be stzessed that 

the statement (of. [ 10] ) about " #a> 0 for an~ spin" is not actual]4 

epplicable for ~ = 2 and 3/2 (in the background gauges). One 

should take into account that here #a is gauge dependent (cf.[1~ 

fo~ ~ = 2 case and note that the "one-loop" gravitino l~g~angian is 

superinvarient onLV if the background space is theEinstein space). 

The final expression for the one-loop off shell infinities in 

the 8au~ed 0(N) supe~g~avit~ can be written in the form 

:, R':+ h ( E + /:, , 

the coefficients are given 

in the table 

4,*=~ 

0 I J 3 Y ~ 6 8 a.To 

[~o _ _ _ a~ - ~ -  - ~ 0 0 0 - 

~- - ~ ,  - ~  -~/, - 3  -~ -~ o o 

4, vO 6 y 88 //Y / ~6 / 90 / F,¢ - 

~" -~h -'~/, -8 -~ -/o -m - # -Y -,',,, 
~ / - ' ~  -'~h - r/j o o o o o o 
4 - o o o o o o - 

Several conclusions follow from these results: 

(I) we explicit l~ demonstrate that ~au~ed SG's are on-shell (L=I) 
tenor malizableAtopological infinit~ (i.e. after the use of 
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(2) the on shell renormalizations of~ and ~ ~ are given by the same 

coefficient ~@ , explaining the agreement of the results of refs.[8] 

and [~] , 
[ 

(3) there is no on-shell quadratic divergences in all theories with 

N ~3! 
(4) N = 8 SG and the theory, obtained b2 a reduction of the N=1~d=10 

SG (the last column of the table)are~off shell finite in the gravita- 

tional 2+-sector (have f~ = 0). Thus the N=8 SG is distinguished by 

having a maximal degree of the off shell finitenese:~@=~ =?~ = O • 

One may even conjecture that it is completely off shell finite (for 

L=I) when treated in a suitable background supergauge where¢~=~/~=O 

(it ma~ turn out that also f~= ~ =0 in this gauge if the N=8 

superextension of ~z does not exist). 

3. One-loop ~-function in pur e conform al super~ravitie s [6] 

Conformal supergrav i t ies  are ~/( /V)  (~/= 1 , . . . ,  4 ) 
conformal extensions of the We~l invariant ~= - 

The legrangien has the following structure [12] 

super-  

while A end ~ ere V(,) and~'~C~J gauge fields and W~ is 
N f . conformel gravitino . Wh~ these theories ere interesting: (I) they 

are gauge theories with the maximal known group -supezconformal 

group, including the ordinary an~ conformal supersymmetries, scale 

~/V) transformetions; 2) the~ are power counting re- and chiral 

normalizable due to higher derivatives in the kinetic terms, 

Llinear = ~ O~ + ~ ~s T + ~ Q~ +.. (Note that for the cor- 
rect counting of degrees of freedom one should properl~ account fo~ 

the "averaging over gauges" operators, e.g. for the N = I theory we 
have Q , =  + ( - 8 ) ,  + = 0 > 3) =  , , -theories 
are asymptotically free}while the N=4 theor~ is finite (in one-loop). 

More explicitly, one can obtain the following results for the ~-func- 

tion for the dimensionless coupling ~ : 
~7 (7) 

I I ~  t r  ] ~ 
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~ _ 19~ is the value for the pure We~l theor~ [5.] , 
where ~ is the conformal gravitino ~-infinities ~,=-1~/3o 
in the gravitationaA sector established in [ 6] with the use of the 

algorithms for the divergences of the 4-th and 3-d order differential 

operators and ~A = I/5 is the axial vector field contribution. 

N=2: & = ~ i+ ~/? ~#A + #~( 5gA-gauge field ~ ) 

+ 8 (2 spinors j,~ ) + ~'(1 antis~mmetric tensor field ~" 

J 

• 8 _  (3 oompAex scaAars ~£ ; + 

J 

= 0 • 
(where  we assumed an a p p r o p r i a t e  g r a v i t a t i o n a l  c o u p l i n g  of  t he  s c a l a r  

C). Interpreting - o~ ' 4  as the ~ T ( / v J  gauge coupling, we 

get the following sequence (cf. with the O(N) Poincare SG sequence 

( 2 ) )  

p -I o C-~ ~) : -~ ~- 

However ,  t h e  c o n f o r m a l  s u p e r g r a v i t i e s  l a c k  a low ene rg~  c o r r e s p o n -  

dence  w i t h  t h e  E i n s t e i n  t h e o r 3 .  Tha t  i s  w]z~ i n  o r d e r  t o  g e t  a v i a b l e  

t h e o r ~  one s h o u l d  add a l s o  t h e  o~ d i na r3  ( l i n e a r  i n  c u r v a t u r e )  s u p e r -  

gravity term in the lagrangian. 

4. Renorm~l.iz~.ble super~ravit ~ models 

Let us ~onsider the following lagran~ian 

X z s ~ - 3 6  "A ~ 
where the brackets denote the corresponding superextensions. This 

theor~ is renormalizeble, possesses the correct Einstein limit but 

l~.cks perturbative unitarit~ due to the presence of ghosts.However, 

ghosts here fill 8 supermultiplet and thus ma~ decouple in some 

non-perturbative wa~. The physical spectrum contains gauge fields 

of Poincare SG, while ~CA/) gauge fields of conformal SG are in 

fact auxiliaries ~or Poincare SG. Some generalization of (9) 
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probably exists for N=4, ..., 8 with higher spin fields being aU~ri- 

liar~ (propagating) in Poincare (conform~l) SG-parts. 

One can prove that the inclusion of the (~+,.) -term in the 

conformel SG lagrangian increases the value of the Weyl coupling 

(~) -function. Thus we get the as~mptoticall~ free behaviour for~ 

also for N=4 theor~ and ma~ hope for~(o{)= O for some N > 4. 

In turn, the addition of conformal SG term to the Poincare one (I) 

changes the renormalization of the physical gauge field couplingS: 

all negative gravitino and matter fields conributions in ~(~) are 

suppressed due to higher derivative terms in the conformal S~ part. 

Therefore the value of f(~) is the same as for the free 0(N) gauge 

field in the flat space-time, i.e. corresponds to the as2mpt0tic 

freedom in contrast to the noa-as~mptoticall~ free results in pure 

Poincare SG case (2). Now let us mention a possibilit2 that a su- 

perextension of the R2-term may not exist for some N > 2. Then the 

superconformal theory 

is an attractive candidate for a fundamental theor~ if it has~(~)=O 

(no superconformal anomalies and possible solution of the problem 

of ghosts). The presence of conformal supergravit~ term ma~ also 

help to provide a spontaneous supers~mmetry breaking. The important 

fact is that one can add some matter multiplets to (9) or (10) wi- 

thout destroing renormalizability. Obtaining in this way a suffi- 

cient spectrum of particles (or taking in account that additional 

particles may appear as monopoles after a spontaneous supers~mmetry 

breaking) we get a power counting renormalizable asymptoticall~ 

f~ee (or finite) unified theory. 

In conclusion we want to point out that the renormalizable 

supergravit~ (9) can be considered as an "induced supergravit~" the- 

ory. Suppose we start with the lagrangian 
' 

O~ = " / " -  + ~ ' -  c + ~ , , (11) 

containing massless g a u g e  and spinor matter fields interacting with 

the external conformal supergravit~ fields and also the pure confor- 

mal SG part. Assuming that the regularization b~eaks the conformal 

s~mmetr~ but preserves the general covariance and local supers~m- 

metr~, we get (according to the ideas of "induced gravity" approach 
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~3] ) the following effective lagrangian 

' (W) ,  ÷ 

A ~  and ~.d axe finite calculable constants. One where k¢~ 4 t 

can probabl~ induce the Poincare SG term in (12) even without matter 

terms in (11) (i.e. starting onl~ with conformal SG term). Thus the 

conformal supergravit~ itself ms2 be a true theor~ on some fundamen- 

tal level. 
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I • Introduction 

In a series of two not well known pa~rs Einstein and Mayer i) proposed a 

formalism by which they were able to obtain a theory of gravitation and electro- 

magnetism similar to that of Kaluza and Klein. 2) Instead of assuming, as these 

authors did, the existence of a five-dimensional continuum they assumed that at 

each point of SPace-time, regarded as a Riemannian space, there exists a five- 

dimensional vector space. The purpose of this work is to generalize the approach 

of Einstein and Mayer to N-dimensions, and to lay the geometrical foundation of a 

possible unified field theory of gravitation with other fields. 3) 

Accordingly, we assume the existence of a four-dimensional Rismannian 

base sPace, characterized by coordinates z i (i - 1,..4) and metric gij' At each 

point (of the base space) there is a linear vector space of N dimensions (N 5), 

vectors in which wonld have components a~ , b v (~,v & 1,2..N). Quantities in the 

two sPaces are connected a mixed tensor or projector h~ k so that 

For a given a ~ (i.I) determines a k uniquely, but the reverse is not the case. 

In particular, for a vector A k = 0 we can write 

A k " h /  A~ ' ,  0 (1.2) 

which will have n t N-4 independent solutions, if the matrix (h~ k) is #f rank 4. 

Labelling these solutions with an index P (P w 1,2,..n) we can define a metric gpQ 

. ( 1 . 3 )  

In general, gFQ will be functions of coordinates ym (m ~ 1,2,..N-~) in this sub- 

but for the present discussion 4) we Shall assume that gFQ are constants, S ~ C S ,  

w h i c h  we c a n  t a k e  a s  

- 8FQ ( l .4)  gPQ 
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H~vever, to keep the notation more uniform we shall replace the A's by quantities 

su4h as h~ P, h~p, h~p etc. In the N-dimensional sPace we define a metric tensor 

f~v related to gi~ thr°ush 

gij "f~v h~ihvj or gij .f~v~ihv j (1.5) 

and by raising (or lowering) indices 

hi hkj j 

A simple calculation using (1.2) and (1.6) gives 

f~v " h~ i hvJ gij + hJ hvQ gFQ (1.T) 

which can be considered to be the inverse of the relation given by (1.5). 

II. Curvature tenser 

Let us now consider covariant diEferentiation, which involves the ordinary 

Christoffel symbols in base space, but a number of connections or three-index 

symbols in vector-sPace. For example, the covariant derivative of S~ k is 

Thus, in Particular 
k a ~j + ak~j (S.2) 

where a semi-colon denotes a Riemannian covariant derivative. Furthermore, 

giJ l ik  " giJ~ ~ 0 (2 .S)  

aS Usual, and we shall also assume 

f~vmk " 0 (Z.4) 

In order to determine the form of the three-inde~ symbol consider 

a simpler quantity ~k involved in covariant derivatives denoted by a single 

bar I and defined such that 

~ J l k  = h ~ - 0 (~-.5) Ffk 

One finds then from (2.5) 

~ hkj h~ m tJk~+ hAP ~Qk 

where ~Qk is still undetermined. 5) If we new write 
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it foll~s from (2.4) that 

v~v k + vv~ - o ( 2 . 8 )  

Consequently,~e can take V~v k in the form 

V~v k " h~ i hvJ Wij k + (h~ P hvJ - hvP h~ j) Fpj k + h~ F hvQ UpQ k (2.9) 

where 
Wij k ~ - W~i k and UpQ k - - UQp k 

and the functions appearing in (2.9) are to be determined. 

The curvature tensor in the base-space is just the Riemann-Christoffel 

Rijkn • In the vector sPace we can define the curvature tensor tensor 

. . ~x T" ( 2 . 1 o )  Pxj k - r~j,k÷ r~,j eJ ,ep _lAck ~J 

From pX one can form tensors of lower order ~jk 
~Jk hkk and P " %j h ~j (2.11) 

being the analogues of the Ricci tensor and invarian% curvature. 

From the usual anti-commutation relations we obtain 

.h k .h k .p 

M~ultiplication by h ~j then gives 

P - R. h~J ~j ( 2 . 1 2 )  

The right hand side can be evaluated by making use of (2.5), (2.7) and 

h i "V s 
j k ~ " hel ~k 

where V ~ is given by (2.9). Oarrying out the indicated calculations we find 

- R ÷ wlJ k wij k ÷ v Pjk rpj k ( 2 . ~ )  

III. Field equations 

To obtain the field equations it is convenient to make use of a variational 

~rinciple. Since fsr constant gpQ - ~pQ the only scalar at our disposal in vector 

sPace is P given By (2.13) we shall take the variational functional as 

81 - ~P (-g)½ d~'X " 0 (3.1) 

where g = det Igij I . Varying (3.1) with respect to ~ab we then obtain 

Rab _ ~ gab R - - Z(FQaJ ~bj _ ~ gab ¥QPq FQpq) 
(,.2) . ~ (,~rP Wbrp . i gab wrpq ~ ) 

rpq- 
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Varying (S.l) with respect to Wij k and Fpj k gives ~jk . ~jk = O, as can be seen 

from (~.13). In order to avoid %hisp let us express these functions as potentials, 

Let us first assume 6) 

¥Pjk " " FPkj and Fpj k - Fpj~k - Fpkl j  (3 .3)  

Varying now the potentials Fpj we obtain the field equations 

FPJklk = FpJk~ " ~Pk ~Jk . 0 (3.4) 

Assume also 
 ijk " - 

so that now Wij k is completely antisymmetric upon interchange of any two indices. 

Two possibilities now suggest themselvees 

a) for 
.Vii k . ( . g )~  eij km ~n ~ 

where eijkm is the completely antisym~etric Levi-Civita symbol. 

in (3.1) results in the wave equation 

gJk ~i~k " o (3.6) 

b) Alternately, 

(~ .5) 

Varying now 

the transformation 
h P ) h P' = SPQ h Q (4.1) 

where ~Q - (S'I)Qp is an orthogonal matrix the vector ~ is invaria/~ 

P" % - ~p h~ P - ep '  h~ (4.2)  

then 
-  s-Q or, in notation, - ~~S (4.3) 

If we now define the covariant derivative 

|j - ~,~ -LBj ~ so that ~'|~ " ~lj (4.4) 

Wijk " wij ,k + Wjk ,i + Wki,j with wij - - wji (3.5') 

If we now vary with respect to wi~ we find from (3..1) 

It should also be noted that no equations have been obtained for UpQ k. 

IV. Gauge fields 

far we have considered the vectors hbP satisfying (1.2) and (1.3) as So 

having permanent identities. However, we can get a further generalization by taking 

into account ~he possibility of replacing them by linear combinations. If under 
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we obtain the transf~rmat ion law for B~ 

B' 

Thus, 

transforms according to the relation 

B' - S B. S " I  

I~7e Bee that we have here the gauge-field formalism. 
of matrix elements gives 

(~.~) 

(¢ .~) 

(4.~) 

~;Iriting out (4.4) in terms 

which shows %hat the matrix elements BpQj are nothing else than the three-index 

symbols ~pj we met previously (cf. 2.6), and thus our formalism does contain the 

seed of the gauge transformation. In particular, (4.6) written out is just the 

tensor (apart from an overall sign) 

'oA 
~e also note that the three-index symbol ~ ~k (2o6) is gauge-invariant as it stands, 

Nureover, the field equations for ¥Pjk are gauge-invariant as can be seen from 

(3.4). Also, from (3.3)we obtain 

rPjk . Fpj~ k - Fpk~j . FPj,k - Fpk,j - rQpk FQj + TQpj FQk (4.10) 

~e, then, note that varying (3.1) with res~ect to fQpj would impose a restriction 

on FQj. It is, therefore, suggestive to add to the Lagrangian in (3.1) a term in 

volving these con~ections. Thus, we replace (3.1) by 

Varying (4.11) with respect to gab adds to (~.2) a term on the r.h.s, of the form 

_ (BFQka BQpk b + BPQkb BQpka . ~ab BPQmn BQpmn) (4.1~) 

while varying with respect to ~Qk gives 

" 4BpQJkJ k + 2(FP jk FQk - FQJk Fpk). 0 (~.ig) 

I) A. Einstein and ~7. ~.~ayer, Sitzber. Preuss. Akad. ~iss. 1931, p. 5411 1932, p.130 
2) Th. Kaluza, Sitzber. Preuss. Akad. Wiss. 1921, p. 966 

3) Work along them lines is now in progress. 

~) The general case will be presented in a seParate Publication elsewhere. 

5) These symbols play the role of gauge fields (see section IV) 

6) For P m 1 we get the i~axwell fields considered by Einstein and Hayer. 
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